
Lecture 8

Transistor Models

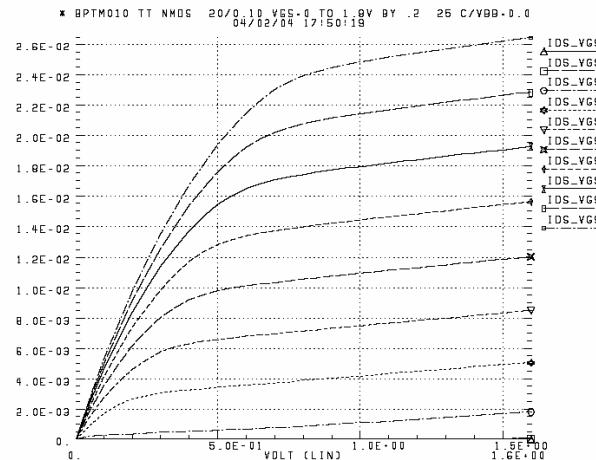
Computer Systems Laboratory
Stanford University
horowitz@stanford.edu

Copyright © 2006 Mark Horowitz

Introduction

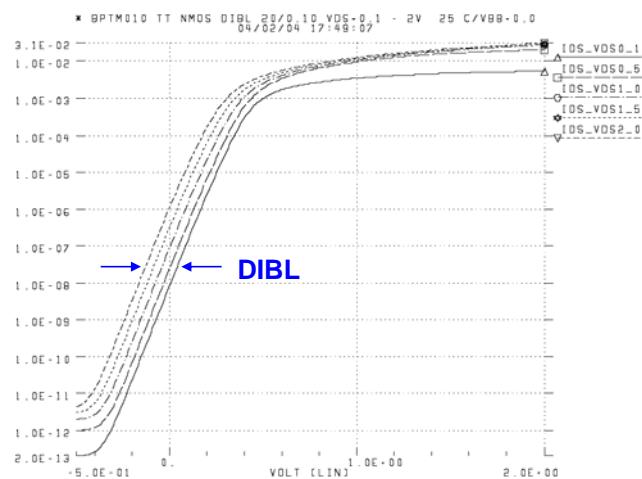
- Readings (for next lecture on wires)
 - Arora Capacitance extraction from layout
This is just background reading (read quickly)
 - Ho The Future of Wires
This covers most of the material in the next lecture (and then some)
- Today's topics
 - Review of transistor models (quick review of EE313)
 - From the simple to the complex
 - How to “calibrate” a technology
 - How to use models to think about technologies and circuits
 - Examination of transistor variations
 - Local variations, or mismatch between pairs
 - Run-to-run variations

MOS Device Behavior



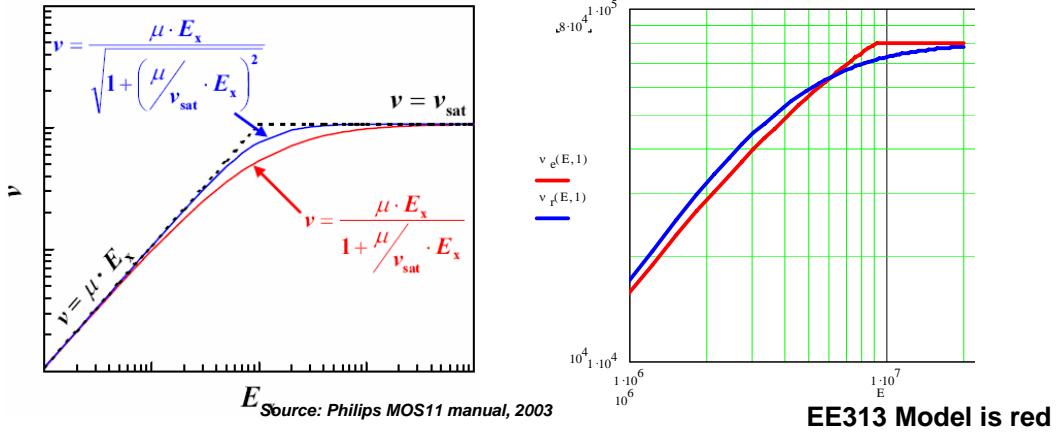
- Assume you know MOS device issues from EE313
 - We'll look at some I-V curves, review some important issues
 - Read Hodges & Jackson (EE313 text) if you need to
- For I-V curves we need to understand
 - Basic shapes of the I-V curves
 - Threshold voltage
 - Mobility effects and velocity saturation
 - Subthreshold conduction
 - Scaling
 - Variations in these parameters

EE313 Review: Basic I-V Curves: I_{ds} versus V_{ds}


- Plot has two regions
 - Linear (low V_{ds})
 - Saturated (high V_{ds})
- Linear region
 - Looks like a resistor
- Saturated region
 - “Constant” current
 - $g_{ds} = 1/r_0$

EE313 Review: Basic I-V Curves: I_{ds} versus V_{gs}

- Two typical plots
 - Linear I_{ds}
 - For $V_{gs} > V_{th}$
 - Lots of current
 - Can get g_m
 - Log I_{ds}
 - For $V_{gs} < V_{th}$
 - Leakage current
 - Can get V_t , DIBL
- Measuring V_{th}
 - Extrapolate linearly
 - Beware of DIBL


