M Horowitz

Lecture 5

More Adders & Multipliers

Computer Systems Laboratory
Stanford University
horowitz@stanford.edu

Copyright © 2007 Mark Horowitz

EE 371 Lecture 5

Overview

 Readings (for next lecture on latches/flops)
— Stojanovic Comparison of Latches and Flops
Also Chapt 11 in Chandrakasan
— Harris Skew Tolerant Domino

(Won’t discuss until later)

 Today’s topics
— Ling Adders
— Multiplication

* Booth recoding

« CSA
e Tree combiners

M Horowitz EE 371 Lecture 5

Ling Adder

Huey Ling (IBM, 1981) reformulated Pg and Gg for speed

The problem: Want to minimize logic delays for a 64b add
— Start with radix-4 for only three levels of PG logic

— Generate P;,,, G;., from inputs to save a stage
« Uh-oh: that's a pretty complicated gate

The normal equations for P, and G, are:
— G3,0 = G5+ P3(G, + Py(G; + P,Gy))
— P3o=P3P,PPy

Left as an exercise to the reader ©
— Generating G,., from A[3:0], B[3:0], C,, takes 15 terms, stack=5

M Horowitz EE 371 Lecture 5 3

+Ling And ECL Logic

* Ling exploited the then-prevalent design style of ECL
— Emitter-coupled logic — a very fast current steering bipolar style
— Ve =0V, Ve <-1.7V; here, inputs range from -0.9 to -1.7V
— CMOS equivalent is called SCL (source coupled logic)
» Gate operates with current steering

NOR Veo OR

< T ?

-
—
1

© © R <

INPUTS Ve BIAS Source: Motorola MECL data sheet

M Horowitz EE 371 Lecture 5 4

+Benefits of ECL Logic

* ECL logic supports a “Wired-OR” configuration (or “Dot-OR™

— Two logic gates have outputs X and Y EEL[.
— Short their outputs together “ar’
— If either output goes high

* The result is pulled high — an OR function eﬁals_ii ,r;i_:ﬁ Y

« ECL gives a way to OR together complex logic “for free”
— Ling used this to create moderately complex OR functions

e |s there an analogous circuit style in CMOS?
— Domino precharge/discharge logic
— Different pulldown stacks on the same node get “OR-ed”
— Not exactly the same but close...

M Horowitz EE 371 Lecture 5 5

Simplifying G4 and P4

« Expand G4 term partially (but not all the way to A, B, C,)
— G; =G5+ P*G, + P*P,*G, + P*P,*P,*G,

« Key observations: if P=A+B, then Gg=1 implies Pg=1
- G4 @Ps*e‘z + P3™P,*Gy + Py*P,*P, "Gy
— G4 =P*G, + G, + P,*G, + P,*P*G,) = P,*H4
— Call this H4 a “pseudo-carry” term

 HA4is easier to compute than G4 is
— Recall G4 takes 15 terms, stack of 5
H4=A,B,+A,B,+A,A B,+B,A B,+A,A A B,+A,B,A B,+B,A A B,+B,B,A B,
— HA4 takes only 8 terms, fanin of 4
» A significant speed win

M Horowitz EE 371 Lecture 5

What Good Is H4?

e Rewrite: H4 = G; + G, + P,*G, + P,*P,*G,

 Can | make a tree structure with H terms?
— Good: my current group of four doesn’t use P;, so why bother?
— Bad: the next group of four does need P,...

