Deep Sub-Micron Cache Design

Agenda

- Bitcell Design
- Array Design
- SOI Considerations
- Surviving in the corporate world
Older Bitcell Design (>=130nm)

Design
- Pulldown / Passgate of 1.6 – 2.0
- Pullup small as possible
- Pullup / Passgate ~ = 1
- Use non-minimum channel length for Passgate devices

Analysis (DC)
- Run Static Noise Margin analysis for read stability
- Run Writability Analysis

Results
- Device variation did not greatly impact bitcell design.
- Redundant elements used primarily to repair hard defects
- Multiple-bit defects usually had a row failure signature
Current Bitcell Design (<= 90nm)

Design
- Pulldown / Passgate >= 2
- Pullup small as possible
- Use non-minimum channel length for all devices

Analysis
- Run AC Read Stability analysis with max device variation
- Run AC Writability Analysis with max device variation

Results
- Device variation greatly impacts the bitcell design!
- Redundant elements used primarily to repair soft defects
 - Weak bits limit frequency and can cause Vmin failures
- Multiple-bit failures typically exhibit column signatures

Array Design in Deep Sub-Micron
Array Design for Deep Sub-Micron

- Establish clear array design guidelines
 - Dynamic Logic guidelines
 - Unprotected input guidelines
 - SRAM and Sense Amp guidelines

- Must take process variation into account during design
 - 5-6 sigma bitcell design
 - 2-3 sigma sense amp
 - 2-3 sigma precharge

- Design for clock duty-cycle variation
 - Hard to ensure 50/50 duty cycles at higher frequencies
 - Design for 60/40 and 40/60 worst-case duty cycles if possible

Array Design for Deep Sub-Micron

- Simulate multiple process corners
 - Use TYP, nominal voltage, high temp for speed sims
 - Use FP/FN, max voltage, high temp for max-power sims
 - Also use SP/SN, FP/SN, and SP/FN, nominal voltage, high temp to maximize yield at lower speed grades
 - Need to also simulate low voltage and low temp effects

- Work with product engineering to address yield issues

- Review all layout
 - The engineer is responsible for the quality of the layout

- Use CAD tools to verify array design, not to do array design

- Conduct formal peer reviews of design and layout
Array Design for Deep Sub-Micron

Array Cross Sections

- Build up simulation cross sections of all paths such that schematic blocks can be replaced with extracted data
- Use 4x4 grouping of bitcells as basis for RAM modeling
 - Extract entire 4x4 bitcell layout
 - Use only inner 2x2 group of cells for simulation
- Use mults on symbols to correctly model loads
- Model all parasitics
 - Wire parasitics
 - Gate and diffusion loads

4-Corner RAM Model for 32x32 sub-array
Array Design for Deep Sub-Micron

Full Sub-Array Model

4-Corner Sub-Array Model (32x32)

Designing with SOI
Designing with SOI

Pros of designing with SOI
- Less source/drain capacitance means higher speed
- Less source/drain capacitance means lower power
- No danger of CMOS latch-up
- SER improvement in SRAM bitcells

Cons of designing with SOI
- Floating Body increases device variation
- History effects
- Differences in timing based on switching
 - First switch slower than second switch
- Bipolar parasitic effects impact circuit structures
 - Pass-gates
 - Dynamic Logic
 - Array bitlines
- SER degradation in dynamic circuit structures
Designing with SOI

First Switch vs Second Switch

- After the sufficient time has passed for the device to reach DC equilibrium, the first transition to occur will be slower than the next transition due to body effects.
- Timing simulation strategy must take into account both 1st switch and 2nd switch timing.

![Diagram of first and second switch with time to reach DC equilibrium](image)

Dynamic Logic

- Bipolar parasitic effect impacts intermediate node voltage
 - Can’t pre-charge intermediate nodes to Vdd as in bulk
 - Increases charge sharing
 - Penalizes NFET Nand Structures
 - Need to decrease stack height in dynamic circuits
 - Increases parallel leakage in NFET Nor trees
Designing with SOI

SRAM Design

- Bipolar parasitic effect impacts bitline leakage
 - Parasitic bipolar device on bitcell pass-gates causes additional leakage on bitline
 - Must simulate worst-case reads using opposite data in all other rows in the given column

- History Effect can cause a read/write of a given value to fail immediately following several successive reads/writes of opposite data
 - Must add read/write hammer tests to production tests to detect failures

Sense Amp Design

- Floating body increases sensitivity to process variation
 - Must use body ties on devices sensitive to variation
 - If bodies are not tied to ground, bodies must be shielded to avoid noise problems

- Sense Amp is also subject to history effects
Surviving in the Corporate World

- Be a team player
 - This sometimes means doing boring work

- Pay your dues
 - New grads will often be given simple, boring tasks at first
 - Don’t complain about boring task – your time will come!

- Act professionally when dealing with other groups in the company
 - Be nice, even if others are not being nice
 - Resist getting angry
 - Don’t attack others
 - Focus on solving the technical problem at hand
Surviving in the Corporate World

• Don’t try to save the world – the world doesn’t want saved!
 – Report what you find to your manager, let him/her save the world
 – Just make sure your piece of the world works OK!

• Learn all you can from the senior designers in your group
 – Education doesn’t stop with college
 – It’s up to you to make sure you understand how things work
 – Learn all parts of doing design
 • This includes Design for Manufacturing (DFM) and Design for Test (DFT)

Trademark Attribution

AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names used in this presentation are for identification purposes only and may be trademarks of their respective owners.

©2006 Advanced Micro Devices, Inc. All rights reserved.