E313 Review: Mobility

- Mobility (cm^2/Vsec) relates carrier drift velocity to lateral E-field
- Falls quickly as temperature rises
$$\mu = \mu_0 \cdot \left(\frac{T}{T_0}\right)^{-1.5}$$
 - As temp rises from 27° to 130°, current falls 0.65x
 - Circuit runs 1.6x slower
- Also decreases as vertical field increases (here, T_{ox} in nm)
$$\mu_n(V_{gs}, V_{th}, T_{ox}) = \frac{540}{1 + \left(\frac{V_{gs} + V_{th}}{0.54 T_{ox}}\right)^{1.85}}$$
 - Why $(V_{gs} + V_{th})$? That's a strange term...
 - B/c E-field proportional to $Q_b + 0.5Q_{inv} = C_{ox}V_{th} + 0.5C_{ox}(V_{gs} - V_{th})$; see Chen

EE313 Review: Velocity Saturation

- Carrier velocity and E-field relationship is not always linear
 - Saturates out; max velocity around 8×10^6 cm/s

- Critical E-field (velocity is $\frac{1}{2}$ down) is about $4V/\mu\text{m}$

EE313 Review: Velocity Saturated Current

- Drain current is worse when carrier velocity saturates

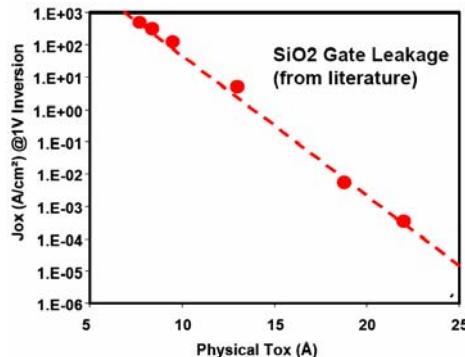
$$i_{dsat} = Wv_{sat}C_{ox} \frac{(V_{gs} - V_{th})^2}{V_{gs} - V_{th} + \frac{2v_{sat}L}{\mu_{eff}}} \quad \text{arrow pointing to } \frac{2v_{sat}L}{\mu_{eff}} \text{ labeled } E_{crit} \cdot L$$

- Look at both limits: $(V_{gs} - V_{th}) / (E_{crit} \cdot L)$
 - When not saturated
 - When saturated

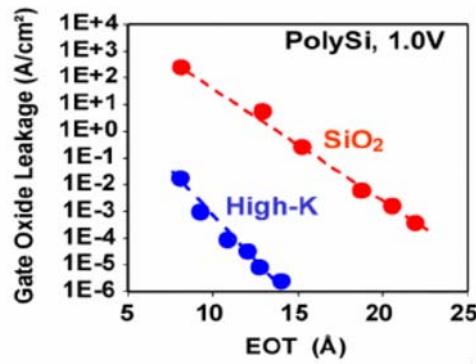
EE313 Review: Subthreshold Conduction

- The threshold voltage V_{th} is not a magical place
 - It's just where the channel charge is roughly equal to the doping
 - Device still has channel charge when $V_{gs} < V_{th}$
- What happens in subthreshold?
 - Gate voltage directly controls Φ_s , not channel charge
 - Channel charge exponentially related to Φ_s
 - Looks like a BJT
- Current is exponential with V_{gs} : $i_{ds} = I_s \cdot e^{\frac{V_{gs}-V_{th}}{\alpha V_t}}$
 - $V_t = kT/q = 26\text{mV}$ @ room temperature
 - I_s depends on definition of V_{th} , around $0.3\mu\text{A}/\mu\text{m}$
 - α comes from cap voltage divider (C_{ox} and C_{depl}), around 1.3-1.5

Predicting Scaled MOS Device Performance


- Shockley quadratic model estimates scaling effects poorly
 - A better model (up until 90nm):

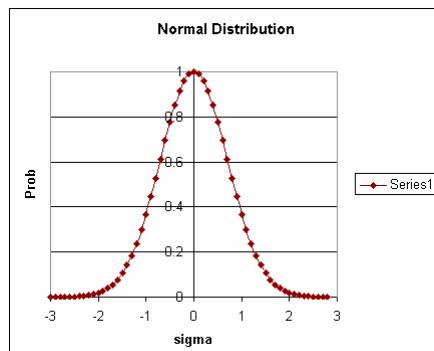
$$I_{dsat} = K \cdot W \cdot L_{eff}^{-0.5} \cdot T_{ox}^{-0.8} (V_{gs} - V_{th})^{1.25}$$


- Scaling example: Assume L , T_{ox} , and V_{gs} all scale by α
 - Current (per micron) will remain constant (0.5-0.8 mA/ μm)
 - Current of the scaled transistor scales down by α
 - Voltage scales down by α
 - Capacitance scales down by α
 - So delay scales down, too: $\Delta t = CV/i = \alpha\Delta t$
- Sub 90nm, this model breaks
 - V_{th} is not scaling, so V_{dd} does not scale ...