« So define a “pseudo-propagate” term 14
- I3 = P,P,P,P, 0Ol ,=P,P.P,P, and so on (what's P_,?)
— Ingeneral I;; =P,

M Horowitz EE 371 Lecture 5

Using H and |

 They let us use the same tree structure as before (“off by one”)
— With Hs and Is: H;; = H; + I, H 5 and T = 1y

« Normally this type of optimization would not matter much
— Trick only works with P and G, and not Pg and Gg
— This means you get savings only at the first level of tree
— But adders are carefully optimized, and every bit helps

« Ultimately need to add the missing P back to generate Carry
— Put C,, into Ig, (in the open slot for P_,)

— When you generate C from H, |
« Cin,, = P; (Hi, + I.5), not much slower than normal Carry
 In carry select adders, P, can be added to the local chains

M Horowitz EE 371 Lecture 5

Ling Adder Implementation

« Sam Naffziger (HP, 1996) presented a 64b adder
— 7 FO4 delay (< 1nS): pretty darn fast

— 0.5um CMOS

» This was a fairly optimized process (FO4 = 150pS at TTTT)
« We'd usually expect 250pS at TTSS or 180pS at TTTT (360*L y4c)

— Fairly small as well
e 7000 transistors
e Y4mm?2

* Inthe homework you’ll get to implement part of this adder
— In Verilog, not spice
— We’'ll give you skeleton Verilog and ask you to fill in the rest
— Some errors in his slides (we’ll detail them in the homework)

M Horowitz EE 371 Lecture 5

Aside — Domino Gate Factoring

 Domino gates have two stages
— 21 stage does not need to be an inverter

e Can build a 4 input AND gate by building two high stacks
— And then using a pMOS NOR gate to combine

14

L

Hl"l

FIH@_I

B3 I

B2

| Notation is different
* : Source: Naffziger, ISSCC '96

M Horowitz EE 371 Lecture 5 10

Ling vs. CLA

60 -

55 -

50 -

45 - —R2 Ling}/'
'-240 | —R2 CLA
>35 - {—R4 Ling
) —R4 CLA

c 30 /
Ll

25 - ¥
20 -

15 -
10 I I I I |

6 7 8 9 10 11
Delay [FO4]

Source: Zlatanovici, ESSCIRC '03, and Bora Nikolic

M Horowitz EE 371 Lecture 5 11

Multiplication, Grade-School Level

Product = Multiplicand * Multiplier

— Multiplicand scaled by each digit in the multiplier-> partial products
— These partial products are shifted and added up

Base-10 example: 119 * 182

— Partial products are: 119*2 = 238, 119*8 = 952; and 119*1 =119
— Shift them and add them up

..238 (2 * 119)

_952. (8 * 119)

119.. (1 * 119)
21658

This is perhaps easier to read in binary...

M Horowitz EE 371 Lecture 5

12

Multiplication, Grad-School Level

Same basic idea, only now all digits are O or 1
— But still have multiplicand, multiplier, and partial products
— Ex: 119=01110111; 182 =10110110

....... 10110110

...... 10110110 .
..... 10110110 . .
.00000000 . . .
10110110
10110110
10110110
00000000
0101010010011010 = 21658,

Hm. Is there an easier notation for this operation?

M Horowitz EE 371 Lecture 5

13

Dot Notation

 Rows of dots are partial products, either a “1” or a “0”
— Number of dots corresponds roughly to total hardware needed
— Height of dot structure corresponds roughly to total latency

XXX
o0
o
'

..u.-.'..'.........
.'...........

ol ¢ 9000
el

@f-cceeeeennns

el

L 4

. ...-...u.-.'..'...........
. ...-...u.-.'..'..........
. ...-...u.-.'..'.........
. ...-...u.-.'..'.......

. ...-...u.-..................
. ...-...u.-.'...............

. ...-........................
. ...-.........................

o Result of multiplying two n-bit numbers is a 2n-bit number
— Integer operations keep the LSB n bits
— Floating point operations keep the MSB n bits (toss out precision)

M Horowitz EE 371 Lecture 5

Simplest Multiplier

e A very simple multiplier iterates over n cycles
— Smallest area (fewest dots), longest latency (maximum dot height)

i i iMultiplicand

Multiplier :
IEXEY! oo v (shift right each cycle):

Generate PPs
(AND gates)

y 3

VYVVYVYVY VY oo A\ 4
Adder
Register
(shift right each cycle)

M Horowitz EE 371 Lecture 5

Remove Unnecessary Partial Products

Speed up the operation by avoiding adding partial products = 0
— Unless multiplier = 111..1, there are always some 0 partial products
— Just shift if multiplier bit is 0; don’t bother adding the O
— In our example, from 8 to 6 partial products

We can do better: consider a multiplier of 01111111
— Requires seven partial products if we ignore the 0
— Rewrite this as 10000000 — 00000001
— Now | only need two partial products, although one is negative!

