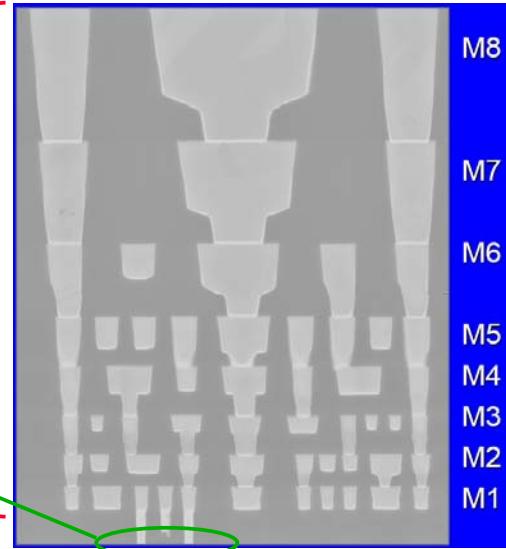

Lecture 9:

More about wires and wire models

Computer Systems Laboratory
Stanford University
ronho@vlsi.stanford.edu

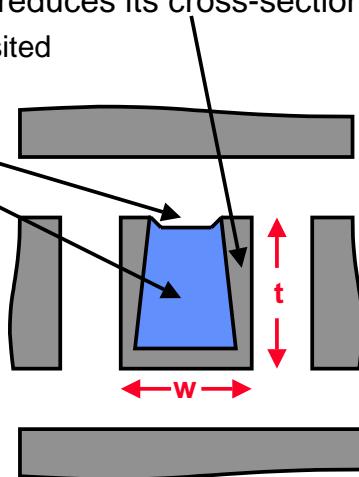
Copyright © 2007 Ron Ho, Mark Horowitz


Introduction

- Readings
- Today's topics
 - Wires become more important with scaling
 - Smaller features mean faster devices but not faster wires.
 - Different kinds of wires have different scaled performance
 - Wires that scale in length
 - Wires that are fixed-length
 - How to deal with and estimate wire performance

A modern technology is mostly wires

- Cross-section, Intel's 65nm tech
 - 8 metal layers
 - Low- κ_r dielectrics ($\kappa_r = 2.7$)
 - Wires are 2x taller than wide
- Wires are here
- Transistors are here



P. Bai, et al., "A 65nm logic technology featuring 35nm gate lengths, enhanced channel strain, 8 Cu interconnect...", IEDM 2004.

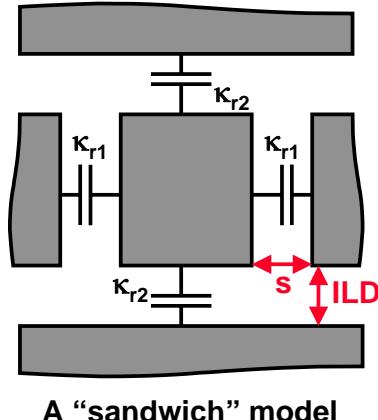
Resistance, revisited...

Resistance is resistivity/area, but...

- Copper needs a diffusion barrier that reduces its cross-section
 - Also, barrier may not be evenly deposited
- Copper can be overpolished
 - Can cause dishing (less thick)
- Electrons can scatter off the edges
 - Happens more for thinner wires
 - Increases the base resistivity

$$R_{len} = \alpha_{scatter} \frac{\rho}{(w - 2\delta) \cdot (t - \delta - dish)}$$
$$\rho_{copper} = 2.2 m\Omega \cdot cm$$

P. Kapur, "Technology and reliability constrained future copper interconnects: Resistance modeling," IEEE Trans. Electron Devices, April 2002.


Capacitance, revisited...

Model capacitance by four plates, each $\kappa(A/d)$

- Plus a near-constant fringe term $0.1fF/\mu m$ (fringe scales slowly)
- Relative dielectrics differ, with low- κ within a layer
 - SiOF (3.5) or SiOC (2.5)
 - Reduces (dominant) sidewall cap
 - Wires are taller than they are wide
- No low- κ between wire layers
 - For material strength

$$C_{len} = \epsilon_0 \left(2M\kappa_{r1} \frac{t}{s} + 2\kappa_{r2} \frac{w}{ILD} \right) + fringe$$

$M = MillerFactor$
 $fringe \approx 100fF/\mu m$

A "sandwich" model

R. Ho, "The Future of Wires," Proc. IEEE, April 2001.

R Ho

EE371 Lecture 9 Spring 2006-2007

5

Capacitance

- Miller factor is important: sidewall cap is 75% of the total today
 - The fringe has a sidewall component, too
- If the neighboring wires are moving with you simultaneously
 - $C_c=0$, and total capacitance is only 25% of the normal total
 - Worst case for minimum path (race) timing checks
- If the neighboring wires are moving against you simultaneously
 - C_c is doubled, and total cap grows to 175% of the normal total
 - (Really) worst case for maximum path timing checks
- This would be a 7X variation in capacitance (and delay)
 - Often use a "realistic worst-case" of 1.5X C_c , for 140% total cap

R Ho

EE371 Lecture 9 Spring 2006-2007

6

Is inductive delay important?

