Lecture 14

Design for Testability

Computer Systems Laboratory
Stanford University
horowitz@stanford.edu

Copyright © 2006 Ron Ho, Mark Horowitz
Testing Basics

• Testing and debug in commercial systems have many parts
 – What do I do in my design for testability?
 – How do I actually debug a chip?
 – What do I do once I’ve debugged a chip?

• Two rules always hold true in testing/debug
 – If you design a testability feature, you probably won’t need to use it
 • Corollary: If you omit a testability feature, you WILL need to use it
 – If you don’t test it, it won’t work, guaranteed
Two Checks

- There are two basic forms of validation
 - Functional test: Does this chip design produce the correct results?
 - Manufacturing test: Does this particular die work? Can I sell it?

- What’s the difference?
 - Functional test seeks logical correctness
 - >1 year effort, up to 50 people, to ensure that the design is good
 - Manufacturing test is done on each die prior to market release
 - Send your parts through a burn-in oven and a tester before selling them

- The distinction is in the testing, not in the problem
 - Ex: A circuit marginality (such as charge-sharing in a domino gate)
 - Can show up in either functional or manufacture test
Testing Costs Are High

- Functional test consumes lots of people and lots of $\$$
 - “Architecture Validation” (AV) teams work for many years
 - Write lots of RTL tests in parallel with the chip design effort
 - Reuse RTL tests from prior projects (backwards compatibility helps!)
 - First 12 months after silicon comes back from fab
 - Large team (50+) gathered specifically for debug, usually pulling shifts
 - First “root-cause” a problem, then do “onion-peeling” to find “many-rats”

- Manufacture test constrains high-volume production flow
 - Must run as many tests as needed to identify frequency bins
 - Including the “zero-frequency” bin for keychains
 - Automated test equipment (ATE) can cost $1-10 million
The Stakes Are Higher

• Recall of a defective part can sink a company
 – Or at least cost a lot of money: Intel FDIV recall cost nearly $500M

• Not just CPUs: NHTSA 97V034.001 recall
 – Izuzu Trooper had a bad voltage regulator IC, nearly 120,000 cars

• Time-to-market, or time-to-money, pressures are paramount
 – Industry littered with “missed windows” (Intel LCoS, Sun Millenium)

• How long does it take to “root-cause” a problem? (from Ron Ho)
 – Bad test, or layout-vs-schematic error, on ATE: 2 person-weeks
 – Marginal circuit with intermittent error, on ATE: 2 person-months
 – Logic error, or any error seen only on a system: 2 person-years
Testability in Design

• Build a number of test and debug features at design time

• This can include “debug-friendly” layout
 – For wirebond parts, isolate important nodes near the top
 – For face-down/C4 parts, isolate important node diffusions

• This can also include special circuit modifications or additions
 – Scan chains that connect all of your flops/latches
 – Built-in self-test (BIST)
 – Analog probe circuits
 – Spare gates

• Focus on the circuit modifications and debugging circuit issues
 – Spent time in EE271 on logical/functional testing
Scan Chains

• Lots and lots of flops/latches in a high-end chip
 – 200,000 latches on 2nd gen Itanium (static + dynamic)

• Scan chains offer two benefits for these latches and flops
 – Observability: you can stop the chip and read out all their states
 – Controllability: you can stop the chip and set all of their states

• Critical for debugging circuit issues too
 – They are your easiest “probe” points in the circuit
 – Can trace back errors to see where they first appear
 • Great with simulator or when a part fails in some condition
 – Even more useful with a flexible clock generator
 • Can stress certain clock cycles, and look at which bits fail
Building Scan Chains

- Scan chains add a second parallel path to each flop/latch
 - Extra cap, extra area (<5% of the chip die total)
 - Make sure scan inputs can overwrite the flop
 - Make sure enabling scan doesn’t damage cell (backwriting)
 - Trend is to have every single flop/latch on the chip scan-able
Other Scan Chains

- Previous scan flop had a dedicated shift in/out line
 - Can also share the outputs and clk
 - Simpler, but scanning out can “mess with” the rest of the chip

- Key: If nothing else works, make sure your scan chain does!
 - It is how you debug most everything on your chip

Source: Harris, Addison-Wesley
Challenges with Scan, BIST, and ATPG

• Initialization states need to be clean – X’s corrupt signatures
 – Especially true for memory blocks; write to the array, then do test

• Logic can have “don’t care” states that the test may not realize

• Example: MUTEX
 – FF outputs cannot both be “1”
 – But FFs are on the scan chain
 – Scan can set up contention
 – Tester sees “X” on the bus

• Must constrain ATPG/BIST
Analog Test Facilities

• Scan/BIST facilities look at digital signals only
 – Sometimes analog signal levels are important to probe as well
 – Clock, PLL filter cap voltage, low-swing signals, etc.