Called “Booth encoding” (1951)
— SKkip strings of 1's in the multiplier
— Encode as the difference of two numbers

M Horowitz EE 371 Lecture 5 16

Basic Booth Recoding

e Apply this to our example: 118 = 01110111
— Write 0111 as 1000 — 0001; this string shows up twice

- e 10110110
+....10110110. ..
- . ..10110110. ...
+10110110
0101010010011010 = 21658,

— This is an improvement; six partial products to four

e Not always helpful; imagine input of 170 = 10101010
— Recoding into differences of two numbers doesn’t help at all
— No string of 1's to exploit

 Problem: Variable #s of PPs are hard to support in hardware

M Horowitz EE 371 Lecture 5

Modified Booth Recoding

* Look at the multiplier three bits at a time
— Try to figure out if we're starting, inside, or finishing a string of 1s
— Overlap the three bits to help us figure this out
— Really encoding just two bits at a time, but in context of three bits

« 16b multiplier always generates 9 partial products (PP0O-PP8)
— In general will create floor(0.5*(n+2)) partial products
— Pad the LSB with a 0, and the MSBs with enough 0s

MSB 000000 O0OCGOOGOOGEOOEEO®EEO® () [SRBR

\ J \ J \ J \ J \)
\ \ \ \ \

PP\ JPPE\ JPPA JPPA) PPO
Y Y Y Y

PP7 PP5 PP3 PP1

M Horowitz EE 371 Lecture 5

18

Modified Booth Recoding Rules

e Get different PPs depending on the rules (here, M=multiplicand)
— If we're starting a string of 1's, put a —M at string’s LSB
— If we're ending a string of 1's, put a +M one left of string’s MSB
— If we’re inside or outside a string, do nothing
— Isolated 1's are treated as is

Bitl Bit0 Prev Output Comment

0 0 0 0 Outside a string of 1°’s. Do nothing

0 0 1 +M Ended a string of 1’s. Put +M at MSB+1

0 1 0 +M Isolated 1; treat as is

0 1 1 +2M Ended a string of 1°’s. Put +M at MSB+1

1 0 0 -2M Starting a string of 1’s. Put -M at LSB

1 0 1 -M Start & end. Put +M at MSB+1 and -M at LSB
1 1 0 -M Starting a string of 1°s. Put -M at LSB

1 1 1 0 Inside a string of 1°s. Do nothing

e This needs +M, —M, +2M, and —2M
— +/- 2M are easy: just take +/- M and shift it over a bit

M Horowitz EE 371 Lecture 5 19

Example of Modified Booth Recoding

Recall our multiplier was 118 = 01110111
011101110

A

+2M +2M
— Same as before; modified Booth = original Booth for this case

Writing it out this time
— Use two’s complement notation for the negative numbers

1111111010010106 (M)

.. ..10110110... (2M)
111010019-’10'.... (-M)
10110110 M)

0101010010011010 = 21658,

M Horowitz EE 371 Lecture 5

20

Modified Booth Recoding Circuits

e A plain-vanilla CMOS implementation
— Booth decoder followed by 16 individual Booth muxes

Multiplicand
Msb A Lsb

r A

L JUnIILL) _______Jr\ .

o (I \ 1
! | : : :
; [| i i
\ : : | 1 ! Msb
! " ! ' Booth Decoder B
; ' ' TTTTTTToTToTos -
i
:) . 12 more :
: ' 1 And/Or/Exclusive- !
! 7t : Or blocks '
| i :
\ — |: |
@ ! i
1 I| L
I] II !

