Lecture 8

Transistor Models

Computer Systems Laboratory
Stanford University
horowitz@stanford.edu

Copyright © 2006 Mark Horowitz
Introduction

• Readings (for next lecture on wires)
 – Arora Capacitance extraction from layout
 This is just background reading (read quickly)
 – Ho The Future of Wires
 This covers most of the material in the next lecture (and then some)

• Today’s topics
 – Review of transistor models (quick review of EE313)
 • From the simple to the complex
 • How to “calibrate” a technology
 • How to use models to think about technologies and circuits
 – Examination of transistor variations
 • Local variations, or mismatch between pairs
 • Run-to-run variations
MOS Device Behavior

• Assume you know MOS device issues from EE313
 – We’ll look at some I-V curves, review some important issues
 – Read Hodges & Jackson (EE313 text) if you need to

• For I-V curves we need to understand
 – Basic shapes of the I-V curves
 – Threshold voltage
 – Mobility effects and velocity saturation
 – Subthreshold conduction
 – Scaling
 – Variations in these parameters
EE313 Review: Basic I-V Curves: I_{ds} versus V_{ds}

- Plot has two regions
 - Linear (low V_{ds})
 - Saturated (high V_{ds})

- Linear region
 - Looks like a resistor

- Saturated region
 - “Constant” current
 - $g_{ds} = 1/r_0$
EE313 Review: Basic I-V Curves: I_{ds} versus V_{gs}

- Two typical plots
 - Linear I_{ds}
 - For $V_{gs} > V_{th}$
 - Lots of current
 - Can get g_m
 - Log I_{ds}
 - For $V_{gs} < V_{th}$
 - Leakage current
 - Can get V_t, DIBL

- Measuring V_{th}
 - Extrapolate linearly
 - Beware of DIBL
E313 Review: Mobility

- Mobility (cm²/Vsec) relates carrier drift velocity to lateral E-field

- Falls quickly as temperature rises
 \[\mu = \mu_0 \cdot \left(\frac{T}{T_0} \right)^{-1.5} \]
 - As temp rises from 27° to 130°, current falls 0.65x
 - Circuit runs 1.6x slower

- Also decreases as vertical field increases (here, T_{ox} in nm)
 \[\mu_n(V_{gs}, V_{th}, T_{ox}) = \frac{540}{1+ \left(\frac{V_{gs}+V_{th}}{0.54T_{ox}} \right)^{1.85}} \]
 - Why (V_{gs}+V_{th})? That’s a strange term…
 - B/c E-field proportional to \(Q_b + 0.5Q_{inv} = C_{ox}V_{th} + 0.5C_{ox}(V_{gs}-V_{th}) \); see Chen
EE313 Review: Velocity Saturation

- Carrier velocity and E-field relationship is not always linear
 - Saturates out; max velocity around 8×10^6 cm/s

\[v = \frac{\mu \cdot E_x}{\sqrt{1 + \left(\frac{\mu}{v_{sat}} \cdot E_x\right)^2}} \]

Critical E-field (velocity is $\frac{1}{2}$ down) is about 4V/\mu m

EE313 Review: Velocity Saturated Current

• Drain current is worse when carrier velocity saturates

\[i_{dsat} = Wv_{sat}C_{ox}\frac{(V_{gs} - V_{th})^2}{V_{gs} - V_{th} + \frac{2v_{sat}L}{\mu_{eff}}} \]

\[E_{crit} \cdot L \]

• Look at both limits: \((V_{gs} - V_{th})? (E_{crit} \cdot L) \)
 – When not saturated
 – When saturated
EE313 Review: Subthreshold Conduction

• The threshold voltage V_{th} is not a magical place
 – It’s just where the channel charge is roughly equal to the doping
 – Device still has channel charge when $V_{gs} < V_{th}$

• What happens in subthreshold?
 – Gate voltage directly controls Φ_s, not channel charge
 – Channel charge exponentially related to Φ_s
 – Looks like a BJT

• Current is exponential with V_{gs}: $i_{ds} = I_s \cdot e^{\frac{V_{gs}-V_{th}}{\alpha V_t}}$
 – $V_t = kT/q = 26mV$ @ room temperature
 – I_s depends on definition of V_{th}, around $0.3\mu A/\mu m$
 – α comes from cap voltage divider (C_{ox} and C_{depl}), around 1.3-1.5
Predicting Scaled MOS Device Performance

