Monitoring & Diagnostics of Power Plant Equipment

Aaron Hussey
Project Manager
Stanford University EE392n
May 31, 2011
Contents

• Industry Challenges
• Recent Equipment Failure
• Fleet-Wide Monitoring Centers
• Online Monitoring Basics
• Diagnostic Approaches
• Conclusion
Industry Overview
Existing Generation Plants Value Soaring . . .

- Plant Capacity
 - 20GW cancelled or withdrawn
 - 27GW proceeding
- Reliability may be at risk by mid-decade (NERC)
- Natural gas – is it the answer?
- Wind capacity
 - Difficult to launch new coal
 - Coal plants to cycle?

Availability of existing fossil plants is a top industry strategic priority
Aging of Generation Assets

Exhibit 3
Breakdown of U.S. Coal-Fired Generation Capacity by Age

Source: Platts, Bernstein analysis

BernsteinResearch, U.S. Utilities: Which utilities are most at risk from pending plant retirements?
April 23, 2008
Recent Equipment Failure
An oil sample was taken, but never submitted (too many visible pieces).

A quick vibration analysis was done and indicated a wiped bearing.

Parts were gathered, manpower scheduled, and the fan was scheduled out over for the weekend.

The bearing was replaced.
Bearing Damage

If not for the Condition-Based Maintenance (CBM) Vibration technologist, this would not have been acted on.

He believed there was a potential for a problem based on what was presented, and then confirmed the problem.
Fleet-Wide Monitoring Centers
Centralized Monitoring and Diagnostics (M&D) Strategy

• Main thrust is leveraging staff expertise, using technology for efficiency of monitoring, to detect and mitigate potential equipment failures

• Multi-disciplinary staffing with experienced operators, maintenance technicians, and engineers

• Information integration, including connection of plant data historians and enterprise asset management tools to central facility

• Brick-and-mortar facilities in a location central to monitored units

• Executive support for establishing an implementation plan and for communicating the need and benefit across the fleet
Progress Energy M&D Centers

Carolina’s
Fleet Wide Pattern recognition monitoring for Fossil, Combustion Turbine (CT), & Combined-Cycle (CC)
Nuclear & Transmission interested

Florida
Fleet Wide Thermal Performance monitoring for Fossil, CT, & CC
Online Monitoring Basics
Limit Checking

- Normal behavior has normal range

- Abnormal behavior not in normal range

- Limits detect unreasonable changes in data values or trends

- Limits might not be sensitive enough for many applications

© 2011 Electric Power Research Institute, Inc. All rights reserved.
Prediction Models

• Predictors provide a dynamic reference

• Predictors use observed values to infer expected values for normal behavior
Using Predictors

• Train predictors using **normal** data

• Pass **corrupted** data to predictor to get **estimate** of un-corrupted values
Using Predictors

• Predictor estimates follow the expected trend

• The difference between actual and estimated values identifies the fault
Prediction Model Examples

• **Univariate** Methods
 – Auto Regression (AR)

• **Multivariate** Methods
 – Multivariate State Estimation Technique (MSET)
 – Inductive Monitoring System (IMS)
 – Principal Component Analysis (PCA)

• **Redundant** Sensor Methods
 – Instrument Calibration Monitoring Program (ICMP)
Principal Component Analysis

- **Transforms** data into a new coordinate system
- The **principal components** provide the new axes
- Good data will fall within a statistically determined distance from the principal component axes
Instrument Calibration Monitoring Program

- Estimate is the **consistency weighted average** of three or more **redundant** signals
- Consistency parameters are derived from training data
- Inconsistent signals are **removed** from the average

![Diagram showing redundant signal data and the weighted average over time.](image-url)
Fault Detection Examples

• Threshold Methods
 – Residual Value Limit

• Hypothesis Test Methods
 – Sequential Probability Ratio Test (SPRT)

• Statistical Process Control (SPC) Methods
 – Mean Test
 – Standard Deviation Test
 – Range Test
Statistical Process Control

- Used to maintain processes within specific control limits
- Compares sample mean, standard deviation and range to the control limits to determine abnormal behavior
Diagnostic Approaches
Example Use Case Scenario