- Should we model wires as full transmission lines? (no)
 - Unless we intentionally make inductance important: very wide wires
 - Or unless we're designing the clock grid (picoseconds count!)
- Transmission-line effects can be ignored if the wire is...
 - Short: wire transitions slower than two transmission-line roundtrips

Not exact, but close

$$2.2R_{gate}C_{wire} > 4\sqrt{L_{wire}C_{wire}}$$
$$R_{gate} > 2Z_0$$

Driver resistance swamps out wire inductance

- Long: wire's transmission-line attenuation constant exceeds unity

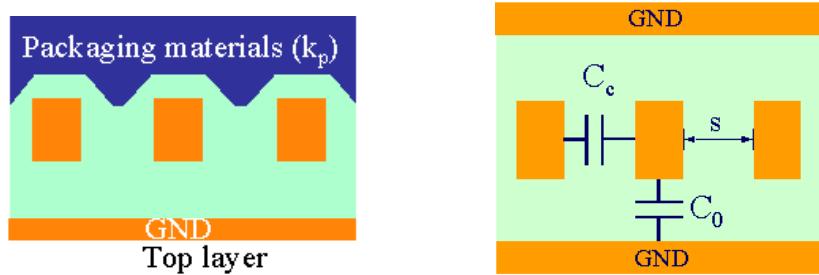
$$R_{wire}/(2Z_0) > 1$$
$$R_{wire} > 2Z_0$$

Wire resistance swamps out wire inductance

A. Deutsch *et al.*, "The importance of inductance and inductive coupling for on-chip wiring," 6th Topical Meeting EPEP, October 1997.

Is inductive delay important? (con't)

- Z_0 is roughly in the ballpark of 30Ω
 - Assume no dielectric loss and reasonably gridded power supplies
 - $C_{wire} \sim 0.3\text{pF/mm}$ (and stable under scaling)
 - $L_{wire} \sim 0.3\text{nH/mm}$ (and stable under scaling)
- A chicken and egg problem in calculating L_{wire} :
 - You don't know L_{wire} unless you know the current loop paths
 - But you don't know the current loop until you know the impedances!
- Use a construct called "partial inductance"
 - Divide up loop inductance into parts on each (possible) segment
 - (For each segment, assume return path is at some fixed reference)
 - Let SPICE figure out currents on the path(s) of lowest impedance

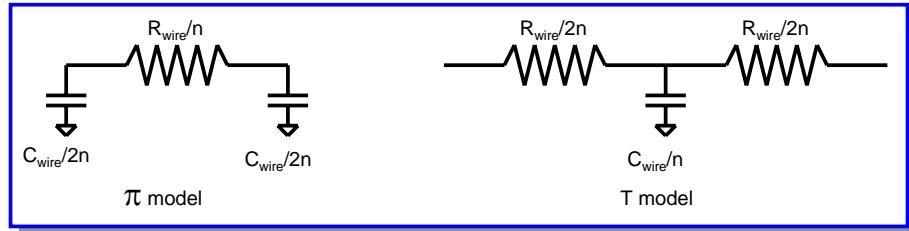

$$Z_0 \approx \sqrt{\frac{L_{wire}}{C_{wire}}}$$

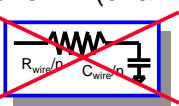
A. Ruehli, "Inductance calculations in a complex integrated circuit environment," *IBM J. Res. Devel.*, No. 5, September 1972.
M. Beattie, "On-chip induction modeling: basics and advanced models," *IEEE Trans VLSI*, Vol. 10, No. 6, December 2002.

Beyond Hand Estimates

- Simple models of R and C take you only so far
 - Beyond that, need 2D or 3D field solvers
- We will use the Berkeley wire calculator (simple 2D field solver)
 - <http://www-device.eecs.berkeley.edu/~ptm/interconnect.html>

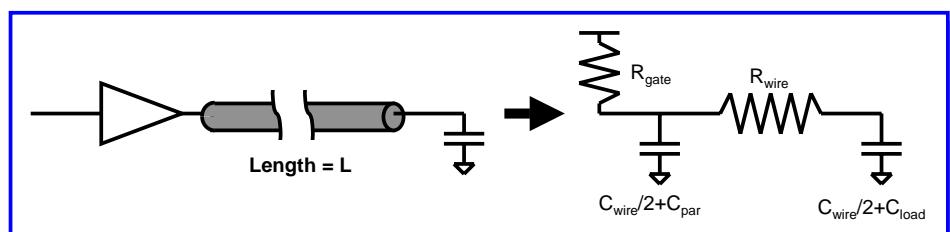
Wire extraction




- In design, we model wires with Rs and Cs based on routing
 - Or based on guesses... when we remember to guess
- After layout, we typically extract the “real” Rs and Cs
 - Back-annotate the extracted Rs and Cs into our netlists for SPICE
 - Extraction pattern-matches layout with pre-characterized templates
 - This process is typically good to only about 5-10% of a field-solver
 - ...Why accurate wire simulators (AWE) are not a low-hanging fruit
- Extraction process generates huge amounts of netlist data
 - Can easily swamp out the poor SPICE simulation engine
 - 100s of GB of data for modern CPUs – how do you verify it?
 - This is RC data only; extracted L data is 10X more data!

