
Hendrik F. Hamann et al.
T.J. Watson Research Center, New York, USA

Cognitive Internet of Things

* Steve Lohr, NY Times, “Data-ism”
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“Internet-of-Things” generated data soon bigger than 
social and transactional data

~ 2x more data growth (currently @ 44EB/month) than social & computer generated data
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Data from remote sensors is exploding

 Number of satellite launches are growing exponentially
− Many countries have re-started major satellite programs (China, Europe, India etc.)
− Cube satellites, Nano-satellites

 Drones, cell phone with hyper-spectral cameras 

Satellites around the Earth
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The physical world is being digitized….

Auckland, New Zealand seen at 30 cm resolution. Photo: DigitalGlobe
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Traditional (physical) industries are being                           
transformed by (IoT) data

Industry Past – Selling a Product Future - Service

Healthcare Diabetes pumps Diabetes care

Agriculture Seeds Crop yields

Consumer Packaged goods Nutrition

Automotive Cars Transportation

… … …

IT Industry Computers Computation

McKinsey, GE, IBM, Cisco et al. estimate hundreds of billions dollar 
savings/efficiency improvements in the next 10 years 
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Watson IoT is a brand new IBM business unit 
headquartered in Munich, Germany 

1. Watson Analytics
• Physical Analytics

Industry solutions

2. Security, Privacy and Trust
• IBM Security 360

3. Platforms
• Bluemix

 IBM Research prototypes and develops new 
technologies and solutions

 My role…Pioneered Physical Analytics                            
in Research the last 1o years
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But “closing-the-loop” for complex systems will require 
more “physical” intelligence

Gap
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Big data from the physical world is “special” and thus 
Analytics for IoT data should be different 
 Data from the physical world is becoming                                                    

soon “mega” big.
− 44EByte / months corresponds to                                        

~ 100M hard disks
− Processing 44 EByte with 100M servers                              

would still take more than one hour
− Data throughput (rather than processing)                           

has become the limiting factor

~100 PB

63 PB

~3 PB ~3 PB

Facebook Digital Globe Netflix Walmart

Sources: Facebook IPO Propectus; Bloomberg May 2013; SAS 2012

Data size owned by selected companies

 IoT has more  noise and is more prone to error.
 Data security, verification etc even more important.
 Data not always cheap.

Analyzing pressure sensor data from a pipeline system or 
accoustic sensor data sensors from an engine or

vibration sensor data on a suspension bridge
Is very different than analyzing a chat log
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Internet of 
Things 1.0 

(Big) 
Statistical  
Analytics

Physical &
Engineering 

Models

Physical Analytics lies between IoT 1.0, physics-based 
modeling and big data analytics 

Highly inter disciplinary with many 
interesting research topics
 Statistical learning under physical constraints
 Model complexity reduction
 Situation-dependent, machine-learnt multi-

model blending
 Graph theory and statistical physics
 Parallelizing physical models for data-intensive 

computation
 …..

 Feed learning back to improve understanding of 
the underlying physics

Co
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An end-to-end IBM Research Physical Analytics (or 
cognitive IoT) platform (“A Swiss army knife”)
 Sensor / Actuators 
 Communication, Security
 Cloud-based IoT SW Platform 

− Server, Agents, Apps, Clients
 Physical analytics

— Physical models
— Reduction of Model Complexity
— Machine-learnt, multi-model                              

model blending
 (Big) data analytics platform 
 Automation and Controls

 Platform has been successfully applied                     
in various Industries 
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Energy management in data centers and buildings
Partners: Georgia Tech, AT&T, IBM GTS, DoE-EERE
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PA platform applied to energy management in data 
centers and buildings
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 Sensor / Actuators 
 Communication, Security
 Cloud-based SW Platform 

− Server, Agents, Apps, Clients
 Physical analytics

— Physical models
— Reduction of Model Complexity
— Machine-learnt, multi-model                              

model blending
 (Big) data analytics platform 
 Automation and controls
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Data Centers are energy hogs

 DCs consume ~ 3% of US electricity
 Annual growth of 15% is unsustainable 

(doubles every 5 years)
 Up to 50% of all energy in data centers             

is used for cooling

 DC energy demand is surging because of
o insatiable IT demand, which has outpaced 

power-performance improvements
o power-limited core technology
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 Deployed in >180 data centers world-wide
 Almost 1M  sensors supported
 Example deployment*

− 4300 thermal sensors
− 250 pressure sensors
− 612 flow sensors
− 300 humidity sensors
− 1200 power/current sensors
− 80 air condition unit controllers

Large-scale sensor & actuator mesh networks deployed 
around the world

IBM “Mote” 
provides wireless 
mesh network 
communication of 
sensors and 
actuators 

*for a 10000 m2 data centers 
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Energy efficiency improvements require real-time 3D  
heat distributions? How to get from here….