• Shockley quadratic model estimates scaling effects poorly
 – A better model (up until 90nm):

\[I_{dsat} = K \cdot W \cdot L_{eff}^{-0.5} \cdot T_{ox}^{-0.8} (V_{gs} - V_{th})^{1.25} \]

• Scaling example: Assume L, T_{ox}, and V_{gs} all scale by \(\alpha \)
 – Current (per micron) will remain constant (0.5-0.8 mA/\(\mu \)m)
 • Current of the scaled transistor scales down by \(\alpha \)
 – Voltage scales down by \(\alpha \)
 – Capacitance scales down by \(\alpha \)
 – So delay scales down, too: \(\Delta t = CV/i = \alpha \Delta t \)

• Sub 90nm, this model breaks
 – V_{th} is not scaling, so V_{dd} does not scale …
Other Currents to Consider – I_g

- Also can look at I_g, gate tunneling current
 - Increasing as oxide thicknesses continue to shrink
 - T_{ox} 2nm today (130nm process); research lines at 0.8nm (30nm)
 - This is limiting gate oxide scaling in modern devices

- Often not well modeled in SPICE; talk to your process engineers

Source: Marcyk, Intel, 2002

Remember Parameter Variations

- No two transistors are exactly the same
 - They vary from wafer to wafer and from die to die

- Parameters of a fabrication run generally normally distributed

- Extract data from real wafers
 - $3-\sigma$ (or $4/5/6-\sigma$) parameters
 - Use it in design
Parameter Variations

Variations come from many sources

1. Die to die variations
 - All devices in the die are correlated
 - Processing for this die/wafer varies from die to die and run to run

2. Across die variations
 - Two transistors on die have different parameters
 - Caused by many layout proximity effects
 - Across die processing variations

3. Random variations
 - Random dopant fluctuations, line edge roughness

1 used to dominate, but with scaling 2 and 3 are comparable issues
EE371 Corners

• We write our corners with a 3-letter code
 – nMOS and pMOS can each be Slow, Typical, Fast
 – V_{dd} can be low (Slow devices), Typical, or high (Fast devices)
 – Temp can be cold (Fast devices), Typical, or hot (Slow devices)

• Example: TTSS corner
 – Typical nMOS
 – Typical pMOS
 – Slow voltage = Low V_{dd}
 • Say, 10% below nominal
 – Slow temperature = Hot
 • Say, 100° C → junction temperature
Which Corners Matter?

• Really depends on the circuits you are simulating
 – And what you want your die yield to be

• Some important corners
 – TTSS: Must hit the timing specification here
 • Since this might be how it is used in a system
 • Will mean 50% performance yield loss (1/2 distribution will fail)
 – SSSS: Sometimes need to hit the timing spec here, too
 • Also worry about signals collapsing from slow risetimes
 – FFFF: See how much power your circuit burns
 • Also worry about narrow pulses disappearing
 – SFSS: Does pMOS-ratioed logic work? Race conditions
 – FSSS: Does nMOS-ratioed logic work? Race conditions
 – And so on…
A Caution About Matching

- If your circuit depends on matching
 - Either in an analog component (like a sense amplifier)
 - Or a digital component like matched delays

- Simulation is much more difficult
 - Need to simulate the difference in the matched elements
 - Corner files don’t do this, since they modify all transistors the same

- Need to do Monte Carlo simulations
 - This is where you do many simulations
 - Computer chooses random parameters for the transistors
 - You need to provide these models
 - Then you need to compute Mean / Sigma of circuit
Providing Matching Statistics

- If you want two transistors to match you need to be very careful
 - Almost anything will make them different

- In SPICE all transistors match perfectly
 - You need to add mismatch explicitly
 - Process corners do not help here

- Orientation matters

![Diagram showing implant not at 90° with asymmetry and text stating these transistors will not match.]
More on Matching

• Poly alignment is important

• Here, diffusion resistance and diffusion cap will not match
• Make currents flow in the same direction in matched devices
• Easy if all the transistors are folded
Even More Matching

- Poly width control depends on local environment

[Diagram showing unmatched transistors]

- Poly density affects etch rates, so end devices will be different
- To match transistors, add dummy devices
 - SRAMs often use entire dummy rows and dummy columns
- Modern technology need many dummies!
Welcome To Modern Technology

• Feature size is below the wavelength of lithography light
 – Hard to get sharp edges, so preprocess to add serifs