Wire delays

- How do you model a wire with component R and C elements?
 - Break it into n sections, each either a “ π ” or “T” model
 - Elmore delay is $RC/2$ regardless of the number of sections



- How many sections? Depends on wire resistance...
 - One section per 2000λ is probably overkill (channel length = 2λ)
- Using an L-model is not very good
 - Its Elmore delay isn't $RC/2$... need 10 sections to get to within 5%

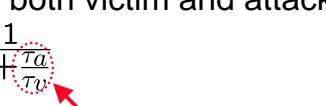
Wire performance: latency

- Delay of gate driving a long wire governed by RC time constants

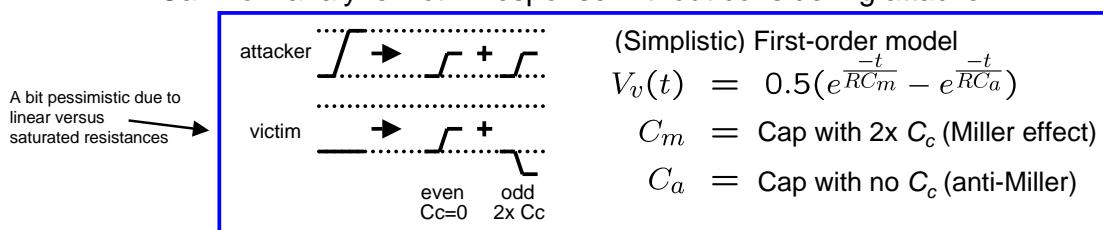
- Elmore delay: $D = R_{\text{gate}}(C_{\text{wire}} + C_{\text{par}} + C_{\text{load}}) + R_{\text{wire}}(0.5C_{\text{wire}} + C_{\text{load}})$
- For long wires: $D = k \cdot \text{FO4} + 0.5R_{\text{wire}}C_{\text{wire}}$
- Quadratic in total wire length

- For long wires, this delay quickly becomes untenable
 - In a 65nm process, wire delay looks like $2-3 \text{ FO4/mm}^2$

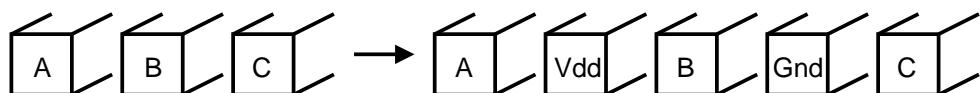
Aside: why do we use Elmore delay?


- Consider the impulse response $h(t)$ of an RC circuit (like a wire)
 - $h(t) > 0 \ \forall t$ i.e., step response monotonically increases
 - $\int_0^\infty h(t) dt = 1$ i.e., step response reaches 1 in the limit
- In other words, $h(t)$ looks like a probability distribution function
 - The step response is the associated cumulative density function
 - Notice that delay is the time for which the step response is 50%
 - Therefore, delay is the median of the impulse response
- Elmore noticed that for most RC circuits
 - The median of the impulse response may not be easy to calculate
 - But the mean of the impulse response (RC formula) is pretty close!
 - Good to understand when it isn't (e.g., large R_{wire} shielding C_{wire})

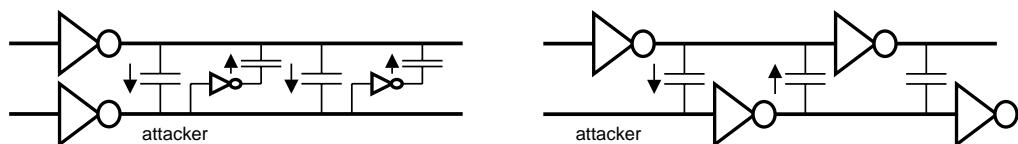
W. Elmore, "The transient response of damped linear networks with particular regard to wide-band amplifiers," *J. Appl. Phys.*, Vol.19, No.1, Jan. 1948.