- Online Monitoring/Fleet-Wide Monitoring (OLM/FWM) system alert pattern is observed
- Related data for asset are retrieved and a fault feature pattern is created
- Possible matching signatures are retrieved from the Asset Fault Signature (AFS) database and the best match is determined
- Diagnosis is presented, with optional troubleshooting and corrective action information
Diagnostic Advisor Function

Feature Detection

<table>
<thead>
<tr>
<th>Data</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.23</td>
<td>OK</td>
</tr>
<tr>
<td>10.2</td>
<td>High</td>
</tr>
<tr>
<td>1</td>
<td>Open</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>

Fault Signatures

<table>
<thead>
<tr>
<th>Fault-1</th>
<th>Fault-2</th>
<th>Fault-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Open</td>
<td>Open</td>
<td>Open</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Low</td>
<td>Low</td>
<td>High</td>
</tr>
</tbody>
</table>

Request

Diagnostic Reasoner

Diagnosis
Conclusion

• Aging power plant infrastructure must continue to supply reliable electricity

• Equipment must be monitored more closely to prevent failures from disrupting plant availability

• Online monitoring technology can be cost-effectively deployed using a fleet-wide approach

• Troubleshooting equipment faults requires practical diagnostic strategies that can reason with partial information
Questions
Contact Information

Aaron J. Hussey
EPRI: Electric Power Research Institute
Instrumentation, Controls, and Automation
Phone: 704-595-2509
Mobile: 704-458-7060
Fax: 704-595-2867
Together…Shaping the Future of Electricity
Backup Slides…
Generator Rotor Crack

- A few year’s ago Entergy Fossil’s Performance Monitoring & Diagnostic Center (PMDC) working with the Plant Staff averted a catastrophic failure of their unit generator.
- The unit was repaired for a fraction of the $10’s of millions the failure would have cost and in a few weeks versus 18-24 months or longer.
Prior to Event

- Routine Monitoring of unit was performed

- Included in the routine monitoring was an evaluation of the Turbine/Generator Assets utilizing the Smart Signal / EPI*Center tool and a review of PI data / OIS Displays

- The next slide is representative of the fact that no abnormalities were noted at that time
Closeness of green expected value and blue actual value shows lack of problem indication prior to event.

Separation of actual and expected at 1 mil triggers alert followed by accelerating rate of vibration increase.

PPMDC Routine Monitoring & Vibration Route Data
Vibration During Coastdown

Large peaks are criticals at >15 mils.
Crack Location
Rough Indication of Crack Depth
Reasoner Tradeoff Study

<table>
<thead>
<tr>
<th>Technology</th>
<th>When to Use</th>
<th>When Not to Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule-based</td>
<td>Unambiguous, stable, and narrow problem area, and justification by rule trace is acceptable</td>
<td>Ambiguous problem area that changes with time or has many operating modes</td>
</tr>
<tr>
<td>Model-based</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case-based</td>
<td>Ambiguous problem area with complex structured data changing slowly with time, and justification is required</td>
<td>When case data are not available or if an exact optimal answer is required</td>
</tr>
<tr>
<td>Neural networks</td>
<td>Noisy numerical data for pattern recognition or signal processing</td>
<td>Categorical data or when justification is required</td>
</tr>
<tr>
<td>Database lookup</td>
<td>Well-structured, standardized data, and simple, precise queries possible</td>
<td>Complex, poorly structured data, and ambiguous queries required</td>
</tr>
</tbody>
</table>
Medical Diagnosis
www.myelectronicmd.com

Free Online Medical Diagnosis

1. sudden onset of severe pain in big toe
 pain usually begins at night
 red, tender, swollen toe
 most commonly occurs in men
 history of gout or kidney stones in family

Box Number 1
Possible Diseases
Click on a diagnosis below:
- Gout
- Pseudogout

Click on possible diagnoses for a brief summary:

Type of Doctor:
- Primary Care Physician
- Orthopedic Surgeon
- Podiatrist

Common Tests:
- metabolic panel
- x-ray of the involved joint

Importance:
- urgent testing and consultation