Multiplier
Group

Parthdt s B

Source: Bewick, Stanford, 1994

M Horowitz EE 371 Lecture 5 21

Modified Booth Decoder in Domino
Clk b d b b d Drives
oM 2M M M 2M Iong Wire
_en -zlvV_en -ivi_en _en _en and |OtS Of
o<H Oq—’\ >0 H>o oﬂ: oo
| |
o —— e

/

why?

—

bitl bitl

4|
Clk %

M Horowitz EE 371 Lecture 5 22

L

Modified Booth Mux in Domino

Clk

PP oq_ _Dopp_b

P
O

Clk_|

M Horowitz EE 371 Lecture 5 23

Can We Extend This Paradigm?

e Look at multiplier four bits at a time and hunt for strings of 1's
— Recode three bits at a time, but using context of four bits

Bit2 Bitl BitO Prev Output Comment

0 0 0 0 0 Outside a string of 1”s. Do nothing

0 0 0 1 +M Ended a string of 1’s. Put +M at MSB+1

0 0 1 0 +M Isolated 1; treat as is

0 0 1 1 +2M Ended a string of 1°’s. Put +M at MSB+1

0 1 0 0 +2M Isolated 1; like above but shifted

0 1 0 1 +3M Isolated 1 plus an ending to string of 1°s
0 1 1 0 +3M Start&end: +M at MSB+1 and —M at LSB

0 1 1 1 +4M Ended a string of 1’s. Put +M at MSB+1

1 0 0 0 -4M Starting a string of 1°s. Put -M at LSB

1 0 0 1 -3M End&start: +M at MSB+1 and —M at LSB

1 0 1 0 -3M Isolated 1 plus a start to a string of 1’s
1 0 1 1 -2M End&start: +M at MSB+1 and —M at LSB

1 1 0 0 -2M Starting a string of 1’s. Put —-M at LSB

1 1 0 1 -M End&start: +M at MSB+1 and -M at LSB

1 1 1 0 -M Starting a string of 1’s. Put -M at LSB

1 1 1 1 0 Inside a string of 1°s. Do nothing

M Horowitz EE 371 Lecture 5 24

Booth-3 Recoding

« Good part of this scheme: fewer partial products; faster

MSB 000000 O0OCGOOGOOGROOEO®EEO® () [SRBR

H_I H_J
“—y—/ PP4 \r—J PP2 \r—J PPO

PP5 PP3 PP1

« Bad part of this scheme: Need to generate +/- 3M
— Can take an additional add!
— This is why Booth-3 is typically not used in designs

— Higher-order Booth recoding gets worse
* Booth-4 requires +/-3M, +/-5M, and +/-7M. Yikes.

» Clever tricks to get around this use “partially redundant forms”
— Optional reading (Bewick) if you want to try this on your project

M Horowitz EE 371 Lecture 5 25

Negative Partial Products

 How do we deal with negative partial products?

« Consider a 16b multiplication using modified Booth recoding

ge2

—
[

T

—
[

T

—
[

T

Dot

M Horowitz EE 371 Lecture 5

Add Sign Bits

 What if all the partial products were negative?
— Invert all the bits (blue circles), add 1, and sign-extend

— Notation: red circle = 1, green circle =0

— Note that last partial product is never negative

0000000000000 00GOGOGOGOGOGOGONOOONOIONONONS

0000000000000 00C0GOGOGOGOGOGOOGOGIOGIOGIONONONNONS

o

0000000000000 OGOGOGOGOGOGOOIOOOONONOS

o

000000000000000000000000090 |0

000000000000000000000000 |0

0000000000000 000000000 |0

0000000000000 0000000 |0

0000000000000 00000 |0

0000000000000000 |0

M Horowitz EE 371 Lecture 5

L P g TN

27

Dealing With Sign Extensions

 These red circles (all “1”s) are inconvenient
— They make our multiplier unsquare — or at least, un-parallelpiped
— Notation: red circle = 1, green circle =0

« What do the 1's add up to?