Other Currents to Consider – I_g

- Also can look at I_g , gate tunneling current
 - Increasing as oxide thicknesses continue to shrink
 - T_{ox} 2nm today (130nm process); research lines at 0.8nm (30nm)
 - This is limiting gate oxide scaling in modern devices

Source: Marcyk, Intel, 2002



B. Doyle et al, Intel Technology Journal, vol. 6, issue 2, p. 42 (2002).

- Often not well modeled in SPICE; talk to your process engineers

Remember Parameter Variations

- No two transistors are exactly the same
 - They vary from wafer to wafer and from die to die
- Parameters of a fabrication run generally normally distributed
- Extract data from real wafers
 - 3- σ (or 4/5/6- σ) parameters
 - Use it in design

Parameter Variations

Variations come from many sources

1. Die to die variations

- All devices in the die are correlated
- Processing for this die/wafer varies from die to die and run to run

2. Across die variations

- Two transistors on die have different parameters
- Caused by many layout proximity effects
- Across die processing variations

3. Random variations

- Random dopant fluctuations, line edge roughness

1 used to dominate, but with scaling 2 and 3 are comparable issues

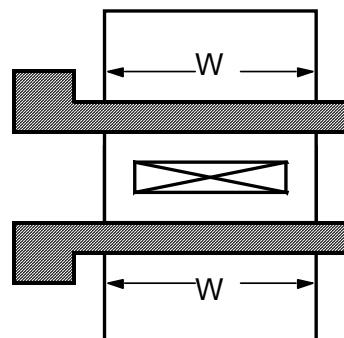
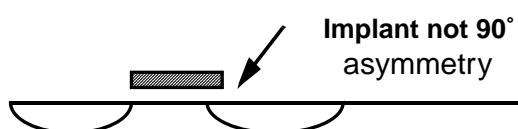
EE371 Corners

- We write our corners with a 3-letter code
 - nMOS and pMOS can each be **S**low, **T**ypical, **F**ast
 - V_{dd} can be low (**S**low devices), **T**ypical, or high (**F**ast devices)
 - Temp can be cold (**F**ast devices), **T**ypical, or hot (**S**low devices)
- Example: TTSS corner
 - Typical nMOS
 - Typical pMOS
 - Slow voltage = Low V_{dd}
 - Say, 10% below nominal
 - Slow temperature = Hot
 - Say, 100° C → junction temperature

Which Corners Matter?

- Really depends on the circuits you are simulating
 - And what you want your die yield to be
- Some important corners
 - TTSS: Must hit the timing specification here
 - Since this might be how it is used in a system
 - Will mean 50% performance yield loss (1/2 distribution will fail)
 - SSSS: Sometimes need to hit the timing spec here, too
 - Also worry about signals collapsing from slow risetimes
 - FFFF: See how much power your circuit burns
 - Also worry about narrow pulses disappearing
 - SFSS: Does pMOS-ratioed logic work? Race conditions
 - FSSS: Does nMOS-ratioed logic work? Race conditions
 - And so on...

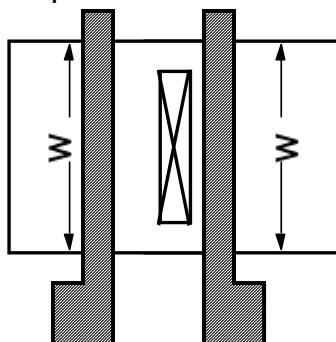
A Caution About Matching

- If your circuit depends on matching
 - Either in an analog component (like a sense amplifier)
 - Or a digital component like matched delays
- Simulation is much more difficult
 - Need to simulate the difference in the matched elements
 - Corner files don't do this, since they modify all transistors the same
- Need to do Monte Carlo simulations
 - This is where you do many simulations
 - Computer chooses random parameters for the transistors
 - You need to provide these models
 - Then you need to compute Mean / Sigma of circuit

Providing Matching Statistics

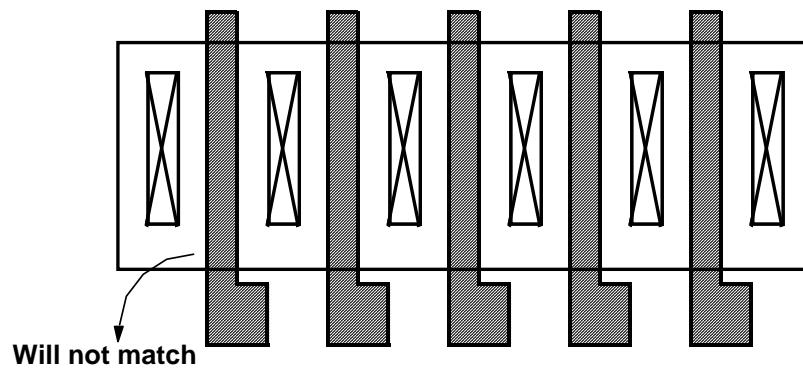
- If you want two transistors to match you need to be very careful
 - Almost anything will make them different
- In SPICE all transistors match perfectly
 - You need to add mismatch explicitly
 - Process corners do not help here
- Orientation matters



These transistors will not match

More on Matching

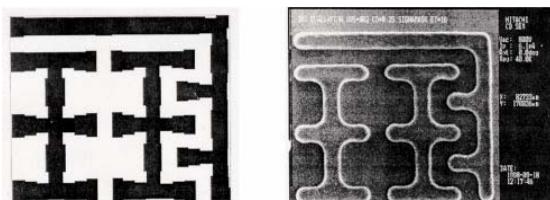
- Poly alignment is important



- Here, diffusion resistance and diffusion cap will not match
- Make currents flow in the same direction in matched devices
- Easy if all the transistors are folded

Even More Matching

- Poly width control depends on local environment



- Poly density affects etch rates, so end devices will be different
- To match transistors, add dummy devices
 - SRAMs often use entire dummy rows and dummy columns
- Modern technology need many dummies!

