EE371
Debug Examples

Intel Corporation
jstinson@mipos2.intel.com

Agenda

- Speedpath Failure
- Circuit Marginality: Noise
- Functional Failure
- Circuit Marginality: Multiple
- PowerUp Problems
Speedpath Failure

Speedpath Example: The Wall Shmoo

- **Voltage**
 - `d004508A16588 -- #FF005 (92c)`
 - 3.2V | `EEEEEEEE` ++++++++++++ ..
 - 3.0V | `EEEEEEEE` ++++++++++++ ..
 - 2.8V | `XEEEEEEE` ++++++++++++ ..
 - 2.6V | `XXEEEEEE` ++++++++++++ ..
 - 2.4V | `XXXXXEEE` ++++++++++++ ..
 - 2.2V | `XXXXXXXE` ++++++++++++ ..
 - 2.0V | `XXXXXXXXX` ++++++++++++ ..

- **Passing Region**
 - +--------^-----^-----^-----^--

- **Bus Period**
 - 10.0 11.2 12.4 13.6

- **Pass**
- **E - Wall fail**
- **X - other fail**
The Wall Debug

• Production test platform suspected
 – A timing setup problem
 – How could silicon act this way?

However...

• Debug test platform confirmed
 – Unlikely two diff’t platforms had same timing error
 – Now we had to do the debug...
Pattern Timeline

Slow Pattern

- Speedpath
- Clock Shrink
- RTL Sim
- Probing

First Scan
Mismatch

Pin Failure

Clock 0

Debug Process

Why was it a wall?

- Long Interconnect Line
 - RC Delay less sensitive to driver strength
 - Voltage/process only improve driver
Interconnect Effect

Data Valid Times

Must be valid before

Voltage = 2.0V

Interconnect Effect

Xtor Path Shows Big Improvement

RC Path has little Improvement

Voltage = 2.5V
Why was it a wall?

• Jam sustainer at end of the line
 – Fights transition of signal
 – Sustainer gets stronger with voltage/skew
 – Adds to “wall” characteristics

Wall Follow-up

• Two FIB experiments
 – Driver speedup – wall moved
 – Cut sustainer – wall “leaned”
Shmoo with Cut Sustainer

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2V</td>
<td>EEEEE</td>
</tr>
<tr>
<td>3.0V</td>
<td>EEEEE</td>
</tr>
<tr>
<td>2.8V</td>
<td>EEEEE</td>
</tr>
<tr>
<td>2.6V</td>
<td>XXEEE</td>
</tr>
<tr>
<td>2.4V</td>
<td>XXXXXEE</td>
</tr>
<tr>
<td>2.2V</td>
<td>XXXXXXXE</td>
</tr>
<tr>
<td>2.0V</td>
<td>XXXXXXXXX</td>
</tr>
</tbody>
</table>

10.0 11.2 12.4 13.6

+ - pass
E - Wall fail
X - other fail

Circuit Marginality: Noise
Noise Example

- High Voltage Failure
 - Only one FAB showed signature
 - Second FAB seemed clean
 - Scan pointed to branch memory array

Noise Debug

- EBeam confirmed branch array read
 - Visibility limited in array
- Bit 4 resolved later than other bits
 - Based on EBeam waveforms
- Signals on either side of read lines transitioned in opposite direction
 - Suspected coupling problem
Coupling Schematics

Bit

Bit#

SAEN

Sense Amplifier

Out

WL

Bit#

Bit

SAEN

Coupling Schematics

Bit

Bit#

SAEN

Coupling Attacks

Sense Amp senses Wrong Value!
BTB Coupling Debug

• Parameters data checked at problematic FAB
 – M2 CD’s wider than normal
 – ILD1 and ILD2 thicker than normal
 – More sensitive to coupling
• Audit of original design
 – Simulations ignored some coupling
 – New simulations showed failure

BTB Coupling Validation: FIB experiments

• Deposit extra capacitance on read line
 – Resists coupling from neighbors
• Extend sense amp pulse width
 – Gives more time for read to resolve
Coupling Schematics

Functionality Failure
Functionality Problem

- “Dash stepping” first silicon non-functional
 - Stepping was supposed to fix a min-delay race
- Suspected inadequate race fix
 - Scandiff confirmed same circuitry
 - EBeam also confirmed…
 - But visibility was limited

Functionality Debug

- Design team was confident in fix, so…
- Plan to strip back the entire block
 - Look for possible mask defect
 - Takes 4-10 days in FIB

However...