Sensors 
Reporting 
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Energy efficiency improvements require real-time 3D  
heat distributions? …to there
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Trading complexity against data

Constant 
Accuracy

Small data Big data

Simple 
& fast

Complex 
& slow
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Ground truth established with more than 400,000 
measurements
Robotic 3D temperature mapping tool

min

max

3D temperature results
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RMS errors using different modeling approaches

All modeling with the same computational infrastructure

Constant 
Accuracy

Model complexity can be very 
effectively reduced and 
computation time increased 
using sensor data as boundary 
conditions. 

0
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Operational CFD for (near) real-time heat distributions

 ~80K ft2 data center
 Full heat maps every 2 mins
 Heat distributions show in real-time show overheated

and overcooled areas, which provides energy 
efficiencies opportunities.

~150 m
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Automatic controlling of cooling saves energy
Cooling Unit Status and Utilizations

To date: > 900 M kWhour annually savings in WW deployments
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Extending the technology to smarter buildings…. 
museums, infrastructure, hospitals, teleco facilities

Environmental sensing in Late 
Gothic Hall @ NY Metropolitan

MET – Large mote network 
monitors temperature, 
humidity, light levels, dew 
point, numbers of visitors in 
galleries to optimally control 
HVAC system.

Hampton Court – Displacement 
sensors measure additionally 
environmental response of works of art 
to control numbers of visitors in the 
galleries.

Displacement sensors for tapestries 
@ Hampton Court, London

Princeton – Embedded 
sensors monitor vibration 
and internal corrosion 
inside of a bridge. 

Structural health monitoring
@ Princeton University
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Forecasting renewable energy generation
Partners: NREL, ANL, Northeastern, ISO-NE, DoE-Sunshot
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PA platform applied to forecasting and managing of 
renewable energy
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 Sensor / Actuators 
 Communication, Security
 Data  Management
 Cloud-based SW Platform 

− Server, Agents, Apps, Clients
 Physical analytics

— Physical models
— Reduction of Model Complexity
— Machine-learnt, multi-model                              

model blending
 (Big) data analytics platform 
 Automation and controls
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Intermittency of renewable energy poses a major 
problem for the power grid

Example: Solar

Power
needs

6 days of solar power production Solar power variability:
- Minute by minute fluctuating
- Mainly affected by local cloud coverage

Forecasting and managing of 
renewable energy are critical for 
stability of the power grid.



©2015 IBM Corporation 27 April 201627

IBM  Cloud Imaging  System
without mechanical shutter 

“Fish eye” 
lens

24 bit camera
with several gain

stages

 Sky camera with fish eye lenses detects arrival  incoming clouds
− Field of view ~ 2 miles, no mechanical parts
 Multiple sky cameras increases prediction horizons and allow cloud 

height detection
Sky TransparencySkyCam Image

Short-term forecasting with a sky-camera

Measured power
Forecasted power
Difference / Error6 min forecasts for 6 consecutive days 

Time [hours]
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Expanding the forecast horizon - Big Data from various 
sources and models
 Persistence: 

— Real-time power data
— Weather station data

 Lagrangrian Forecast Models:
− Sky camera model
− Satellite-based (GOES), advection models
− Time-series models

 Weather Forecast Models:
− Rapid Refresh (RAP)
− Hi-Resolution Rapid Refresh (HRRR)
− Short-Range Ensemble Forecast (SREF) 
− North American Mesoscale Forecast (NAM)
− Global Forecast System (GFS)
− European Center for Medium range Weather  

Forecasting (ECMWF)
 Climate Models:

− Climate Forecasting System (CFS)



©2015 IBM Corporation 27 April 201629

Key Idea: Situation-dependent, machine-learning based 
multi-model blending creates a “super” model

Hurricane Ike path forecasts from 
9 different weather models*

*M.J. Brennan, S.J. Majumdar, Weather and Forecasting 26, 848 (2011)
An Examination of Model Track Forecast Errors for Hurricane Ike (2008) in the Gulf of Mexico

 Different forecasting models provide varying 
accuracies depending on time 
horizon, location, weather situation etc.

 Apply deep machine learning / “adaptive mixture 
of experts” techniques to dynamically blend 
different forecasts as a function of time 
horizon, location, weather situation etc 

 System continuously learns, adjusts and improves.
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Improving accuracy using situation dependent, machine-
learnt, multi-model blending

Example, NAM solar irradiance forecast 
o Depends strongly GHI and solar zenith angle.
o The two parameters create four categories of situations 

below.

Question: Which model is more accurate, 
when, where, under what weather 
situation?
o Apply functional analysis of variance to understand 

1st,2nd,3rd, ….order errors

o Model accuracy can depend strongly                                                                                       
on “weather situation” category.

o “Weather situation” is determined using a set of 
parameters including forecasted ones on which model 
error depends on strongly.