Welcome To Modern Technology

- Feature size is below the wavelength of lithography light
 - Hard to get sharp edges, so preprocess to add serifs

OPC = optical proximity correction
RET = resolution enhancement tech

- Variation is getting larger → foundries imposing rules
 - All transistors must be vertical
 - Poly edges must be far from diffusion
- Moving toward regular arrays of transistors
 - Looks similar to old gate array designs

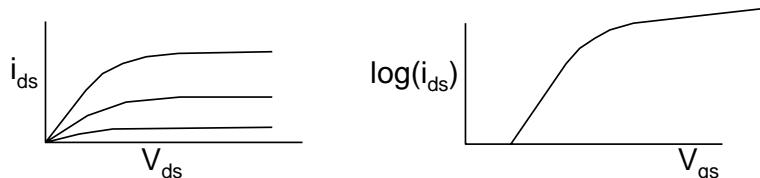
Statistical Matching

- The errors we have been talking about are systematic
 - You can (in theory) make them zero
 - And you generally can figure out what happened
- But fundamentally even if you do everything right
 - There will still be some random mismatches between transistors
 - These are caused by random doping variations in the device
 - And small random variations in the etching process
- These effects can be modeled by adding an uncertainty to
 - V_{th}
 - K , or β , the current prefactor in the current equation

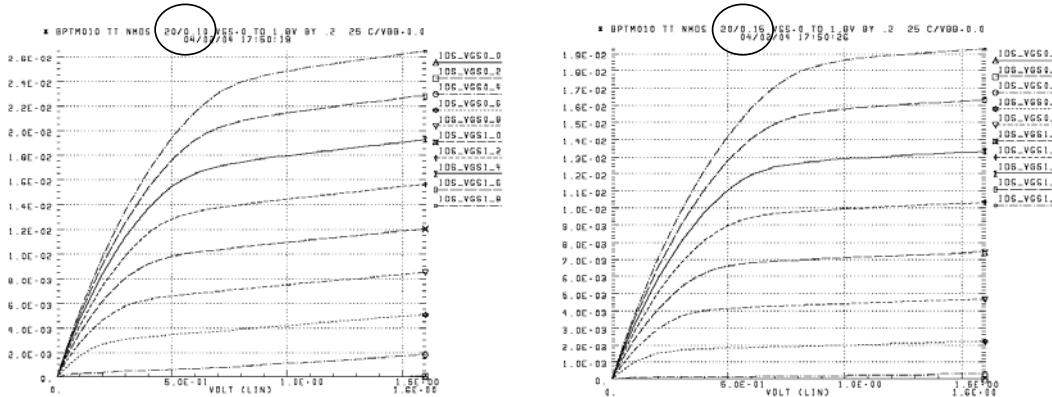
Statistical Matching

- Read Pelgrom's paper (and Lovett's paper)
 - It is the classic paper in this area
- His equations are still being used today
 - Data indicates that the matching depends on the area of the device
 - V_{th} standard deviation (T_{ox} in μm)
$$\sigma(V_{th}) = \frac{0.6V \cdot T_{ox}}{\sqrt{L_{eff}W_{eff}}}$$
 - K (or β) mismatch is addition to variation from V_{th}
$$\sigma(\beta) = \frac{2\%}{\sqrt{L_{eff}W_{eff}}}$$

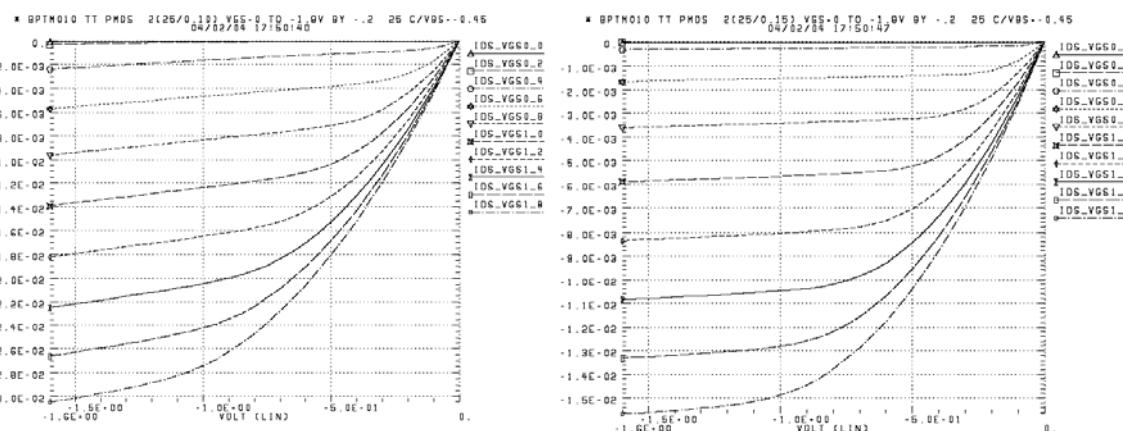
The \$64 Question


How does one analyze circuits?