Wire performance: noise

- Wires are skinny and tall and have lots of sidewall capacitance
 - Aspect ratios at 2.2 now and are projected to scale up to 3-3.5
 - We will have to live with some coupled noise
- Traditional estimates use a simple capacitive divider
 - V_{noise} is $\frac{C_{\text{side}}}{C_{\text{side}} + C_{\text{top+bot}}}$
 - But this is pessimistic, because the "victim" is usually driven, too
- In reality, you must account for both victim and attacker drivers
 - V_{noise} is $\frac{C_{\text{side}}}{C_{\text{side}} + C_{\text{top+bot}}} \cdot \frac{1}{1 + \frac{\tau_a}{\tau_v}}$
 - about 75%
 - From 2 to 4

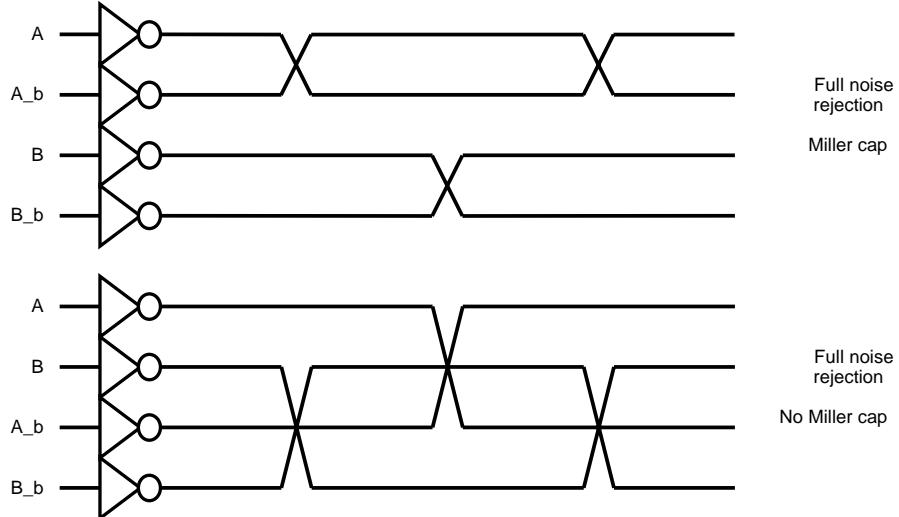

Wire performance: analyzing noise

- Can we quickly sketch the waveform of coupled noise?
- Use the “Miller” and “anti-Miller” effects
 - Coupling cap doubles if wires swing in opposite directions
 - Coupling cap is 0 if wires swing the same direction
- Superposition: break victim response into even and odd modes
 - Even mode uses anti-Miller effect; odd mode uses Miller effect
 - Can now analyze victim response without considering attacker!

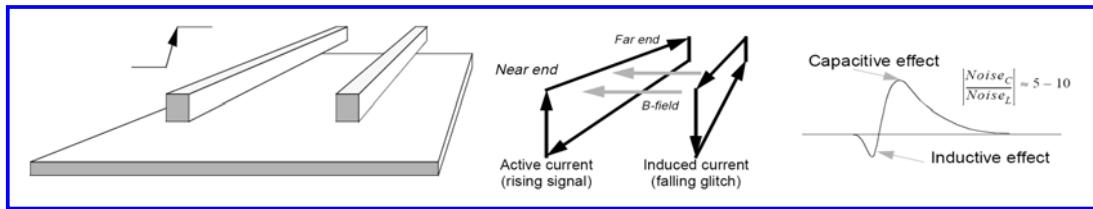


Getting Rid of Crosstalk

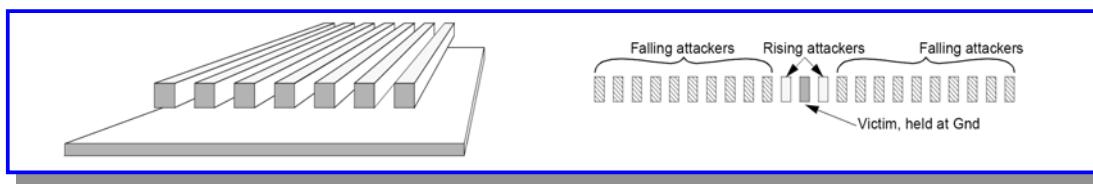
- Shields



- Active noise cancellation and staggered drivers


Getting Rid of Crosstalk, con't

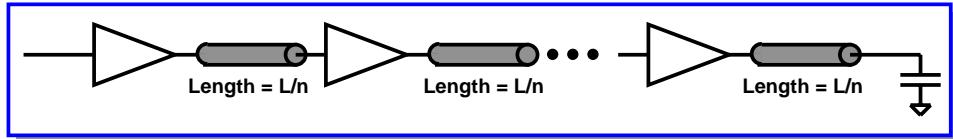
- Twisting and differential wires are very effective
 - Cuts down on inductive coupling as well, but costs 2x wires



Wire performance: inductive noise

- Inductive noise can bite if you're not careful
 - A single attacker isn't too bad...

- But many attackers can add up...