• We have a couple of tools for analog probing on silicon
 – But generally require access to the chip metal layers (top of the die)
 • Pico-probing and E-Beam probing
 – Other tools (laser probing, IR emission) only probe digital signals
 • They can tell us *when* nodes transition, not what voltage they are

• We can also use test circuits to probe analog circuits
 – If we know in advance what we want to probe
 – Not a general post-fab debug technique
On-Chip Sampling Oscilloscopes

- Basic idea: sample an analog voltage and turn it into a current
 - Drive current off-chip into an oscilloscope
 - Small capacitance of the sampler doesn’t disturb the test voltage
 - Limited by high-voltage compliance of nMOS passgates and pMOS

![Diagram of on-chip sampling oscilloscope]
Using Sampling Oscilloscopes

• Put the chip in a repeating mode, so the test waveform repeats
• Can run the sampler in “accurate mode”
 – Sampler clock has same frequency as chip clock (no LPF)
 – Gradually walk the phase offsets between sampler and chip clocks

• Or, can run the sampler in “pretty mode”
 – Run sampler clock at slightly different frequency as chip clock
 – “Walk” through the waveforms, and plot the curve on the scope
 – Less accurate due to LPF at the input (charge-sharing)

• In both modes, jitter of sampler clock limits the BW of system
Sampling Oscilloscope Results

- Calibration is important – each sampler on the chip is different

- Sampled bitlines on a low-power memory compared to sims

Source: Ho, VLSI Symp '98
More Sampler Results

• Low-swing on-chip interconnects can also be probed

Source: Ho, VLSI Symp '03
Spare Gates

- Post-silicon edits can be done using Focused Ion Beams (FIB)
 - Remove wires and add new wires

- FIB cannot add new devices, however
 - So you often throw in a smattering of extra layout, just in case
 - Need to put them in the schematics, as well

- Spare gates are basic cells with grounded inputs
 - They don’t do anything normally (except take up space)
 - You can insert them using a FIB edit later
 - Mixture of inv, nand-2/3, nor-2/3, a few flops
 - Plan on inserting these in your blocks, whereever you have room
 - HP calls them “happy gates” for reasons obvious to the debug team
Debugging a Chip

• Run parts on tester and exercise the clock shrink mechanisms
 – ODCS was discussed in the clocking section
 – Can move an arbitrary clock early or late to test speedpath theories

• Also vary the voltage and the frequency
 – Obtain “schmoo” plots
 – Named (and misspelled) after the Lil’Abner comic strip (1940s)
 • One of the first schmoo plots looked round and bulbous (!?)

A “shmoo” (plural: shmoon)
Resembles a type of plot used by EEs
(who can’t spell and call it a “schmoo”)

Source: www.deniskitchen.com
Schmoo examples

RC-dominated path

**

Freq “Wall”

Coupling on dynamic node

**
*

Reverse

Coupling on static node

*
**

Crack

Leakage

* ***
** *

Inverted

Bad test!

* * *
* * **
* **
**

Flakey

Min-delay race: data faster w/V

Vcc Ceiling

Min-delay race: clk faster w/V

*
**

Vcc Floor

Source: Stinson, Intel
Schmoo examples

<table>
<thead>
<tr>
<th>Period</th>
<th>Freq “Wall”</th>
<th>Reverse</th>
<th>Crack</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>**</td>
<td>**</td>
<td>*</td>
</tr>
</tbody>
</table>
| *** | *** | **** | ** *
| **** | ****** | ***** | **** ** |

- Normal
- Inverted
- Flakey
- Vcc Ceiling
- Vcc Floor

Source: Stinson, Intel
Electronic “Optics” Can Look At Chips

- Scanning Electron Microscope looks at a chip in a vacuum
 - Useful for defect analysis, not really for tests during chip operation

Source: M. Heath, Intel
Source: KLA-Tencor
Source: ifw-dresden.de
E-beam Probing and Controlling

- E-beam probing is a technique that requires face access
 - Shoot electrons at the chip and measure reflected electrons
 - Grounded metals look bright; high-voltage metals look dark
 - Can probe metals this way to find out their voltages
 - Can also pulse e-beams at higher energy to charge up nodes
 - Mild form of controllability to go along with observability

![Potential contrast image of nondefective specimen](Source: www.necel.com)