1. “Use your intuition and your pencil and paper analysis”
 - These are things that you understand
 - SPICE is prone to Garbage In / Very Pretty Garbage Out
 - You need to understand the circuit to check SPICE, and not vice versa
2. “Use SPICE”
 - VLSI circuitry has enormous complexity and ugly nonlinearity
 - Very difficult to do accurate hand analysis
 - Competitive market pushes sophisticated circuitry, which needs SPICE
 - Relying on hand analysis means you get steamrolled by your competitors
- Kernels of truth in both schools of thought
 - So you end up doing both

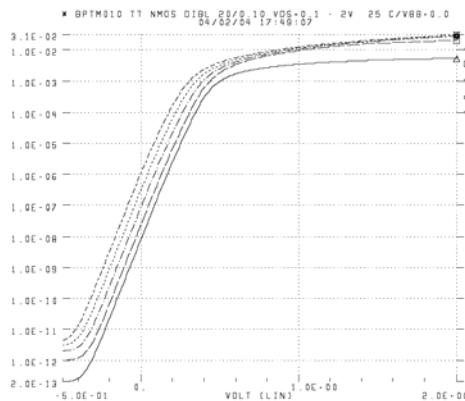

Calibrating a Technology

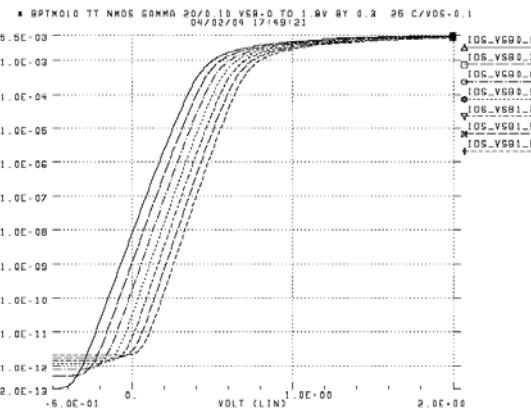
- What do you do when you get a new technology?
 - Run some simple simulations to get a feel for the transistor behavior
 - Generate some rules-of-thumb for reasoning about the circuits
- First look at the basic I-V curves
 - Examine a couple of different channel lengths
 - Do the curves look reasonable?
- What do they say about
 - Velocity saturation and output conduction?
 - V_{th} , V_{bb} sensitivity, and subthreshold conduction?
 - DIBL and V_{th} effects from W and L ?



I_{ds} vs. V_{ds} (nMOS)

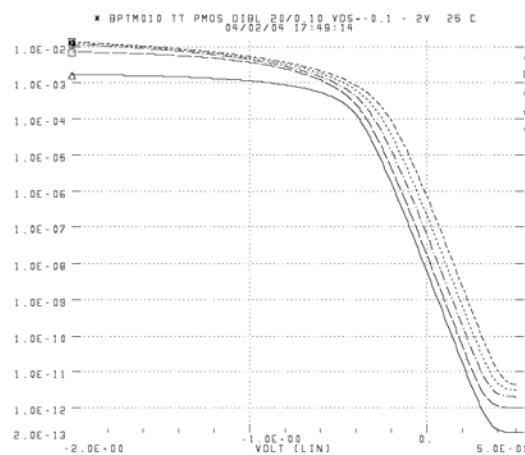
- Different channel length nMOS devices
 - Difference in output slope
 - Linear g_m in longer channel device

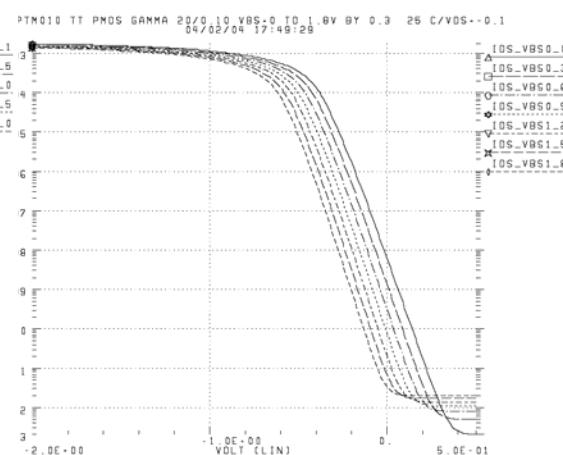

I_{ds} vs. V_{ds} (pMOS)


- Different channel length pMOS devices
 - Difference in saturation voltage from nMOS
 - Linear g_m in longer channel device, change in output slope