000000000000000
0000000000000
00000000000
000000000
0000000
00000
000

000000000000000000

M Horowitz EE 371 Lecture 5 28

Reduce

 The red triangle (of 1s) can be reduced to a simpler form

— Good thing, or else fanout would be huge

— Notation: red circle = 1, green circle =0

0000000000000 O0COCOCKOCFOCFS

0000000000000 00O0COCOCFS

o

0000000000000 O0COCOCKOCFOCFS

o

0000000000000 O0COCOCKOCFOCFS

o

0000000000000 O0COCOCKOCFOCFS

o

0000000000000 O0COCOCKOCFOCFS

o

0000000000000 O0COCOCKOCFOCFS

o

o

o

M Horowitz

EE 371 Lecture 5

L P g TN

29

Sign Extension Constants

« Let’s examine these extra sign extension bits more closely
— S =sign bit = 1 if negative
— Because fonts don’'t work well in Powerpoint, “C" = S_bar

11 CSS
10 1C
10 1C
10 ﬁ 1C
10 1C
10 1C
10 1C
0] C

e EXxpression on the right is exactly the same as the left for S=1
— And, it also works out for S=0 (all the terms drop out)

M Horowitz EE 371 Lecture 5

30

Allow Both Signs

 This is a fully general PP formation
— Again, S=1 means a negative number

5$55ss00000000000000000

§Se0000000000000000||s

§500000000000000000||5

4?‘................ S

§500000000000000000||s

§Se0000000000000000||s

4?0................ S

S00000000000000000 ||

0000000000000000 ||

M Horowitz EE 371 Lecture 5

L P g TN

31

Add Up Partial Products

e S0 we can speed up the generation of the partial products
— We still have to add them up, column by column

555s00000000000000000

4§Sec0000000000000000||s

§Se0000000000000000||s

4§Se0000000000000000|(s

§Se0000000000000000||s

dSec000000000000000|(s

dSe0000000000000000|(s

S00000000000000000|(s

0000000000000000 |

« Our simple iterative multiplier is slow with this add
— Even if we optimize the number of partial products we generate
— Adding more adders doesn’t help; even fast adders are pretty slow

M Horowitz EE 371 Lecture 5 32

Carry-Save Adders

 [For speed, delay carry propagation until later
— There is no need for carry propagation after each sum

o Carry-Save Adders represent the sum in a “redundant form”
— Sum=sum_1+sum_2
— Compute sum and carry, but don’t propagate the carry
— In other words, Sum = sum_without_carries + carries
— Need to do a final add with a carry propagate at the very end

Xg YoZo X, Y, Z, % Y,Z, X, Y, Z

Y P —

C, S, C
3-2 CSA
XN...1 YN...I ZN...I
| n-bit CSA
(b) Cut Sws . .
Source: Harris, Addison-Wesley, 2004

M Horowitz EE 371 Lecture 5

Using CSAs In Multipliers

 Consider a 16-deep partial-product array
— For example, a 30b multiplier using modified Booth recoding
» Ignoring sign extensions in this dot diagram
— Worst column is the center one; need to add 16 terms

e Add the columns up using 3-2 CSAs; avoid carry propagation

M Horowitz EE 371 Lecture 5

34

Using CSAs In Multipliers

e Group terms into a line of 3-2 CSAs
— Sums stay in this column; carryouts go into left column (red)
— Right column is giving me its carryouts (blue)

o—
@ s

—|_CHEIE s

® CHIlH s

® CHIH s

® CHIlH s

® CHIlH s

® CHIlH s—
® CHEl Il
o—

o— e

o— °

o—

o—

o—

o—

M Horowitz EE 371 Lecture 5 35

More About CSAs

CSAs are small and fast
— In Domino logic, a CSA is about 1.5 FO4
— Very simple (just a full adder)
— No carry ripple needed