![Potential contrast image of defective specimen](Source: www.necel.com)

![Differential image](Source: www.necel.com)
Backside Access More Important Today

• Most chips are face-down and flip-chip bonded to package

• Covered already in the clock skew lecture, but briefly mention
 – PICA (IBM) and TRE (Intel)
 • Capture photons (10^{-6}/s rate) emitted from transistors that are switching
 • Integrate over many many loops of the chip to build up a “movie”
 – LVP (Intel): Laser voltage probing
 • Just like e-beam, but through a thinned back and aimed at diffusions
 • Can see transitions, not voltage levels
 • Should put a “probe diode” near a gate you believe will be critical

• In both techniques, it’s important to have alignment fiducials
 – The back of a die is otherwise flat, featureless, and boring
Laser Voltage Probe (LVP)

• Basic idea
 – Have picosecond pulse laser aimed at silicon
 – Measure the reflectance (complex)
 – Reflectance depends on carrier density
 • Which depends on depletion width, which depends on voltage

• Energy (light) absorbed by carriers in conduction band
 – Laser pointed at “backside” of transistors
 • Requires “flip-chip” packaging
 • Laser photon energy close to silicon band edge
 • Wavelength kept in IR or NIR band (transparent thru silicon)
 – Laser can induce carriers in conduction band
 • Need to keep intensity low enough to prevent inducing current
 – Laser must be mode-locked to test
 • Must be sync’d to test loop length
Time Resolved Emission (TRE)

- Detects photons emitted by switching xtors (also called PICA)
 - Carriers in the channel “thermalize”, emitting NIR light
 - Silicon is transparent to IR
 - Need a REALLY good detector
 - Single photon per 10K switching events
 - Photons go in all directions; detector only at one angle
 - Need great timing resolution
 - Completely non-invasive
 - Collection times are significant
 - Longer time = better signal-to-noise ratio (SNR)
Light Emission from CMOS Circuits: Transient

Diagram:

A. Circuit diagram showing input voltage $V_{in}(t)$, output voltage $V_{out}(t)$, and capacitance C_L.

B. Graph showing drain current I_{ds} as a function of output voltage $V_{out}(t)$.

C. Graph showing output voltage V_{out} over time, with marks for V_{DD}, $V_{DD} - V_{tn}$, and V_{tp}.

From P. Sanda
PICA Movie
LADA: Laser-Assisted Device Alteration

- Lasers can not only probe the voltages of diffusions
 - They can also control the behavior of the circuits

- Aim a 1.3μm wavelength laser at a circuit: heats up the circuits
 - Slows everything down

- Aim a 1.06μm wavelength laser at a circuit: generates e-/h+ pairs
 - nMOS devices have more current (in parallel with the device)
 - pMOS devices have lower Vt (reduce rise delay, increase fall delay)
Using LADA

• Generate a theory why your chip fails – that circuit X is bad

• Run the ATE in a repeated mode and set environment “right”
 – Establish temperature, voltage, frequency so test *just* fails
 – Now scan the laser, raster-style, over the block containing X
 – See if the test passes; if so, note where laser was aimed
 – Aha! The device at that location was critical

• Beware multiple unintended side effects
 – Leakage, conflicting speedpaths, etc.
Fixing A Chip Problem

• Focused Ion Beam (FIB) allows post-fabrication edits on Silicon
 – Used to check if a proposed fix will actually work
 • Before you burn the $$$$ for a new mask set
 – Very expensive ($350-$400/hr), so don’t do it unless you need to
 • Usually 3-5 hours per “normal” fix
 • Only fixes one dice at a time

• FIB edits can be additive or subtractive
 – Cut wires or lay down new wires

• FIB used to be from the top of the chip only
 – But today can also be used for backside FIB (for flip-chip die), too
Focused Ion Beam (FIB)

- In Chamber High-Resolution (IR) Microscope
- Axial Gas Delivery Mezzanines
- 50kV-5nm Ion Column
- Differential Laser Interferometer Stage
- LCE Trench Floor
- Shallow Trench Oxide
- Silicon Substrate
- Metal Signal Line (signal)
- Diffusion
- 1um
FIB example
FIB for Probe

• The ability to do backside FIB enables mechanical probe
 – FIB a metal probe pad on the back of the silicon; tie to a diffusion
 – Now you can break out those picoprobes that you had stored away

• Not great for high-bandwidth signals
 – Lots of extra cap, potentially inductance problems as well
 – Better for Vdd and Gnd
Summary