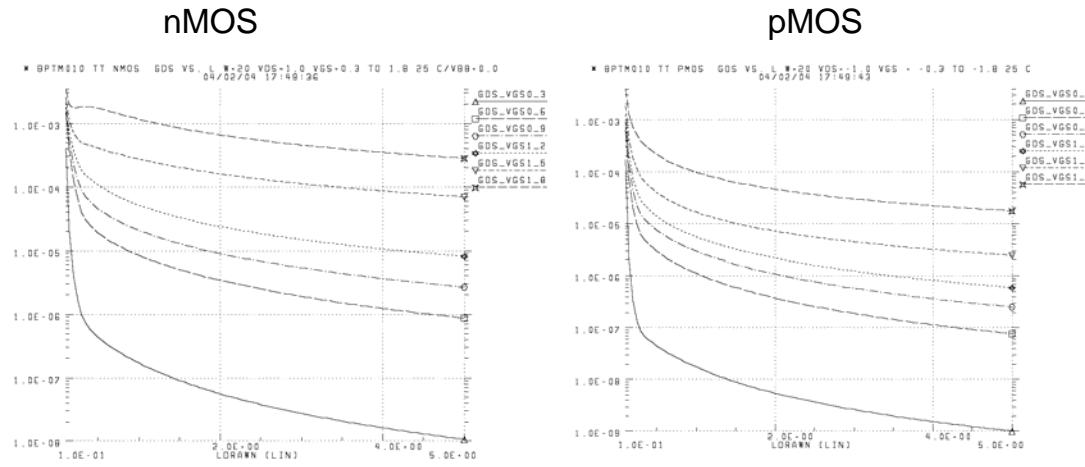
I_{ds} vs. V_{gs} (nMOS)

Sweep V_{ds}

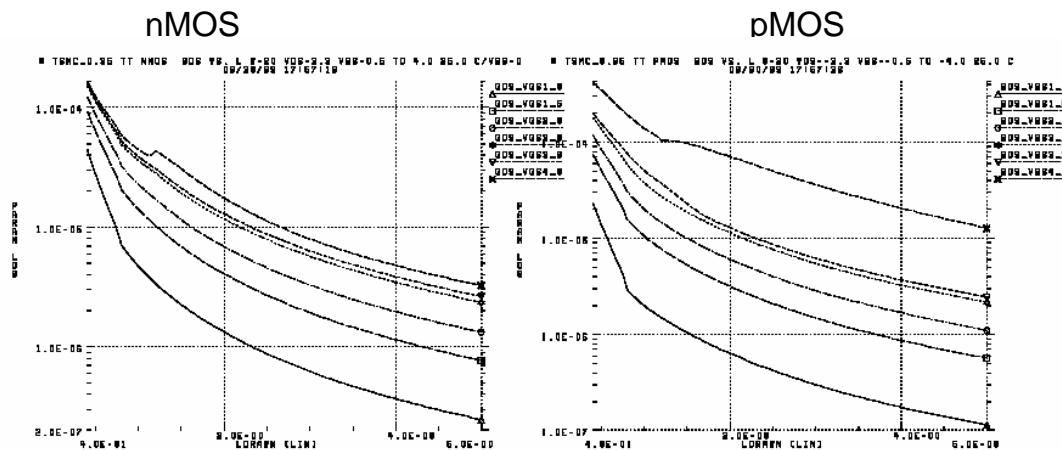

Sweep V_{bs}


- V_{ds} plot \rightarrow DIBL (drain-induced barrier lowering) $V_t = V_t - \eta V_{ds}$
- V_{bs} plot \rightarrow γ (body effect) $V_t = V_t + \gamma \left(\sqrt{\phi_s - V_{bs}} - \sqrt{\phi_s} \right)$

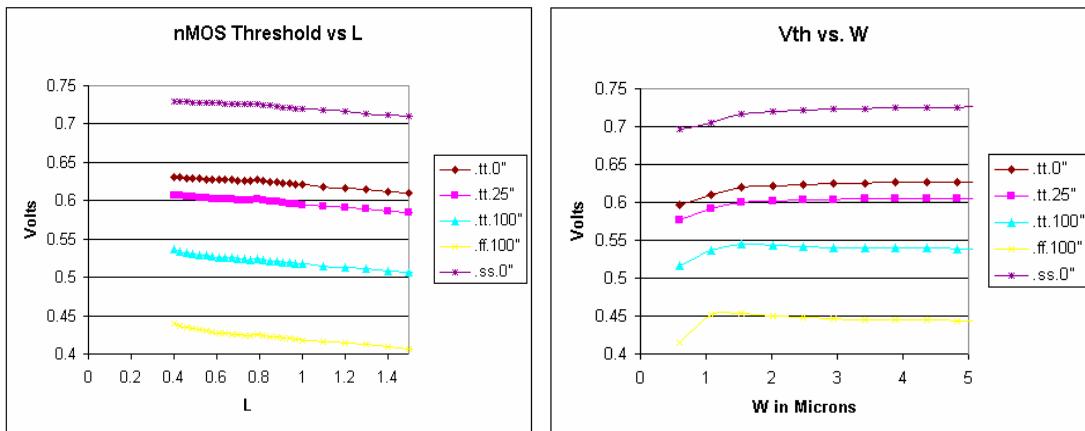
I_{ds} vs. V_{gs} (pMOS)


