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Blackouts of Power Grids
Date Area Impacts Durationp

Nov 9, 1965 North America (NE) 20,000+MW,  30M people 13 hrs

Jul 13, 1977 North America (NY) 6,000MW,      9M people 26 hrs

Dec 22, 1982 North America (W) 12, 350 MW,  5M people

Jul 2-3, 1996 North America (W) 11,850 MW,   2M people 13 hrs

Aug 10 1996 North America (W) 28 000+MW 7 5M people 9 hrsAug 10, 1996 North America (W) 28,000+MW,   7.5M people 9 hrs

Jun 25, 1998 North America (N-C) 950 MW,        0.15MK people 19 hrs

Mar 11, 1999 Brazil 90M people hrs

Aug 14, 2003 North America (N-
E) 61,800MW,    50M people 2+ days

Sep 13, 2003 Italy 57M people 5-9 hrs

S 23 2003 S d & D k 5M l 5 hSep 23, 2003 Sweden & Denmark 5M people 5 hrs

Nov 4, 2006 Europe 15M households 2 hrs

Nov 10, 2009 Brazil & Paraguay 17,000MW, 80M people, 18 
states 7hrs
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states

Feb 4, 2011 Brazil 53M people, 8 
states

Sep 8, 2011 US & Mexico (S-W) 4,300MW,    5M people 12hrs



970 MW lossCauses of a blackout

2 100 MW l

Blackout event in Aug. 1996
1 Initial events (15:42:03):

11 600 MW loss

2,100 MW loss1. Initial events (15:42:03):
Short circuit due to tree contact -> 
Outages of 6 transformers and lines

2 Vulnerable conditions (minutes) 11,600 MW loss

15,820MW loss

2. Vulnerable conditions (minutes)
Low-damped oscillations->          
Outages of generators and tie-lines

3. Blackouts (seconds)3. Blackouts (seconds)
Grid separated into islands -> 
Loss of 24% load

Malin-Round Mountain #1 MW

1300

1400

1500

0 252 H ill ti0 276 Hz oscillations

15:42:03 15:48:5115:47:36Can we do anything 
to stop cascade?
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Damping>7%

to stop cascade?



New Challenges from Integration of Renewables

1. Reliability and congestion issues with long-distance 
power transmissionpower transmission

Legend:  

• Wind

• People
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New Challenges from Integration of Renewables
(cont’)( )

2. More uncertainties in real-time operation

Mismatch in supply 
d d dInaccuracy in short-term 

forecasting
and demand curves
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New Challenges from Integration of Renewables
(cont’)( )

3. Changing the grid’s dynamics

From OG&E synchrophasor presentation

Better monitoring applications are needed at the 
t l f l ti it ti l
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control room for real-time situational awareness



Synchrophasor based Wide-Area 
Measurement System (WAMS)

Oscillation Mode Analysis
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Prevention of Cascading Outages

• Limitations:
– Too many system conditionsOffline probabilistic anal sis on

• Power System Stability Assessment:
y y

– Combinatorial explosion of N-k 
contingencies

Inaccuracy in simulation models

Offline probabilistic analysis on 
system vulnerabilities and 

potential cascading outages

Simulation-based contingency 
analysis

– Inaccuracy in simulation models

4600

Real-time stability analysis using 
id t

4000

4200

4400

4600 Observed COI Power (Dittmer Control Center)

Measured

wide-area measurements

4000

4200

4400

4600  Simulated COI Power (initial WSCC base case)

Simulation
Simulation-based approach 
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Intelligent System Separation

RestorationBlackstart

I iti l tI iti l tInitial eventsInitial events

I t lli t tiCascading blackouts
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Intelligent separationCascading blackouts



Key Questions on System Separation 

Q i NQuestion Nature

WHERE Network optimization
(locations)

WHEN
(ti i )

Nonlinear system 
(timing) stability

HOW
( t l)

Implementation of 
t l t t i(control) control strategies
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Three-Step Approach

• Offline Studies (daily ~ yearly)
S h h iti ( t )– Synchrophasors siting (near generators)

– Separation point optimization
– Validation of a control-strategy table

Where

HowHow

Offline 
procedure

• Online Monitoring (every second)
Identify most vulnerable grid interface based on the shape WhereWhere– Identify most vulnerable grid interface based on the shape 
of the dominant oscillation mode

– Predict the timing of instability on the interface When
Online 

software

WhereWhere

• Real-Time Control  (milliseconds)
– Perform a control strategy matching the current condition How
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WHERE to Separate Generation 
Coherency

1. Cluster generators into coherent 
groups (by EPRI DYNRED software)

2 R d th t k b h th
Slow mode 

y

2. Reduce the network by graph theory (weak connection) Fast mode
(strong connection)
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WHEN to Separate