- Noticed a floating node in EBeam scope
Floating Node

Driven Metal Lines held at Vss

Electron Beam charges Floating Node
Floating Node Debug

- Node should NOT have been floating
- A0 and A1 layout compared
 - Via1 or M1 could cause error
- FIB strip back focused on this node

FIB Stripback Results

- Should be 3 via1’s
- FAB contacted
 - Accidentally used A0 via1 mask
- Problem fixed
 - New silicon arrived shortly
FIB Stripback Results

Good Silicon has all 3 via1’s

• Fully functional with correct via1 mask

Functionality Summary

• Notice details
 – Focused stripback saved days of work
 – Very important during time critical debug
Circuit Marginality: Multiple Sources

• Observed High Vcc failures
 – Frequency Insensitive
• TDO only failure
 – All signature mode tests were failing
 – Turning off signature mode allowed test to pass
High Vcc Shmoo

<table>
<thead>
<tr>
<th>DQS Sigmode Shmoo (104C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0V</td>
</tr>
<tr>
<td>1.8V</td>
</tr>
<tr>
<td>1.6V</td>
</tr>
<tr>
<td>1.4V</td>
</tr>
<tr>
<td>1.2V</td>
</tr>
</tbody>
</table>

++^-----^-----^-----^--
12.0 13.0 14.0 15.0
+ - pass
X - High Vcc fail
A - Other fail

Marginality Root Cause

- Scanout stopped working in failure region
 - Deduce scan chain itself was broken
- Probing was only way to root cause
 - Laser Voltage Probe was able to narrow failure down to Scan MSFF
 - Three different mechanisms observed
Scan MSFF Analysis: Pass

Problem #1: Charge-Share

Clock# Glitch on N1
N1 N2

N1 N2
MSFF Problem #2

Contention

Larger Glitch on N1

MSFF Problem #3

Cross Coupling

Flips State
Scan MSFF “Backwriting”

• Slave “backwrites” value into Master
 – Combination of three mechanisms to cause failure
• Re-simulated all standard cell MSFF’s
 – Two other cells flagged with same problem
• Circuit was a direct “shrink” from a previous process
 – Discovered same issue on prior process—but at a MUCH higher voltage

PowerUp and Initialization
PowerUp Issue

- Observed *some* systems wouldn’t boot
 - Toggling RESET always enabled boot
 - Toggling power did not guarantee boot
- Nasty problem to debug
 - System level issue (not seen on tester)
 - Intermittent failure (occurred 1 out of 100 times)
 - Debug tools not enabled (part hasn’t booted)
- Started with oscilloscope waveforms…

Oscope Waveforms

Assertion enables Tristate

Should be Tri-stated (pulled hi)
Why is TriState determined by PWRGOOD?

- Discovered busclk dependency @ 2
 - ACLOOP[1] directly controls I/O tristate signal
 - Depends upon busclk for proper initialization
 - While !PWRGOOD, busclk is not generated
 - Power-up initialization @ 3 may generate a busclk → no issue
 - Otherwise, must depend on power-up initialization of ACLOOP[1] (>)
 - “Driven value” on I/O pins will depend on power-up initialization at 3

Why wasn’t the part booting?

- PWRGOOD will always clear the ACLOOP
 - Eventually the pins should tristate
 - So, why was the part still not booting?