Sweep V_{ds}

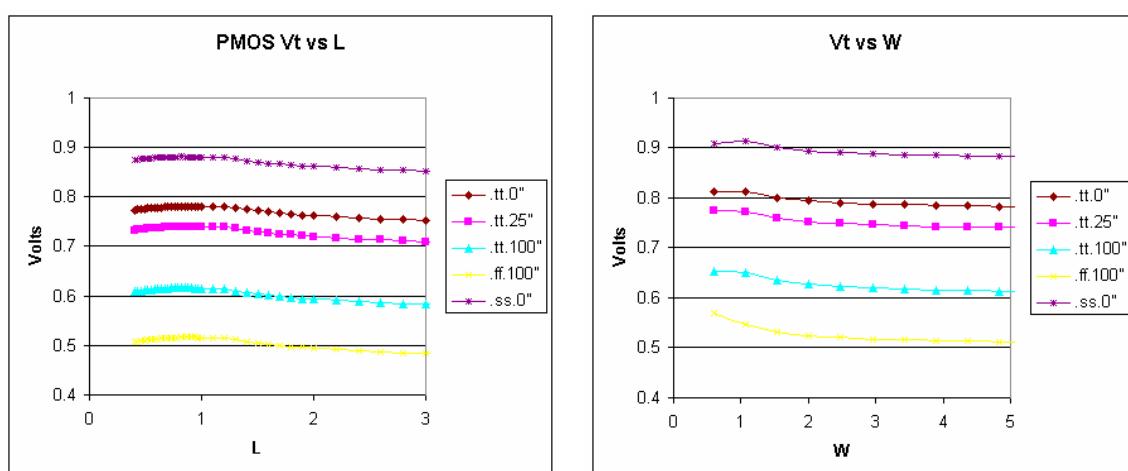
Sweep V_{bs}



g_{ds} vs. L

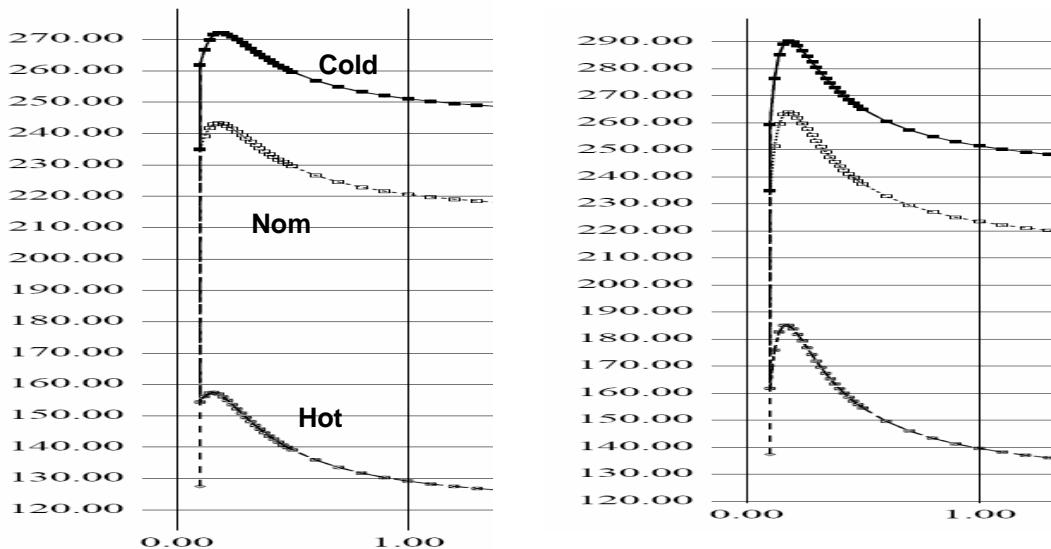

- Scale on sim run was wrong – Max L should be probably 1 μ

Beware of Model Binning


- Plot of g_{ds} versus L for a 350nm technology
- Odd (un-natural) kinks as we move from size “bin” to size “bin”

Threshold Voltage nMOS (0.35μ)

- $V_{th}(w)$ depends on type of isolation and dopant segregation
 - In nMOS, Boron segregates into oxide, lowering V_{th} for small W
 - With LOCOS, V_{th} rises as W falls due to prop. excess Si to deplete
 - With trench isolation, V_{th} falls as W falls due to prop. greater C_{gate}

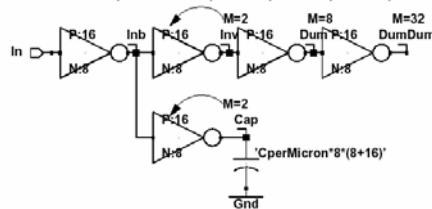

Threshold Voltage pMOS 0.35μ

- $V_{th}(w)$ still depends on type of isolation and dopant segregation
 - In pMOS, P/As pile up in Silicon, increasing V_{th} for small W

Threshold Voltage in Newer Processes

- Reverse short-channel effect

Calibrating a Technology – Next Steps



- Now we have a feeling of how the transistors behave
 - Believe the process/device model (more or less)
 - Or at least understand its limitations
- Move on to thinking about circuit-level issues
 - Timing
 - Parasitics
- We know how to think about digital circuit delays
 - RC trees and logical effort
 - So now calibrate technology for effective R and C values

C_g Calibration for Delay

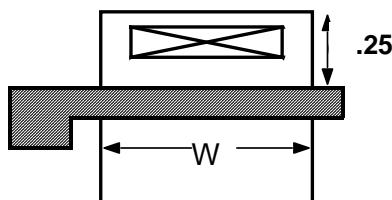
- Gate capacitance is nonlinear and bias dependant
 - But we can curve-fit a single number ($fF/\mu m$) that works for delay
 - Will depend on input slope, output slope, temp, $V...$

