Cognitive Internet of Things

Hendrik F. Hamann et al.
T.J. Watson Research Center, New York, USA

* Steve Lohr, NY Times, “Data-ism”
Outline

- **Trends - Internet of Things**
- **Research experimental platform for Cognitive IoT**

"Big" Data
- IoT sensor networks

Physical Analytics
- Physical model complexity reduction
- Situation-dependent, machine-learnt, multi-model blending
- Statistical tuned evapotranspiration model

Application & Solution
- **Energy efficiency** in buildings / data centers
- **Renewable energy forecasts** / Pollution managements
- **Water efficiency** and yields in **agriculture**
“Internet-of-Things” generated data soon bigger than social and transactional data

~ 2x more data growth (currently @ 44EB/month) than social & computer generated data
Data from remote sensors is exploding

- Number of satellite launches are growing exponentially
 - Many countries have re-started major satellite programs (China, Europe, India etc.)
 - Cube satellites, Nano-satellites
- Drones, cell phone with hyper-spectral cameras
The physical world is being digitized....

Auckland, New Zealand seen at 30 cm resolution. Photo: DigitalGlobe
Traditional (physical) industries are being transformed by (IoT) data

<table>
<thead>
<tr>
<th>Industry</th>
<th>Past – Selling a Product</th>
<th>Future - Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthcare</td>
<td>Diabetes pumps</td>
<td>Diabetes care</td>
</tr>
<tr>
<td>Agriculture</td>
<td>Seeds</td>
<td>Crop yields</td>
</tr>
<tr>
<td>Consumer</td>
<td>Packaged goods</td>
<td>Nutrition</td>
</tr>
<tr>
<td>Automotive</td>
<td>Cars</td>
<td>Transportation</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>IT Industry</td>
<td>Computers</td>
<td>Computation</td>
</tr>
</tbody>
</table>

McKinsey, GE, IBM, Cisco et al. estimate **hundreds of billions dollar** savings/efficiency improvements in the next 10 years
Watson IoT is a brand new IBM business unit headquartered in Munich, Germany

1. Watson Analytics
 - Physical Analytics

2. Security, Privacy and Trust
 - IBM Security 360

3. Platforms
 - Bluemix

- IBM Research prototypes and develops new technologies and solutions
- My role...Pioneered Physical Analytics in Research the last 10 years
But “closing-the-loop” for complex systems will require more “physical” intelligence.
Big data from the physical world is “special” and thus Analytics for IoT data should be different

- Data from the physical world is becoming soon “mega” big.
 - 44EByte / months corresponds to ~100M hard disks
 - Processing 44 EByte with 100M servers would still take more than one hour
 - Data throughput (rather than processing) has become the limiting factor

- IoT has more noise and is more prone to error.
- Data security, verification etc even more important.
- Data not always cheap.

Data size owned by selected companies

Facebook ~100 PB
Digital Globe 63 PB
Netflix ~3 PB
Walmart ~3 PB

Sources: Facebook IPO Propectus; Bloomberg May 2013; SAS 2012

Analyzing pressure sensor data from a pipeline system or acoustic sensor data sensors from an engine or vibration sensor data on a suspension bridge
Is very different than analyzing a chat log
Physical Analytics lies between IoT 1.0, physics-based modeling and big data analytics

Highly interdisciplinary with many interesting research topics

- Statistical learning under physical constraints
- Model complexity reduction
- Situation-dependent, machine-learnt multi-model blending
- Graph theory and statistical physics
- Parallelizing physical models for data-intensive computation
-
- Feed learning back to improve understanding of the underlying physics
An end-to-end IBM Research Physical Analytics (or cognitive IoT) platform ("A Swiss army knife")

- Sensor / Actuators
- Communication, Security
- Cloud-based IoT SW Platform
 - Server, Agents, Apps, Clients
- Physical analytics
 - Physical models
 - Reduction of Model Complexity
 - Machine-learnt, multi-model model blending
- (Big) data analytics platform
- Automation and Controls

Platform has been successfully applied in various Industries
Energy management in data centers and buildings

Partners: Georgia Tech, AT&T, IBM GTS, DoE-EERE
PA platform applied to energy management in data centers and buildings

- Sensor / Actuators
- Communication, Security
- Cloud-based SW Platform
 - Server, Agents, Apps, Clients
- Physical analytics
 - Physical models
 - Reduction of Model Complexity
 - Machine-learnt, multi-model model blending
- (Big) data analytics platform
- Automation and controls
Data Centers are energy hogs

- DCs consume ~ 3% of US electricity
- Annual growth of 15% is unsustainable (doubles every 5 years)
- Up to 50% of all energy in data centers is used for cooling

- DC energy demand is surging because of
 - insatiable IT demand, which has outpaced power-performance improvements
 - power-limited core technology
Large-scale sensor & actuator mesh networks deployed around the world