- So: interleave power/gnd lines (every 4-8 wires) to reduce loops

Wire performance: repeaters

- So long wires are slow – use repeaters!
 - Gain stages that break up the wire and “refresh” the signal
 - Inverters are the simplest gain stage
 - Buffers also popular (no inversion, less crowbar current, but slower)

- Delay of a repeated line is linear in total length, not quadratic
 - Delay is the geometric mean of the wire delay and the gate delay
 - $D = \text{constant} * \sqrt{FO_4 * R_w C_w}$
 - You will work out the details in a homework

See H. Bakoglu (*Circuits, Interconnections, and Packaging for VLSI*, Addison-Wesley, 1990) for a sample derivation, but that does not include parasitics.

Wire performance: Using repeaters

- Issue: Repeaters consume real estate and block wiring with vias
 - Cluster repeaters (“gas stations”) and route wires to them
 - Exploit the shallowness of the repeater optimization curves
- Issue: As I scale a design, I’ll need more repeaters for each wire
 - Use (close to) the optimal number of repeaters for each critical wire
 - As opposed to the bare minimum to just meet timing
 - Pay a slight power cost, but this enables your proliferations to scale
- How many repeaters are we talking about?
 - 180nm Itanium: 20K (est) [1]; 130nm Ultrasparc: 16K [2]
 - Some extrapolations (“70% of the total chip”) won’t happen [3]
 - e.g., due to multi-core architectures or clever circuit designs

[1] S. Rusu *et al.*, “The first IA-64 microprocessor,” *IEEE JSSC*, Vol. 35, No.11, Nov. 2000.

[2] G. Konstadinidis *et al.*, “Implementation of a third-generation 1.1-GHz 64b microprocessor,” *IEEE JSSC*, Vol. 37, No.11, Nov. 2002.

[3] P. Saxena *et al.*, “The scaling challenge: Can correct-by-construction help?” *Proc. IEEE ISPD*, 2003.

Improving wire performance

- Increase wire pitch (if you can afford the density hit)
 - If width increases, resistance decreases accordingly
 - A bit faster than linear due to barrier metal's larger effect on thin wires
 - Capacitance grows very slowly with width and falls with spacing
 - Side-to-side capacitance dominates
 - Total RC delay falls, and repeated delay falls by \sqrt{RC}
- Move the signal to a higher metal layer
 - Effectively makes the wire wider and usually thicker, too
- Reduce effective capacitance
 - Interleave buses that never switch simultaneously (avoid Miller)
 - Using codes [1] is often not worth it (unless you're coding already)

[1] K. Kim *et al.*, "Coupling-driven signal encoding scheme for low-power interface design," *IEEE ICCAD 2000*.

Wire Limitations

- There are other good reasons for wider wires
- iR drops in power supply line
 - Need to worry about transient currents too
- Electromigration
 - Electron "wind" can move metal atoms and break wires over time
- iR heating
 - Oxide is a good thermal insulator
 - Wires are resistive and can heat up

Wire performance: reliability

- Wires degrade due to electromigration and self-heating

- Electromigration (EM) creates wire opens
 - Caused by unidirectional current flow
 - Electrons smack into lattice, displacing atoms
 - Wires with bidirectional current is “self-healing”
 - Check those short segments to Vdd or Gnd
 - Copper’s MTTF is 5x better than Aluminum’s

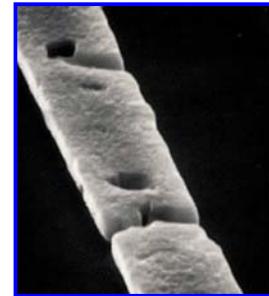
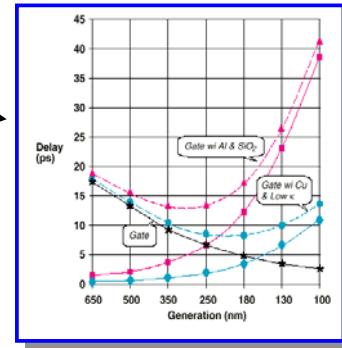


Photo: Sanyo Electronics

- Calculate max DC current, which depends on total capacitance
 - Rule is “max current per wire cross-section” (e.g., $1\text{mA}/\mu\text{m}^2$)
 - Also have “max current per via” to enforce arrays of vias

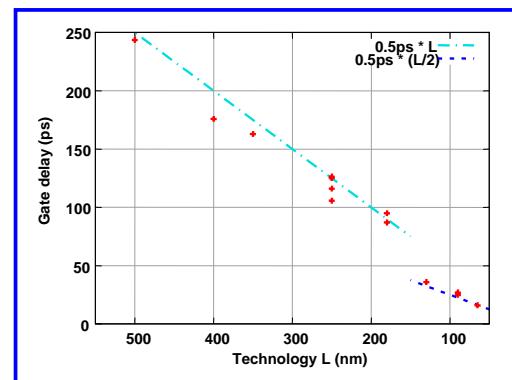
J. Black, “Electromigration—A brief survey and some recent results,” *IEEE Trans. Electron Devices*, ED-16(4), 1969.