Irradiance 
forecast (W/m2)

Zenith
(Deg)

Forecast 
Error

(W/m2)
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High forecasting accuracy using situation dependent, 
machine-learnt, multi-model blending 

Italy; 1.935 MW Fixed Array
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IBM 

 In average more than 35% more accurate 
than next best input model

 Forecast for wind, solar, hydro from 
minutes to months ahead

 Regional, local and probabilistic forecasts
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Extending the technology to nation-wide irradiance 
forecasting, the world solar car race, and pollution 
management 

• Daily nation-wide irradiance forecasts 
with real-time validation at over 1600 
sites

Irradiance forecast portal

• Provided highly accurate forecast 
for world solar car race for U 
Michigan in 2015

• U Michigan achieved its best 
performance in 15 years of racing

Forecasting for solar car

• Pollution forecast system 
developed for Beijing leveraging 
IBM’s PM2.5 sensors.

PM2.5 Sensor & Forecast portal
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Precision Agriculture
Partners: Gallo Wineries, Netafim, KSU
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PA platform applied to precision agriculture 
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 Sensor / Actuators 
 Communication, Security
 Data  Management
 Cloud-based SW Platform 

− Server, Agents, Apps, Clients
 Physical analytics

— Physical models
— Reduction of Model Complexity
— Machine-learnt, multi-model                              

model blending
 (Big) data analytics platform 
 Automation and controls
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Spatio-temporal intra-field variability limits 
yield, water efficiency and quality

 Large intra-field variability (measured during harvest) “limits” total crop yield
 Changes by 2x within less of 20 meters

Harvester 
with yield    
measurement
and GPS

10 acre yield map 

If  the low performing parts of field can be improved to the “current” 
average, then yield, water efficiency and quality can be drastically improved.  
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Evapo-transpiration modeling enables optimal 
irrigation

Net Radiation:

Lin incoming long 
wave radiation

Lout   outgoing long 
wave radiation

Rs solar radiation
ε emissivity
a surface albedo

Sensible Heat Flux

rair density
cp specific heat
a,b specific parameters
Ts surface temperature
rah transfer resistance

Soil Heat Flux

NDVI   vegetation index
a,b,c specific parameters

Vegetation index from                               
different satellite bandsEnergy Balance model:

ET-Evapo transpiration
Rn-Net radiation Flux (W/m2)
H-Sensible heat Flux (W/m2)
G-Soil heat Flux (W/m2)

GHRET n −−=

( ) ( )outinsn LLRR −+−≈ εα1 ( ) ahspair rbTacH /+≈ ρ ( )( ) nS RcNDVIbaTG 41−+≈ α
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Multiple data sources are fused in big geo-spatial data 
platform to support scalable physical analytics
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Yield maps after 2 years of  closed loop precision 
irrigation show significant improvements

 26% more yield
 10-22 % higher water efficiency
 50 % higher uniformity
 2x improved quality index (Brix value)*

yield water
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More about IBM’s precision agriculture work 

This year's winner was a collaborative 
experiment by E. & J. Gallo and IBM, whose 
approach used a variable-rate irrigation 
system across separate quadrants of a 31-
acre Cabernet Sauvignon vineyard. The 
result decreased vineyard spatial variability 
and increased water-use efficiency without 
compromising quality during a period of 
historic drought.
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Physical Analytics @ IBM Research 

Levente Klein
(Physical Modeling)

Vanessa Lopez
(Mathematics,) Siyuan Lu

(Machine learning)

Hendrik Hamann
( Physical Analytics)

Michael Schappert
(Embedded System)

Fernando Marianno
(Software Architect)

Xiaoyan Shao
(Electrochemistry,

Data scientist) Jun Song Wang
(Sensing)

Josphine Chang
(Sensor Platform,  IoT)

Theodore van Kessel
(Oil and Gas & 
Instrumentation)

Bertrand Marchand
(Solar Forecasting)

Conrad Albrecht
(Physics and  Computation

Heidelberg PhD)

Marcus Freitag
(Precision Agriculture)

Ramachandran Muralidhar
(Corrosion Science & 
Pollution Modeling) 

and many more

Oki Gunawan
(Solar and Robotics) 

Golnaz Badr
(Precision Agriculture) 

Bruce Elmegreen
(Astrophysics, Traffic) 

Wang Zhou
(Robotics, drones)

http://researcher.watson.ibm.com/researcher/view.php?person=us-kleinl
http://researcher.watson.ibm.com/researcher/view.php?person=us-lopezva
http://researcher.watson.ibm.com/researcher/view.php?person=us-lus
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Conclusion

Data from the physical world is growing faster than any other data source and will 
be soon the biggest data set.

Combination of big data and physical modeling provides unique opportunities:
o Simplifying and operationalizing physical models (example: building energy 

efficiency) 
o Creating “super-models” to provide deeper understanding of physics/chemistry 

of models (example: renewable forecasting)
o Providing science-based decision support (example: precision agriculture)
o ….
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