- Find C so delay of 2nd gate (4x) gate is the same in both paths
 - Can change pre/post gate to change input/output slope
 - Fanout of 4 at each stage

C_g Calibration for Power

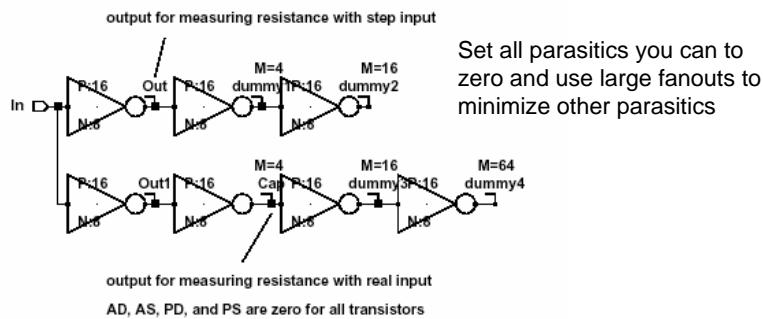
- If we measured current from V_{dd} at the drive gate we include
 - Current into the load inverter gate (good)
 - Short circuit current due to the drive gate (bad)
 - Current into the drive gate's parasitic diodes and gate overlap (bad)
- Instead, measure the current going into $M=8$ gate
 - Add a 0V voltage source between driver and gate
 - Average current through the source will be zero (rising and falling)
 - Measure the one-way current (to charge capacitor, for example)
 - $C = Q/V_{dd}$ and $Q = \text{integral of current}$
 - This should give you the correct answer
- Note that C_g for delay and C_g for power are different

Parasitic Capacitance Calibration



- Effective capacitance of transistor parasitics
 - Can be $fF/\mu m$ or $fF/\mu m^2$ (edge or area)
- Complicated because may depend on gate W
 - Gate overlap, diffusion edge under gate
 - Avoid optimization of using very small W to reduce parasitics
 - You end up adding Source or Drain series parasitic resistances
- To extract cap of gate overlap, diffusion edge, and diffusion area
 - Replace M=8 inverter with diode (transistor with grounded gate)
 - Changing gate width, PS, and AS can allow you to estimate caps
 - E.g., setting AS=0, PS=0 gives gate overlap + junction under gate
- Note: diffusion cap for rising and falling transitions are different

Using MOS Capacitances


- A $0.1\mu m$ technology has a $2.5nm$ gate oxide
 - $C_{ox} = 14 fF/\mu m^2 = 1.4 fF/\mu m$ width
 - Gate overlap cap $\sim 0.35 fF/\mu m$ (per edge)
 - Diffusion cap
 - $1.5 fF/\mu m^2$ bottom plate
 - $0.2 fF/\mu m$ sidewall
- Total
 - $C_{gate} = 1.4 W$
 - $C_{overlap} = 0.7 W$
 - $C_{bot} = 0.4W$
 - $C_{side} = 0.4W + \text{small constant}$
 - Counts both gate and non-gate sides of the diffusion

R_{tran} Calibration

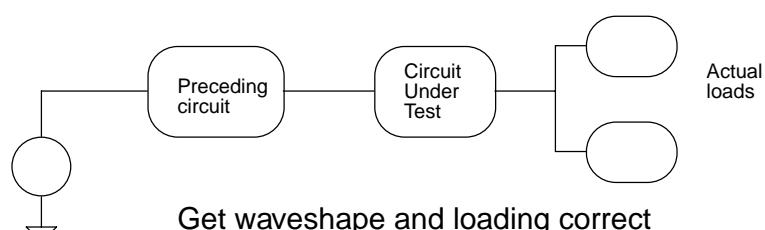
- Resistance of a transistor measured in $\Omega\mu\text{m}$
 - Know gate effective cap, so $R = \text{GateDelay}/C_{\text{eff}}$
 - Will vary with input slope, temp, V

- We can also check how R's add (two transistors in series)
 - Replace inverter with enabled tristate inverter. Beware parasitic cap
- Better method: measure delay vs fanout; R_{eff} comes from slope
 - Just change the fanout of all the gates in the chain

Now What?

- Use your simple RC models to reason about circuit
 - Look at different trade-offs
 - Try to determine what is important
 - If you need more information, do some sims to build new model
 - Come up with 'good' first pass design
- Simulate it
 - First look at a few of the corners that might be interesting
 - Do the results make sense?
 - If they don't match your model, something is wrong!
 - If not, check the schematics, SPICE files, and your models
 - Check it over many corners

Simulation Issues



- Complexity gives rise to a conflict in simulating ICs
- 1. “Simulation is cheap, silicon is VERY expensive”
 - Don’t scrimp when you construct a SPICE deck
 - Simulate the real circuit under real conditions (temp, power, clock)
 - Include the real input waveform and real output load devices
- 2. “SPICE decks that are too complex have too confusing results”
 - Very easy to make mistakes in entry
 - You may be simulating the wrong thing
 - Big decks have lots of interacting small mistakes → hard to debug
 - Simulations run very slowly

Start Simple and Add Complexity

- Incremental simulation is a design compromise
 - Start with an understandable and predictable simulation deck
 - Add more complexity
 - Check at each step that the results make sense
 - End up with complete simulation file
- Make sure to eventually add all the effects you need to model