- Further characterization: Power levels were very low
 - When the part failed to boot, the power was very low
 - Potentially indicated that the PLL wasn’t running
 - Discovered secondary effect of ACLOOP initialization problem
PLL Ratio Depends on PWRGOOD

PLL frequency ratio determined
at assertion edge of PWRGOOD

By Sampling the Address Pins

Final Root Cause

- System drives address pins at PWRGOOD assertion
 - Sets internal PLL frequency
 - Address pins are "supposed" to be tristated by the processor
- If ACLOOP powers up incorrectly, contention can occur
 - Processor is driving a '0' on address pin; system is driving a '1'
 - The processor will always win
- PWRGOOD assertion tristates the address bus
 - Too late! It's already been sampled by PWRGOOD assertion
 - Only "illegal" bus fractions will cause failure
 - Only 7 out of 32 possible bus fractions are "illegal"
- Failure requires a confluence of different events
 - ACLOOP powers up "on"
 - Bus clock does NOT glitch during power up
 - Address pins power up driving an "illegal" bus fraction
2nd PowerUp Issue

- Observed *some* systems wouldn’t boot
 - Toggling RESET never enabled boot
 - Toggling power usually enabled boot

- Nasty problem to debug
 - Intermittent failure (occurred 1 out of 1000+ times)

- Some bright spots
 - Able to demonstrate on tester
 - Enabled “deterministic” behavior
 - Enabled debug tools (scan)

Vcc Shmoo (100x repeat)

<table>
<thead>
<tr>
<th>Vcc</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5V</td>
<td>+++++++++++++++++++</td>
</tr>
<tr>
<td>1.4V</td>
<td>+++++++++++++++++++</td>
</tr>
<tr>
<td>1.3V</td>
<td>+++++++++++++++++++</td>
</tr>
<tr>
<td>1.2V</td>
<td>AAA +++++++++++++++++++</td>
</tr>
<tr>
<td>1.1V</td>
<td>AAAAA +++++++++++++++++++</td>
</tr>
</tbody>
</table>

NoBoot Shmoo (40C)

+=- pass
X = Fail
A = Other fail
Vcc Shmoo (10000x repeat)

NoBoot Shmoo (40C)

- **1.5V**: ++++++++++++++++++++++
- **1.4V**: XXXXXXXXXXXXXXXXXXXXX
- **1.3V**: XXXXXXXXXXXXXXXXXXXXX
- **1.2V**: XXXXXXXXXXXXXXXXXXXXX
- **1.1V**: XXXXXXXXXXXXXXXXXXXXX

++^-----^-----^-----^--

6.0 7.0 8.0 9.0

- **pass**
- **X** - **Fail**
- **A** - **Other fail**

Temperature Shmoo (10000x repeat)

NoBoot Shmoo (40C)

- **80C**: AA ++++++++++++++++++++++
- **60C**: ++X XXX ++ XXXX ++ XXX+
- **40C**: XXXXXXXXXXXXXXXXXXXXX
- **20C**: ++XX XXX ++ XXX + XX
- **0C**: ++++++++++++++++++++++

++^-----^-----^-----^--

6.0 7.0 8.0 9.0

- **pass**
- **X** - **Fail**
- **A** - **Other fail**
Scan Analysis

- Scan failure looked like OR of two entries
 - Common for multiple WL firing (dynamic read)
 - Uncommon for random logic
- Address decode was simple CMOS

Wordline Driver

- Used a fancy self-resetting mechanism
 - Self-reset WL prevented read→write min-delay
 - Pulsed WL read array for short period of time
Wordline Driver: Problem

- Self-reset sized diff’t than forward path
 - Initial state could flip forward inverter but not feedback (pseudo-metastable state)
- Resolving pseudo-meta state
 - Access WL
 - High temp
 - Low temp

Summary
Summary

• Debug requires a lot of detective work
 – Review all the evidence
 – Develop experiments to eliminate possible problems
 – Develop theory of failure
 – Validate theory
• Can’t ignore ANY evidence
 – If something doesn’t fit, you’re missing something
• EVERY problem is different
 – Need to constantly think about alternative methods of validation
 • The Norwegian capacitor
 • The Kleleveland voltmeter