- Deployed in >180 data centers world-wide
- Almost 1M sensors supported
- Example deployment*
 - 4300 thermal sensors
 - 250 pressure sensors
 - 612 flow sensors
 - 300 humidity sensors
 - 1200 power/current sensors
 - 80 air condition unit controllers

*for a 10000 m² data centers
Energy efficiency improvements require real-time 3D heat distributions? How to get from here....
Energy efficiency improvements require real-time 3D heat distributions? ...to there
Trading complexity against data

- Model complexity & computation speed
 - Simple & fast
 - Complex & slow

- Physical Analytics
 - \(\frac{\partial p}{\partial t} + \text{div}(\rho v) = 0 \)
 - \(\frac{\partial}{\partial t} \left(\frac{\rho c_v}{\rho} \text{grad}(T) \right) + \text{div}(k \text{grad}(T)) + h = 0 \)

- Statistical Analytics
 - \(Z(s) = \mu + \epsilon(s) \)
 - \(\hat{Z}(s_0) = \sum_{i=1}^{N} \lambda_i Z(s_i) \)

- # of data points
 - Small data
 - Big data

- Full Physics Modeling
 - Constant Accuracy
 - \(\text{div}(\rho v) = 0 \)
 - \(\rho c_v \text{grad}(T) + \text{div}(k \text{grad}(T)) + h = 0 \)
Ground truth established with more than 400,000 measurements

Robotic 3D temperature mapping tool

3D temperature results
RMS errors using different modeling approaches

Model complexity can be very effectively reduced and computation time increased using sensor data as boundary conditions.
Operational CFD for (near) real-time heat distributions

- ~80K ft² data center
- Full heat maps every 2 mins
- Heat distributions show in real-time show overheated and overcooled areas, which provides energy efficiencies opportunities.
Automatic controlling of cooling saves energy

To date: > 900 M kWhour annually savings in WW deployments
Extending the technology to smarter buildings....
museums, infrastructure, hospitals, teleco facilities

Environmental sensing in Late Gothic Hall @ NY Metropolitan

MET – Large mote network monitors temperature, humidity, light levels, dew point, numbers of visitors in galleries to optimally control HVAC system.

Displacement sensors for tapestries @ Hampton Court, London

Hampton Court – Displacement sensors measure additionally environmental response of works of art to control numbers of visitors in the galleries.

Hampton Court - Displacement sensors for tapestries

Displacement sensors for tapestries

Princeton – Embedded sensors monitor vibration and internal corrosion inside of a bridge.

Princeton – Embedded sensors monitor vibration and internal corrosion inside of a bridge.

Structural health monitoring @ Princeton University
Forecasting renewable energy generation

Partners: NREL, ANL, Northeastern, ISO-NE, DoE-Sunshot
PA platform applied to forecasting and managing of renewable energy

- Sensor / Actuators
- Communication, Security
- Data Management
- Cloud-based SW Platform
 - Server, Agents, Apps, Clients
- Physical analytics
 - Physical models
 - Reduction of Model Complexity
 - Machine-learnt, multi-model model blending
- (Big) data analytics platform
- Automation and controls
Intermittency of renewable energy poses a major problem for the power grid

Example: Solar

Solar power variability:
- Minute by minute fluctuating
- Mainly affected by local cloud coverage

Forecasting and managing of renewable energy are critical for stability of the power grid.
Short-term forecasting with a sky-camera

- Sky camera with fish eye lenses detects arrival incoming clouds
 - Field of view ~ 2 miles, no mechanical parts
- Multiple sky cameras increases prediction horizons and allow cloud height detection

SkyCam Image

Sky Transparency

Measured power
Forecasted power
Difference / Error

6 min forecasts for 6 consecutive days

Power [kW]

Time [hours]
Expanding the forecast horizon - Big Data from various sources and models

- **Persistence:**
 - Real-time power data
 - Weather station data

- **Lagrangian Forecast Models:**
 - Sky camera model
 - Satellite-based (GOES), advection models
 - Time-series models

- **Weather Forecast Models:**
 - Rapid Refresh (RAP)
 - Hi-Resolution Rapid Refresh (HRRR)
 - Short-Range Ensemble Forecast (SREF)
 - North American Mesoscale Forecast (NAM)
 - Global Forecast System (GFS)
 - European Center for Medium range Weather Forecasting (ECMWF)

- **Climate Models:**
 - Climate Forecasting System (CFS)
Key Idea: Situation-dependent, machine-learning based multi-model blending creates a “super” model

- Different forecasting models provide varying accuracies depending on time horizon, location, weather situation etc.
- Apply deep machine learning / “adaptive mixture of experts” techniques to dynamically blend different forecasts as a function of time horizon, location, weather situation etc
- System continuously learns, adjusts and improves.

Hurricane Ike path forecasts from 9 different weather models*

* M.J. Brennan, S.J. Majumdar, Weather and Forecasting 26, 848 (2011)
An Examination of Model Track Forecast Errors for Hurricane Ike (2008) in the Gulf of Mexico
Improving accuracy using situation dependent, machine-learnt, multi-model blending

Question: Which model is more accurate, when, where, under what weather situation?

