
Cache Design Challenges in Deep Sub-Micron Process Technologies

L2 COE
Carl Dietz

May 25, 2007

Deep Sub-Micron Cache Design

Agenda

- Bitcell Design
- Array Design
- SOI Considerations
- Surviving in the corporate world

Bitcell Design in Deep Sub-Micron

3 May 25, 2007

Cache Design Challenges in Deep Sub-Micron

Older Bitcell Design ($\geq 130\text{nm}$)

Design

- Pulldown / Passgate of 1.6 – 2.0
- Pullup small as possible
- Pullup / Passgate ~ 1
- Use non-minimum channel length for Passgate devices

Analysis (DC)

- Run Static Noise Margin analysis for read stability
- Run Writability Analysis

Results

- Device variation did not greatly impact bitcell design.
- Redundant elements used primarily to repair hard defects
- Multiple-bit defects usually had a row failure signature

4 May 25, 2007

Cache Design Challenges in Deep Sub-Micron

Current Bitcell Design (<= 90nm)

Design

- Pulldown / Passgate ≥ 2
- Pullup small as possible
- Use non-minimum channel length for all devices

Analysis

- Run AC Read Stability analysis with max device variation
- Run AC Writability Analysis with max device variation

Results

- Device variation greatly impacts the bitcell design!
- Redundant elements used primarily to repair soft defects
 - Weak bits limit frequency and can cause Vmin failures
- Multiple-bit failures typically exhibit column signatures

5

May 25, 2007

Cache Design Challenges in Deep Sub-Micron

Array Design in Deep Sub-Micron

6

May 25, 2007

Cache Design Challenges in Deep Sub-Micron

Array Design for Deep Sub-Micron

- Establish clear array design guidelines
 - Dynamic Logic guidelines
 - Unprotected input guidelines
 - SRAM and Sense Amp guidelines
- Must take process variation into account during design
 - 5-6 sigma bitcell design
 - 2-3 sigma sense amp
 - 2-3 sigma precharge
- Design for clock duty-cycle variation
 - Hard to ensure 50/50 duty cycles at higher frequencies
 - Design for 60/40 and 40/60 worst-case duty cycles if possible

7

May 25, 2007

Cache Design Challenges in Deep Sub-Micron

Array Design for Deep Sub-Micron

- Simulate multiple process corners
 - Use TYP, nominal voltage, high temp for speed sims
 - Use FP/FN, max voltage, high temp for max-power sims
 - Also use SP/SN, FP/SN, and SP/FN, nominal voltage, high temp to maximize yield at lower speed grades
 - Need to also simulate low voltage and low temp effects
- Work with product engineering to address yield issues
- Review all layout
 - The engineer is responsible for the quality of the layout
- Use CAD tools to verify array design, not to do array design
- Conduct formal peer reviews of design and layout

8

May 25, 2007

Cache Design Challenges in Deep Sub-Micron

Array Design for Deep Sub-Micron

Array Cross Sections

- Build up simulation cross sections of all paths such that schematic blocks can be replaced with extracted data
- Use 4x4 grouping of bitcells as basis for RAM modeling
 - Extract entire 4x4 bitcell layout
 - Use only inner 2x2 group of cells for simulation
- Use mults on symbols to correctly model loads
- Model all parasitics
 - Wire parasitics
 - Gate and diffusion loads

9

May 25, 2007

Cache Design Challenges in Deep Sub-Micron

Array Design for Deep Sub-Micron

10

May 25, 2007

Cache Design Challenges in Deep Sub-Micron

Array Design for Deep Sub-Micron

Full Sub-Array Model

11

May 25, 2007 Cache Design Challenges in Deep Sub-Micron

Designing with SOI

12

May 25, 2007 Cache Design Challenges in Deep Sub-Micron

Designing with SOI

Pros of designing with SOI

- Less source/drain capacitance means higher speed
- Less source/drain capacitance means lower power
- No danger of CMOS latch-up
- SER improvement in SRAM bitcells

Designing with SOI

Cons of designing with SOI

- Floating Body increases device variation
- History effects
- Differences in timing based on switching
 - First switch slower than second switch
- Bipolar parasitic effects impact circuit structures
 - Pass-gates
 - Dynamic Logic
 - Array bitlines
- SER degradation in dynamic circuit structures

Designing with SOI

First Switch vs Second Switch

- After the sufficient time has passed for the device to reach DC equilibrium, the first transition to occur will be slower than the next transition due to body effects.
- Timing simulation strategy must take into account both 1st switch and 2nd switch timing.

Designing with SOI

Dynamic Logic

- Bipolar parasitic effect impacts intermediate node voltage
 - Can't pre-charge intermediate nodes to Vdd as in bulk
 - Increases charge sharing
 - Penalizes NFET Nand Structures
 - Need to decrease stack height in dynamic circuits
 - Increases parallel leakage in NFET Nor trees

Designing with SOI

SRAM Design

- Bipolar parasitic effect impacts bitline leakage
 - Parasitic bipolar device on bitcell pass-gates causes additional leakage on bitline
 - Must simulate worst-case reads using opposite data in all other rows in the given column
- History Effect can cause a read/write of a given value to fail immediately following several successive reads/writes of opposite data
 - Must add read/write hammer tests to production tests to detect failures

Designing with SOI

Sense Amp Design

- Floating body increases sensitivity to process variation
 - Must use body ties on devices sensitive to variation
 - If bodies are not tied to ground, bodies must be shielded to avoid noise problems
- Sense Amp is also subject to history effects

Surviving in the Corporate World

19 May 25, 2007

Cache Design Challenges in Deep Sub-Micron

Surviving in the Corporate World

- Be a team player
 - This sometimes means doing boring work
- Pay your dues
 - New grads will often be given simple, boring tasks at first
 - Don't complain about boring task – your time will come!
- Act professionally when dealing with other groups in the company
 - Be nice, even if others are not being nice
 - Resist getting angry
 - Don't attack others
 - Focus on solving the technical problem at hand

20 May 25, 2007

Cache Design Challenges in Deep Sub-Micron

Surviving in the Corporate World

- Don't try to save the world – the world doesn't want saved!
 - Report what you find to your manager, let him/her save the world
 - Just make sure your piece of the world works OK!
- Learn all you can from the senior designers in your group
 - Education doesn't stop with college
 - It's up to you to make sure you understand how things work
 - Learn all parts of doing design
 - This includes Design for Manufacturing (DFM) and Design for Test (DFT)

21

May 25, 2007

Cache Design Challenges in Deep Sub-Micron

Trademark Attribution

AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names used in this presentation are for identification purposes only and may be trademarks of their respective owners.

©2006 Advanced Micro Devices, Inc. All rights reserved.

22

May 25, 2007

Cache Design Challenges in Deep Sub-Micron