 ![Image of processed and unprocessed design]

 OPC = optical proximity correction
 RET = resolution enhancement tech

• Variation is getting larger → foundries imposing rules
 – All transistors must be vertical
 – Poly edges must be far from diffusion

• Moving toward regular arrays of transistors
 – Looks similar to old gate array designs
Statistical Matching

- The errors we have been talking about are systematic
 - You can (in theory) make them zero
 - And you generally can figure out what happened

- But fundamentally even if you do everything right
 - There will still be some random mismatches between transistors
 - These are caused by random doping variations in the device
 - And small random variations in the etching process

- These effects can be modeled by adding an uncertainty to
 - V_{th}
 - K, or β, the current prefactor in the current equation
Statistical Matching

- Read Pelgrom’s paper (and Lovett’s paper)
 - It is the classic paper in this area

- His equations are still being used today
 - Data indicates that the matching depends on the area of the device
 - V_{th} standard deviation (T_{ox} in μm)
 \[
 \sigma(V_{th}) = \frac{0.6V \cdot T_{ox}}{\sqrt{L_{eff}W_{eff}}}
 \]
 - K (or β) mismatch is addition to variation from V_{th}
 \[
 \sigma(\beta) = \frac{2\%}{\sqrt{L_{eff}W_{eff}}}
 \]
The 64 Question

How does one analyze circuits?

1. “Use your intuition and your pencil and paper analysis”
 - These are things that you understand
 - SPICE is prone to Garbage In / Very Pretty Garbage Out
 - You need to understand the circuit to check SPICE, and not vice versa

2. “Use SPICE”
 - VLSI circuitry has enormous complexity and ugly nonlinearity
 - Very difficult to do accurate hand analysis
 - Competitive market pushes sophisticated circuitry, which needs SPICE
 - Relying on hand analysis means you get steamrolled by your competitors

• Kernels of truth in both schools of thought
 - So you end up doing both
Calibrating a Technology

• What do you do when you get a new technology?
 – Run some simple simulations to get a feel for the transistor behavior
 – Generate some rules-of-thumb for reasoning about the circuits

• First look at the basic I-V curves
 – Examine a couple of different channel lengths
 – Do the curves look reasonable?

• What do they say about
 – Velocity saturation and output conduction?
 – V_{th}, V_{bb} sensitivity, and subthreshold conduction?
 – DIBL and V_{th} effects from W and L?
• Different channel length nMOS devices
 – Difference in output slope
 – Linear g_m in longer channel device
Ids vs. Vds (pMOS)

- Different channel length pMOS devices
 - Difference in saturation voltage from nMOS
 - Linear g_m in longer channel device, change in output slope
I_{ds} vs. V_{gs} (nMOS)

- \(V_{ds} \text{ plot} \rightarrow \text{DIBL (drain-induced barrier lowering)} \quad V_t = V_t - \eta V_{ds} \)
- \(V_{bs} \text{ plot} \rightarrow \gamma \text{ (body effect)} \quad V_t = V_t + \gamma \left(\sqrt{\phi_s - V_{bs}} - \sqrt{\phi_s} \right) \)
I_{ds} vs. V_{gs} (pMOS)
g_{ds} vs. L

- Scale on sim run was wrong – Max L should be probably 1μ
Beware of Model Binning

- Plot of g_{ds} versus L for a 350nm technology
- Odd (un-natural) kinks as we move from size “bin” to size “bin”
Threshold Voltage nMOS (0.35μ)

- $V_{th}(w)$ depends on type of isolation and dopant segregation
 - In nMOS, Boron segregates into oxide, lowering V_{th} for small W
 - With LOCOS, V_{th} rises as W falls due to prop. excess Si to deplete
 - With trench isolation, V_{th} falls as W falls due to prop. greater C_{gate}
Threshold Voltage pMOS 0.35μ

- $V_{th}(w)$ still depends on type of isolation and dopant segregation
 - In pMOS, P/As pile up in Silicon, increasing V_{th} for small W
Threshold Voltage in Newer Processes

- Reverse short-channel effect
Calibrating a Technology – Next Steps

• Now we have a feeling of how the transistors behave
 – Believe the process/device model (more or less)
 – Or at least understand its limitations

• Move on to thinking about circuit-level issues
 – Timing
 – Parasitics

• We know how to think about digital circuit delays
 – RC trees and logical effort
 – So now calibrate technology for effective R and C values
Cₔ Calibration for Delay