• Debug is a huge and expensive effort

• Plan for debug in your design
 – Use scan, BIST, ATPG
 – Build analog samplers if you know you’ll need to probe some node
 – Insert spare gates in your blocks; you’ll probably need them

• Debug itself uses tester results and probing
 – Schmoos and clock shrinking can get you pretty far
 – Test theories with mechanical or e-beam probing and lasers

• When you find the problem, call your FIB operator
 – FIB first before respinning the chip, to ensure the fix “takes”
Reliability

• Failure rates of devices follow a bathtub curve
 – Infant mortality: gross defects, poor manufacturing tolerances
 – Useful life: problems arising from wear and tear, random errors
 – Wear out: slower slope than infant side, but accelerated failures

![Bathtub Curve Diagram]

Source: klabs.org
Burn-In Ovens

• Can we accelerate the infant mortality portion of the curve?
 – Push all the parts into the “useful life” region
 – Discard the ones that die and sell the rest with high confidence

• Use burn-in ovens to heat and simultaneously exercise the parts
 – Bump up temperature and voltage to get “acceleration factors”
 – Temp held to 150°-200° and voltage to 1.5x-2x nominal (typically)

• Temperature depends on burn-in oven package solution
 – Package has a thermal resistivity, say ¼ °C/W (for example)
 – Holding oven at 125°C for 100W parts means 150°C junction temp
Burn-In Oven Boards

- Populate a burn-in board with your parts
 - Board exercises the parts (tests and/or power virus) during burn-in

- High-power chips strain the capacity of burn-in ovens
 - You can’t put too many 100W and 100A chips on a burn-in board!

Source: reed-electronics.com

Source: reed-electronics.com
Burn-In and Design

- Chips in the burn-in oven should work at those temps & voltages
 - Don’t want the artificial environment of burn-in to cause failures

- For example, higher leakage in burn-in shouldn’t cause failures
 - Domino gate with big nMOS
 - Use a secondary keeper
 - Only in burn-in
 - Combats elevated leakage

- Also an issue for > Vdd nodes
 - Burn in increases Vdd

Source: Chen, Broadcom
Reliability and Design

- Two examples of how designers worry about reliability
 - Wires have reliability issues relating to wear-out
 - Electromigration for unidirectional current (depends on I_{avg})
 - Self-heating for bidirectional current (depends on I_{rms})
 - Copper wires better than Aluminum, but still have limits
 - Use minimum width rules based on total capacitance for layout
 - Gates have reliability rules relating to hot-carrier degradation
 - Electrons in the channel can smack into the gate and “stick”
 - Shift in V_t over time from charge trapping and general muckiness
 - Regulate this by ensuring circuits are not “on” all the time
 - Limit risetime of signals to be 20% of the cycle time (for example)
The basic semantic for reliability is the FIT, or failure rate
 - “Failure in time” = failures per billion hours (note: 8760 hrs/yr)

Time-to-failure uses Arrhenius’s model (1903 Nobel laureate)
 - Time-to-failure = (FIT)^-1 = Const e^{E_a/(kT)} (k=8.6x10^{-5} eV/°K)
 - Empirically estimate the activation energy E_a
 - Gives the ratio of failure rates at different temps (Const drops out)

Ex: test 900 parts for 1000 hours, and find 8 rejects at 100°C
 - If E_a was 1eV, what will be the failure rate at 30°C?
 - 8 rejects/(900*1000) = 8.9x10^{-6} failure rate
 - Ratio of TTFs from 100°C to 30°C = 1300, so FIT scales by 1/1300
 - Failure rate at 30°C is about 6.84x10^{-9}, or 6.84 FIT
• How cheesy is this, using Arrhenius's equation?
 – Why do IC failures obey a chemical reaction rate model?

• Quite surprisingly, not that cheesy
 – Many failures initiated by atomic or molecular changes, e.g.:
 Oxide/dielectric breakdown $E_a = 0.8 \text{ eV}$
 Electromigration $E_a = 0.5 - 0.7 \text{ eV}$
 Hot-carrier V_t degradation $E_a = -0.2 \text{ eV}$ (negative!)
 – Physical failure modes are diverse, but obey temp relationship

• Some failures do NOT obey this model well
 – Solder ball stress fatigue, bad manufacturing tolerances, etc.
 – Much more complex models out there
Other Reliability Issues

• Soft-errors and their prevention/mitigation affects design
 – Cosmic rays or α-particles smack into your silicon, inject electrons
 – We will examine this in more depth next week

• Usually set design and layout rules based on a 10-year lifespan
 – Not well publicized; typical consumer believes ICs work forever
 – Military specifications may well be different