Wire performance: reliability (con’t)

- Self-heating (joule heating) can be a problem
 - Would like wire to not be much hotter than the rest of the chip
 - Takes place in wires with bidirectional current (most long wires)
- Rules are similar to EM, with “max current per wire cross-sec”
 - But this time it’s rms current $I_{rms} \approx 1.25C_{wire}V_{dd}\sqrt{\frac{\text{freq} \cdot AF}{\text{risetime}}}$

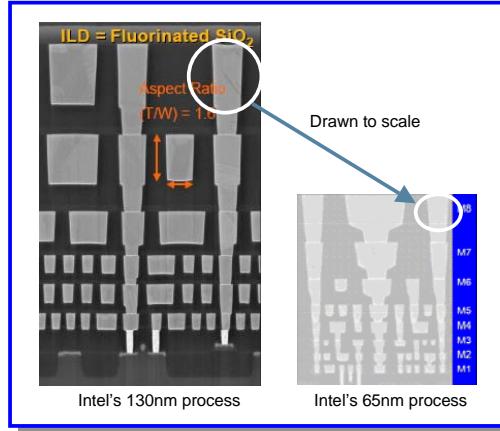
$$\begin{aligned} I_{rms} &= \sqrt{\frac{1}{0.5T} \int_0^{0.5T} i^2(t) dt} \\ &= \sqrt{\frac{1}{0.5T} \int_0^{0.5T} (C \frac{dv}{dt})^2 dt} \\ &= \sqrt{\frac{1}{0.5T} C^2 \frac{dv}{dt} \int_{t=0}^{t=0.5T} dv} \\ &\approx \sqrt{\frac{1}{0.5T} C^2 \left(\frac{0.8V_{dd}}{\text{risetime}}\right) (V_{dd})} \\ &= CV_{dd}\sqrt{\frac{0.8}{0.5T \cdot \text{risetime}}} \approx 1.25CV_{dd}\sqrt{\frac{\text{freq} \cdot AF}{\text{risetime}}} \end{aligned}$$

Wire Scaling


- What happens to wire delay under scaling?
 - Many claim(ed) that wires would blow up
 - But it depends on how you scale the wires

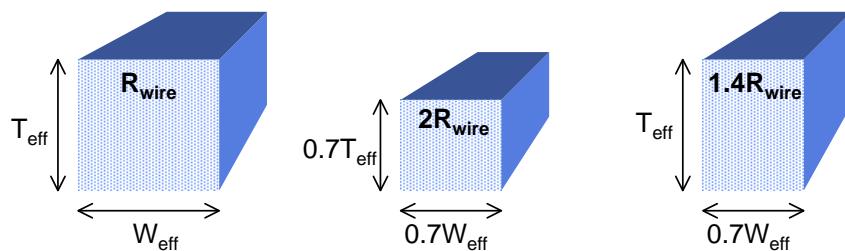
- In a technology shrink there are **two** types of wires
 - Wires of constant logical span (reaching the same number of gates)
 - Wires of growing logical span (covering the same fraction of die)
- The delay scaling of these wires is different

First, look at gate delay scaling


- Wire scaling matters only if slower (different) than gate scaling
- Use FO4 as our gate delay metric
 - Delay (in ps) = $0.5 * L_{phys}$ (in nm)
- Poly undercuts change L_{phys}
 - $L_{phys} = L_{drawn}$ up until 180nm
 - $L_{phys} = 0.5L_{drawn}$ after 130nm
- Will this hold in the future?
 - Transistors may look very different: FinFETs, carbon nanotube
 - Continued scaling of FO4 may be a self-fulfilling prophecy
 - In any case, aggressive FO4 trends highlight wire problems

Wire scaling basics

- Shrinking wire dimensions changes characteristics
 - R_{wire} depends on cross-sectional areas: grows quickly
 - C_{wire} and L_{wire} depend on the ratio of dimensions: stays constant



S. Thompson, "An enhanced 130nm generation logic technology featuring 60nm transistors...", IEDM 2001.
P. Bai, et al., "A 65nm logic technology featuring 35nm gate lengths, enhanced channel strain, 8 Cu interconnect...", IEDM 2004.