- Gate capacitance is nonlinear and bias dependant
 - But we can curve-fit a single number (fF/μm) that works for delay
 - Will depend on input slope, output slope, temp, V…

- Find C so delay of 2ⁿᵈ gate (4x) gate is the same in both paths
 - Can change pre/post gate to change input/output slope
 - Fanout of 4 at each stage
C\textsubscript{g} Calibration for Power

- If we measured current from \(V_{\text{dd}} \) at the drive gate we include
 - Current into the load inverter gate (good)
 - Short circuit current due to the drive gate (bad)
 - Current into the drive gate’s parasitic diodes and gate overlap (bad)

- Instead, measure the current going into \(M=8 \) gate
 - Add a 0V voltage source between driver and gate
 - Average current through the source will be zero (rising and falling)
 - Measure the one-way current (to charge capacitor, for example)
 - \(C = Q/V_{\text{dd}} \) and \(Q = \) integral of current
 - This should give you the correct answer

- Note that \(C_g \) for delay and \(C_g \) for power are different
Parasitic Capacitance Calibration

- Effective capacitance of transistor parasitics
 - Can be fF/μm or fF/μm² (edge or area)

- Complicated because may depend on gate W
 - Gate overlap, diffusion edge under gate
 - Avoid optimization of using very small W to reduce parasitics
 - You end up adding Source or Drain series parasitic resistances

- To extract cap of gate overlap, diffusion edge, and diffusion area
 - Replace M=8 inverter with diode (transistor with grounded gate)
 - Changing gate width, PS, and AS can allow you to estimate caps
 - E.g., setting AS=0, PS=0 gives gate overlap + junction under gate

- Note: diffusion cap for rising and falling transitions are different
Using MOS Capacitances

- A 0.1μm technology has a 2.5nm gate oxide
 - $C_{ox} = 14 \text{ fF/μm}^2 = 1.4\text{fF/μm width}$
 - Gate overlap cap ~ 0.35 fF/μm (per edge)
 - Diffusion cap
 - 1.5 fF/μm2 bottom plate
 - 0.2 fF/μm sidewall

- Total
 - $C_{gate} = 1.4 \text{ W}$
 - $C_{overlap} = 0.7 \text{ W}$
 - $C_{bot} = 0.4\text{W}$
 - $C_{side} = 0.4\text{W} + \text{small constant}$
 - Counts both gate and non-gate sides of the diffusion
R_{tran} Calibration

- Resistance of a transistor measured in $\Omega \mu m$
 - Know gate effective cap, so $R = \text{GateDelay}/C_{\text{eff}}$
 - Will vary with input slope, temp, V

```
output for measuring resistance with step input
```

- We can also check how R’s add (two transistors in series)
 - Replace inverter with enabled tristate inverter. Beware parasitic cap

```
output for measuring resistance with real input
AD, AS, PD, and PS are zero for all transistors
```

- Better method: measure delay vs fanout; R_{eff} comes from slope
 - Just change the fanout of all the gates in the chain

Set all parasitics you can to zero and use large fanouts to minimize other parasitics
Now What?

• Use your simple RC models to reason about circuit
 – Look at different trade-offs
 – Try to determine what is important
 – If you need more information, do some sims to build new model
 – Come up with ’good’ first pass design

• Simulate it
 – First look at a few of the corners that might be interesting
 – Do the results make sense?
 • If they don’t match your model, something is wrong!
 • If not, check the schematics, SPICE files, and your models
 – Check it over many corners
Simulation Issues

• Complexity gives rise to a conflict in simulating ICs

1. “Simulation is cheap, silicon is VERY expensive”
 – Don’t scrimp when you construct a SPICE deck
 – Simulate the real circuit under real conditions (temp, power, clock)
 – Include the real input waveform and real output load devices

2. “SPICE decks that are too complex have too confusing results”
 – Very easy to make mistakes in entry
 – You may be simulating the wrong thing
 – Big decks have lots of interacting small mistakes → hard to debug
 – Simulations run very slowly
Start Simple and Add Complexity

- Incremental simulation is a design compromise
 - Start with an understandable and predictable simulation deck
 - Add more complexity
 - Check at each step that the results make sense
 - End up with complete simulation file

- Make sure to eventually add all the effects you need to model

Get waveshape and loading correct