- Apply functional analysis of variance to understand 1st, 2nd, 3rd,... order errors
- Model accuracy can depend strongly on “weather situation” category.
- “Weather situation” is determined using a set of parameters including forecasted ones on which model error depends on strongly.

Example, NAM solar irradiance forecast

- Depends strongly GHI and solar zenith angle.
- The two parameters create four categories of situations below.

![Diagram showing Irradiance forecast (W/m²) vs Zenith (Deg) with categories A, B, C, D and forecast error (W/m²)]
High forecasting accuracy using situation dependent, machine-learnt, multi-model blending

- In average more than 35% more accurate than next best input model
- Forecast for wind, solar, hydro from minutes to months ahead
- Regional, local and probabilistic forecasts

Italy; 1.935 MW Fixed Array
Extending the technology to nation-wide irradiance forecasting, the world solar car race, and pollution management

- Daily nation-wide irradiance forecasts with real-time validation at over 1600 sites
- Provided highly accurate forecast for world solar car race for U Michigan in 2015
 - U Michigan achieved its best performance in 15 years of racing
- Pollution forecast system developed for Beijing leveraging IBM’s PM2.5 sensors.
Precision Agriculture

Partners: Gallo Wineries, Netafim, KSU
PA platform applied to precision agriculture

- Sensor / Actuators
- Communication, Security
- Data Management
- Cloud-based SW Platform
 - Server, Agents, Apps, Clients
- Physical analytics
 - Physical models
 - Reduction of Model Complexity
 - Machine-learnt, multi-model model blending
- (Big) data analytics platform
- Automation and controls
Spatio-temporal intra-field variability limits yield, water efficiency and quality

- Large intra-field variability (measured during harvest) “limits” total crop yield
- Changes by 2x within less of 20 meters

If the low performing parts of field can be improved to the “current” average, then yield, water efficiency and quality can be drastically improved.
Evapo-transpiration modeling enables optimal irrigation

Energy Balance model:
\[ET = R_n - H - G \]

ET - Evapo transpiration
\(R_n \) - Net radiation Flux (W/m²)
H - Sensible heat Flux (W/m²)
G - Soil heat Flux (W/m²)

Net Radiation:
\[R_n \approx (1 - \alpha)R_s + (\varepsilon L_{in} - L_{out}) \]

L_{in} incoming long wave radiation
L_{out} outgoing long wave radiation
\(R_s \) solar radiation
\(\varepsilon \) emissivity
\(a \) surface albedo

Sensible Heat Flux
\[H \approx \rho_{air}c_p(a + bT_s)/r_{ah} \]

\(\rho_{air} \) density
\(c_p \) specific heat
\(a, b \) specific parameters
\(T_s \) surface temperature
\(r_{ah} \) transfer resistance

Soil Heat Flux
\[G \approx T_s(a + b\alpha)(1 - cNDVI^4)R_n \]

NDVI vegetation index
\(a, b, c \) specific parameters

Vegetation index from different satellite bands
Multiple data sources are fused in big geo-spatial data platform to support scalable physical analytics.
Yield maps after 2 years of closed loop precision irrigation show significant improvements

- 26% more yield
- 10-22% higher water efficiency
- 50% higher uniformity
- 2x improved quality index (Brix value)*
This year’s winner was a collaborative experiment by E. & J. Gallo and IBM, whose approach used a variable-rate irrigation system across separate quadrants of a 31-acre Cabernet Sauvignon vineyard. The result decreased vineyard spatial variability and increased water-use efficiency without compromising quality during a period of historic drought.
Physical Analytics @ IBM Research

Conrad Albrecht (Physics and Computation Heidelberg PhD)

Levente Klein (Physical Modeling)

Vanessa Lopez (Mathematics)

Fernando Marianno (Software Architect)

Michael Schappert (Precision Agriculture)

Siyuan Lu (Machine learning)

Jun Song Wang (Sensing)

Bertrand Marchand (Solar Forecasting)

Wang Zhou (Robotics, drones)

Xiaoyan Shao (Electrochemistry, Data scientist)

Josphine Chang (Sensor Platform, IoT)

Ramachandran Muralidhar (Corrosion Science & Pollution Modeling)

Theodore van Kessel (Oil and Gas & Instrumentation)

Bruce Elmegreen (Astrophysics, Traffic)

Golnaz Badr (Precision Agriculture)

Oki Gunawan (Solar and Robotics)

and many more
Conclusion

Data from the physical world is growing faster than any other data source and will be soon the biggest data set.

Combination of big data and physical modeling provides unique opportunities:
- Simplifying and operationalizing physical models (example: building energy efficiency)
- Creating “super-models” to provide deeper understanding of physics/chemistry of models (example: renewable forecasting)
- Providing science-based decision support (example: precision agriculture)
-