Wire R and C Scaling

- Resistance grows as cross-sectional area decreases
 - Strict scaling makes resistance increase quickly
 - Wires have been growing taller to compensate

- Capacitance grows slowly
 - Depends on ratio of dimensions
 - As wires stay tall (to help resistance) sideways cap grows
 - Dielectric constants get smaller (slowly) with technologies

Scaling of R and C

- Actual numbers are unimportant, but note the trends
 - There is a difference between accuracy and precision!
 - Make assumptions to get optimistic and conservative trends
 - It's really hard to predict the future; easier to predict bounds

Unrepeated wires	Technology node (nm)					
	65	45	32	22	15	10
Resistance, Ω/mm , optimistic to conservative	135	240	470	1000	2150	4000
		350	725	1560	3420	6950
Capacitance, pF/mm , optimistic to conservative	0.36	0.34	0.31	0.285	0.260	0.240
		0.35	0.33	0.325	0.325	0.315
0.5RC, ps/mm/mm , optimistic to conservative	24	41	73	140	280	480
		61	120	255	560	1090

20-30x

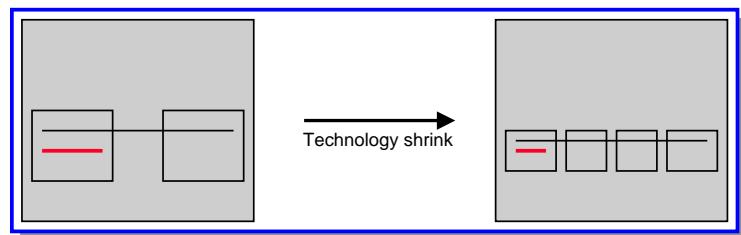
Scaling of R and C in FO4

- What really matters for scaling is how wires compare to gates
 - Normalize the delay to FO4 delays
 - Scaling story is quite a bit worse
 - Keep in mind this is also quadratic with wire length, too...

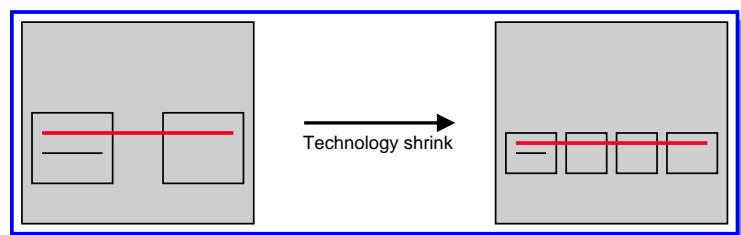
Unrepeated wires	Technology node (nm)					
	65	45	32	22	15	10
Resistance, Ω/mm , optimistic to conservative	135	240	470	1000	2150	4000
		350	725	1560	3420	6950
Capacitance, pF/mm , optimistic to conservative	0.36	0.34	0.31	0.285	0.260	0.240
		0.35	0.33	0.325	0.325	0.315
0.5RC, FO4 /mm/mm, optimistic to conservative	1.6	3.6	9.1	25	75	175
		5.4	15	46	150	400

100-200x

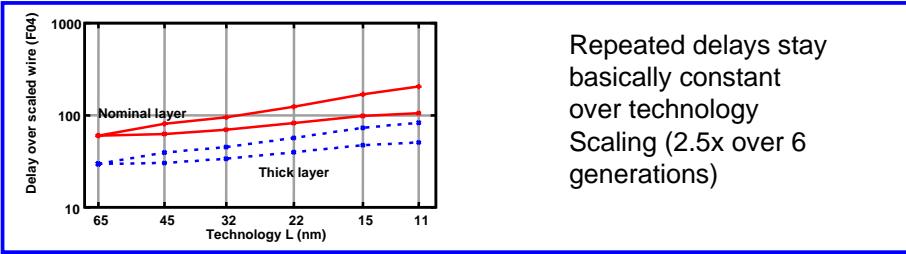
Wire Scaling



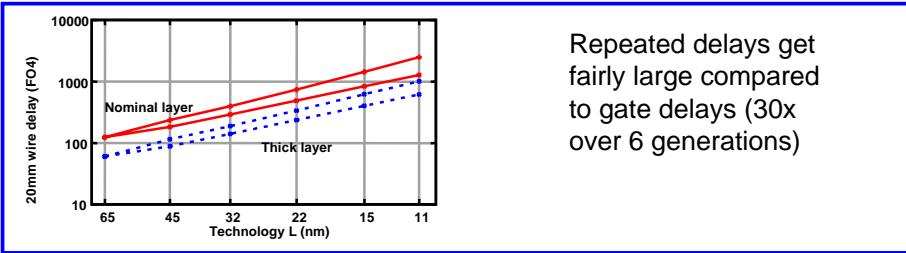
- Key is to remember there are two kinds of wires
 - Wires with a constant logical reach
 - All the wires when you shrink a chip to a new technology
 - All module level wires
 - L scales, so the delay of the wire decreases as T/W grows
 - Ratio of wire to gate delay grows, but slowly
 - Wires of constant length
 - Global wires spanning a chip
 - Delay increases, while the gate delays decrease
- Duality should not be surprising
 - Communication has some cost
 - Starting to have communication delays on-chip
 - Today's chips are like yesterday's boards