At each stage, redundant sum takes two inputs
— Next partial product takes the third input

One problem, of course, is at the very end

— You need to sum up the redundant form
« Shift the carry word over to a higher weight first

— This takes a fast adder, but only one such adder

M Horowitz EE 371 Lecture 5

36

Block Diagram of This Array

 This sample adder has 16 partial products
— Therefore 13 CSAs, all in the critical path
— First CSA takes 3 partial products

\ Booth Mux0 /

\ Booth Muix1 /

\ Booth Mux2 /
y

CSA #0

« Very regular datapath, fairly short wires

A

« Long latency due to extended critical path \Lgoor “"“53 /

— What if we move away from linear path? CSA #1
— What about logarithmic structures?

A

\ Bopoth Mux15/
y

CSA #14

M Horowitz EE 371 Lecture 5

Using CSAs In Multipliers

 Group terms into a tree of 3-2 CSAs (a “Wallace Tree,” 1964)
— Much shorter latency chain

S
C

..

(@X2)

(@X2)

7

(@X2)

(@X2)

— B

..

(@X2)

(@X2)

..

(@X2)

(@X2)

(@X2)

..

(@X2)

|

RN

7

—i i

(@X2)

*..

(@X2)

long wires, yuck

N

|Rpasddagiindidssis

EE 371 Lecture 5 38

Problem With 3-2 Wallace Trees

This seems good; critical path drops from 13 CSAs to 6

But layout of this iIs messy

— lrregular

— Long wires that span multiple rows

— 3-2 structures do not lend themselves nicely to trees

Would much prefer to have a binary element for trees

M Horowitz EE 371 Lecture 5

39

4-2 Compressors

« Create a new element from two back-to-back 3-2 CSAs
— Call this a 4-2 compressor: it “compresses” 4 inputs into 2 outputs

Cout
a —_— —_—
Car
b —| ry _ b —
cC — cC — Carry
Sum
d — d Sum
(a) Source: Harris, Addison-Wesley, 2004
Cin

— “Wait,” you say. “This is really a 5-3 compressor.”
— Yes, that’s right. But 5-3 doesn’t sound remotely binary tree-like

* This element allows for much more regular layout and wiring

M Horowitz EE 371 Lecture 5 40

Using 4-2 Compressors In Multipliers

e Go back to the 16bit column example
— In-between Cin and Cout terms (that make it 5-3) are not shown

-
S
- - \—
- o~ m
@ s
..: C_.._/
S
..: C_.._
S
o mm—— .f/
- o~ m
@ s
o (mm”
._

M Horowitz EE 371 Lecture 5

Do 4-2 Compressors Fix Everything?

o 4-2 Compressors allow a regular layout (better than 3-2CSAs)
— But still not as nice as the (slow) linear arrays
— Still long wires, lots of routing tracks, lots of cross-overs

e Turn the picture sideways: bitslice

oé[Joo[Jod[Jee[|eé[Jdo[Jed[Jée

e Suppose this is our 30b multiplier w/ modified Booth recoding
— What is the datapath height at each level?

T

=01| 4sb — —

2] 61b [211| 45b 37b

=311

M Horowitz EE 371 Lecture 5 42

Other Array Structures

Some alternate methods of creating multiplier arrays
— Even/odd arrays (Hennessy)

— Array of arrays (Dhanesha)
» Covers two partial arrays and four partial arrays

| encourage you to look at these array structures
— Perhaps you want to use them for your project
— Trade off regularity and shortness of wires for latency

Note that the readings are usually for floating point multipliers
— Double-precision, so 53-bit mantissa

— Booth encoding gives you 27 PPs, each 54b long (to support 2M)
— With sign extension, you actually get 57b in first PP, 56b in rest

M Horowitz EE 371 Lecture 5

43