• Modal analysis
Identify the dominant oscillation mode by synchrophasors– Identify the dominant oscillation mode by synchrophasors

– Predict a vulnerable grid interface from the mode’s shape (phasing)
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Monitored 
variable

Oscillation 
frequency
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(mode shape)



WHEN to Separate (cont’) PMU1
PMU2

• Stability analysis  Area 2Area 1

– Estimate the state of a simplified 
model about the interface

– Predict instability using the 
energy function of the model

State estimation on a simplified model
Boundary of Stability

vEquilibrium point
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Example: 179-bus System

System loses stability 
after 6 line outages

1 2
56

California-Oregon 
Intertie3

4

Intertie
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“Phase Clock” about

Example: 179-bus System (cont’)

1
Phase Clock  about 

0.2Hz mode

Strategy 1-234

3

4

5  

1-2 (120-160s)
1-3 (120-160s)
1-4 (120-160s)
1-2 (160-200s)
1-3 (160-200s)
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Example: 179-bus System (cont’)

180

.)

 • Perform strategy 1-234 once the 
angle distance exceeds a threshold
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• Shed 4.9% system load
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Synchrophasor-based Situational Awareness 
and Decision Supportpp

Online Monitoring Real-time Stability Assessment

RiskKey 

Dominant oscillation mode
Phase Clock on 

the mode Simplified model on the interface Time

Interface

Phasor dataPhasor data

Risk & 
ControlScenario 1

Scenario 2
Scenario N

Control 
Timing

Look-Up Table

Control Action

19© 2012 Electric Power Research Institute, Inc. All rights reserved.

Visualization at Control Room
Interconnected Power System

Control Action



DOE Synchrophasor Demonstration Project 
(DOE Grant #DE-OE0000128; 2009-2012)( ; )

Real-time PMU Data (IEEE C37.118)

Online Event 
Detection

• Phase 1  
(research) Near Real-Time 

Event Replay
Location of
Disturbance

Early Warning of 
Grid Instability

• Phase 2 (software 
development)
Ph 3

p y

Power System  Wide-Area

y

• Phase 3 
(demonstration at 
TVA in 2012)

y
Visualization
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Performance Testing Using Simulated or Real 
Synchrophasor Data

Separation 

Contingencies
PMU_Config.XML

strategies

DSA Tool

Models

g

PMU_Data.CSV

SQL 
database

Historical
Data

Software 
A li ti

PMU data stream in 
IEEEC37 118 E

Application
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IEEEC37.118 Energy 
Management
System data



Tests on Simulated WECC PMUs
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Separating the grid when risk=100%

Island 1Island 1

Island 2
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Frequencies before ControlFrequencies before Control Frequencies after SeparationFrequencies after Separation



Tests on Simulated TVA PMU Data
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Conclusions

•Online situational awareness and decision support 
applications are important for grid operators toapplications are important for grid operators to 
prevent or mitigate cascading outages

•Wide area synchrophasor measurements would•Wide-area synchrophasor measurements would 
enable next-generation grid monitoring applications

•Technologies to help prevent cascading outages areTechnologies to help prevent cascading outages are 
such as 
– System reduction (topological and dynamical)y ( p g y )
– Signal processing
– Data mining
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NERC Categories of Contingencies

• Most utilities manually 
select Category D C

o

contingencies to simulate:
– Loss of a key 

substation

onsequenc

Unlikely Credible
– Outages of tie lines
– Outages close to a 

generation/load pocket

ce Index

Unlikely 
and 

Extreme consequences

Credible 
and 

Unacceptable

generation/load pocket

CredibleUnlikely0
D

Credible 
and 

Acceptable

Unlikely 
and 

Acceptable

0
Generator Outage

N-1 Line Outage

N-2 Line Outage

Deterministic 
Criteria

Category of Contingencies
AB

C

28© 2012 Electric Power Research Institute, Inc. All rights reserved.

Likelihood Index
Extreme Events

When System is Stressed (e.g. Storm 
Approaching), the likelihood may increase



Northeast Coherent Generation Groups
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From NPCC (Northeast Power Coordinating Council) Study Results



1 PG=28.3GW
PL=26.4GW

Building a strategy table

P =12 5GW

Total load: 60.8GW
• 7 potential separation points
• 6 strategies (2 islands):

2
4

PG=12.5GW
PL=10.6GW

g ( )
1-234, 2-134, 3-124, 4-123
12-34, 14-23

• 12 potential islands 2
PG=5.1GW
PL=6.4GW

12 potential islands
• Validate control actions by 

simulations
Shed ShedIsland Shed
Load Island Shed 

Load

1 0 23 7.3%

2 3 6% 34 1 5%2 3.6% 34 1.5%

3 3.8% 124 0

4 0 123 4.1%
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3
PG=15.5GW
PL=17.4GW

12 0 234 4.9%

14 0 134 0