Scaling: two kinds of wires

- Local wires, inside modules or blocks, get shorter under scaling

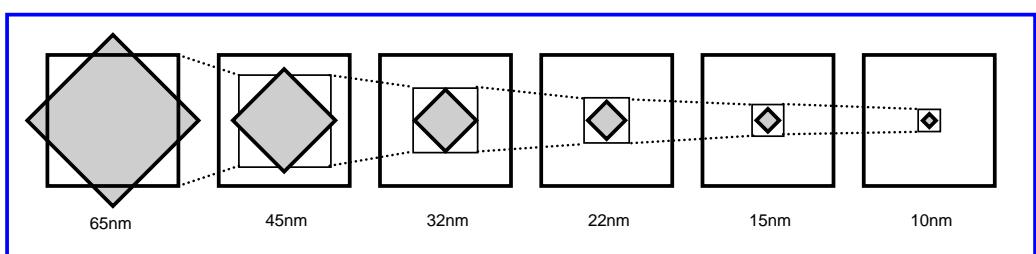


- Global wires, connecting modules together, do not get shorter



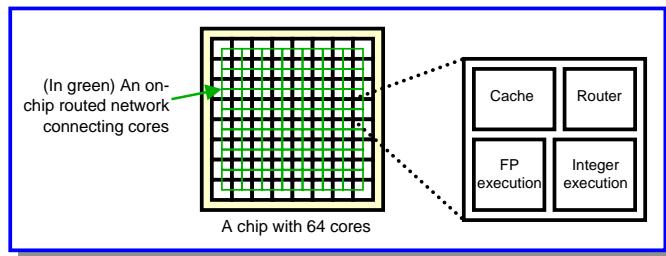
Scaling: two kinds of trends

- Local, scaled length wires (with repeaters) are okay



- Global, fixed length wires (with repeaters) are not

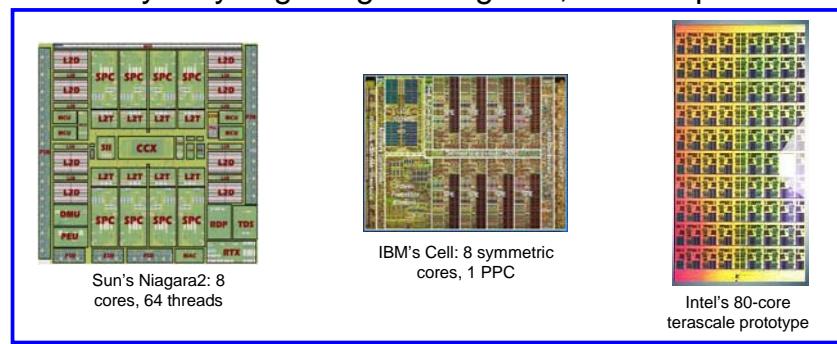
Scaling: another perspective


- How far can a wire “reach” in a clock cycle?
 - Assume a 35FO4 clock cycle and a small 85mm² die
- Each technology scaling step reduces everything
 - Except die size: assume die complexity grows
 - Wire reach falls a little faster than the original block size

Scaling implications for architecture

- Look towards architectures that can handle the duality of wires?
 - Slow global communication does not throttle performance
 - Performance is set by fast local (scaled-length) wires
- Answer: modular architectures using multiple tiled cores
 - Cores are built with local wires that are fast and that scale well
 - Global core-to-core communication is explicitly slow
 - Can even make global communication visible to the programmer

R Ho


EE371 Lecture 9 Spring 2006-2007

35

Scaling: modular machines

- Not a new idea: lots of early work in mid- to late-1990s
 - Academic: MIT RAW, Stanford Smart Memories, UT GRID/TRIPS
 - Industry: Dual-core Sparc, Pentium, and Opteron processors
- Now everybody is getting in the game, and in spades

G. Grohoski, "Niagara2: A highly-threaded server-on-a-chip," *IEEE Hot Chips*, 2006.

J. Warnock, *et al.*, "Circuit design techniques for a first-generation Cell broadband engine processor," *IEEE JSSC* Vol.41, No.8, August 2006. Intel Developer Forum, 2006.

R Ho

EE371 Lecture 9 Spring 2006-2007

36

Modularity: good for other reasons

- Moderate energy using selective block power-down
 - The popular question in 1997: “What do you do with x billion xstrs?”
 - The practical answer in 2007: “Don’t turn them all on at once!”
 - Deep sleep for blocks you aren’t currently using
- Manage design complexity with divide-and-conquer
 - CPU teams regularly exceed hundreds of designers
 - Yet Intel’s Pentium4 design team had only a handful of “wizards” [1]
- Modularity can lead to reconfigurability and IP reuse
 - Various estimates of ASIC design costs in 65nm: \$100M
 - So build “general-purpose ASICs” with reconfigurable cores/logic
 - Exploit heterogeneity in the cores for repurposing logic

[1] B. Colwell, “CPU performance: complexity is a spent force,” Industry talk, 2005.