DADA2 Tutorial: December 2019



Processing marker-gene data with. . .

Important resources:

» The DADA2 website
» The DADAZ2 tutorial workflow
» The DADA?2 lssues forum


https://benjjneb.github.io
https://benjjneb.github.io/dada2/tutorial.html
https://github.com/benjjneb/dada2/issues

The DADA2 Workflow

Preprocessing

Filter and Trim

Learn Error Rates
Denoise/Sample Inference
Merge (if paired-end)
Remove Chimeras

7. Assign Taxonomy

ook

Throughout: Sanity checks!



Preprocessing, Filtering and Trimming



Preprocessing

This workflow assumes that your sequencing data meets
certain criteria:

» Samples have been demultiplexed, i.e. split into individual
per-sample fastq files.

> Non-biological nucleotides have been removed, e.g. primers,
adapters, linkers, etc.

» If paired-end sequencing data, the forward and reverse fastq
files contain reads in matched order.

See the DADA2 FAQ for tips to deal with non-demultiplexed files
and primer removal.


https://benjjneb.github.io/dada2/faq.html

Load package and set path
Load the dada2 package. If you don't already it, see the dada2
installation instructions:

library(dada2); packageVersion('"dada2")

## [1] '1.12.1"
library(ggplot2); packageVersion("ggplot2")

## [1] '3.2.0"
Set the path to the fastq files:

path <- "data/fastqs"
head(list.files(path))

## [1] "806rcbc288_R1.fastq.gz" "806rcbc288_R2.fastq.gz"
## [3] "806rcbc289_R1.fastq.gz" "806rcbc289_R2.fastq.gz"
## [5] "806rcbc290_R1.fastq.gz" "806rcbc290_R2.fastq.gz"


dada-installation.html
dada-installation.html

Forward, Reverse, Sample Names

Get matched lists of the forward and reverse fastq.gz files:

# Forward and reverse fastq filenames have format: SAMPLEN.
fnFs <- sort(list.files(path, pattern="_R1l.fastq.gz", full
fnRs <- sort(list.files(path, pattern="_R2.fastq.gz", full
fnFs[[1]]; fnRs([[1]]

## [1] "data/fastqs/806rcbc288_R1.fastq.gz"
## [1] "data/fastqs/806rcbc288_R2.fastq.gz"

Extract sample names, assuming filenames have format:
SAMPLENAME_XXX .fastq.gz

sample.names <- sapply(strsplit(basename(fnFs), "_"), " [,

head (sample.names)

## [1] "806rcbc288" "806rcbc289" "806rcbc290" "806rcbc291"
## [6] "806rcbc293"



Check the amplicon design

We are using the 515F /806R primer set. The primers are not
sequenced. The sequencing technology is 2x250 paired end lllumina.

251-256 bps

primer
index

250 bp
<€

adapter

>
250 bp

What does this mean for later? Artifacts? Trimming?



What is your amplicon design?

coi? trnL? amoA? ITS1? ITS2? cpn60? 1857 ... 16S: v1v2? v1v3?
v4? v3v4? vavs? . ..

How long is it? Length variation?

Did you sequence your primers? Are you sure?



Forward quality profiles: Truncate where?
plotQualityProfile(fnFs[c(1,11)])
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Reverse quality profiles: Truncate where?
plotQualityProfile(fnRs[c(2,12)])
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Filter and trim

Assign filenames for the filtered fastq.gz in the filtered/ subdirectory.

filtFs <- file.path(path, "filtered", pasteO(sample.names,
filtRs <- file.path(path, "filtered", pasteO(sample.names,

The critical parameters we chose are the truncation lengths of 240
(forward) and 170 (reverse). Why did we choose these values?

out <- filterAndTrim(fnFs, filtFs, fnRs, filtRs,
truncLen=c(240,160), maxEE=c(2,2), #
compress=TRUE, multithread=FALSE) # S

In most cases, the key quality filtering parameter is maxEE, which
sets the maximum number of expected errors allowed in each read.
This has been shown to be a better quality filter than an average
quality score filter.



Quality filtering options

» maxEE: Maximum expected errors, usually the only quality filter
needed.

» truncQ: Truncate at first occurrence of this quality score.

» maxLen: Remove sequences greater than this length (mostly
for pyrosequencing).

» minLen: Remove sequences less than this length.

» maxN: Remove sequences with more than this many Ns. dada2
requires no Ns, so maxN=0 by default.

» rm.lowcomplex: Remove reads with complexity less than this
value.

Usually maxEE is enough, but for non-lllumina sequencing
technologies, or less standard setups, the other options can be useful
as well. Remember that help is your friend! ?filterAndTrim



SANITY CHECK: Filtering Stats

head (out)

#i#t reads.in reads.out
## 806rcbc288_Rl1.fastq.gz 4497 4047
## 806rcbc289_R1.fastq.gz 5131 4638
## 806rcbc290_R1.fastq.gz 4921 4473
## 806rcbc291_R1.fastq.gz 5886 5239
## 806rcbc292_R1.fastq.gz 5116 4669
## 806rcbc293_R1.fastq.gz 5318 4755

» What fraction of reads were kept?
» Was that fraction reasonably connsistent among samples?
» Were enough reads kept to achieve your analysis goals?

The truncation lengths are the most likely parameters you
might want to revisit.

Basic strategy: While preserving overlap of 12nts + biological
length variation, truncate off quality crashes.



Primer removal

For common primer designs, in which a primer of fixed length is at
the start of the forward (and reverse) reads, primers can be removed
by dada2 in the filterAndTrim step.

# Single-end reads

filterAndTrim(..., trimLeft=FWD_PRIMER_LENGTH)

# Paired-end reads

filterAndTrim(..., trimLeft=c(FWD_PRIMER_LENGTH, REV_PRIMEI

However! There are other scenarios that this won't handle, in
particular when amplicon length is too so variable that reads
sometime read into the other primer at the end:



Primer removal - ITS
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With highly variable amlicons, you will need to use an outside
program to remove primers prior to running the dada2 workflow. If
you are in that scenario, please see the DADA2 ITS workflow.


https://benjjneb.github.io/dada2/ITS_workflow.html

Exercise: Pick truncation and trimming values

Sequenced amplicon length: 400-420nts. Primers are sequenced.

IN_ETR_101_IF_V1V3_R1 fastq.gz

IN_ETR_101_IF_V1V3_R2.fastq.gz
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Exercise: Pick truncation and trimming values

Sequenced amplicon length: 400-420nts. Primers are sequenced.
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» trimLeft=c(17, 21)
» truncLen=c (245, 195)



Exercise: Pick truncation and trimming values

Sequenced amplicon length: 220-320nts. Primers are not

sequenced.

IN_ETR_101_IF_V1V3_R1 fastq.gz

IN_ETR_101_IF_V1V3_R2 fastq.gz
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Exercise: Pick truncation and trimming values

Sequenced amplicon length: 220-320nts. Primers are not

sequenced.
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» trimLeft=0
» truncLen=c(210, 160)



Exercise: Pick truncation and trimming values

Sequenced amplicon length: 250-260nts. Primers are sequenced.

EM_160016_ATAGTACC-AGAGTCAC_LOD1_R2_001.fastq
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Exercise: Pick truncation and trimming values

Sequenced amplicon length: 250-260nts. Primers are sequenced.

EM_160016_ATAGTACC-AGAGTCAC_L001_R1_001 fastq EM_160016_ATAGTACC-AGAGTCAC_LOD1_R2_001.fastq
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» trimLeft=c(14, 17)
» truncLen=c (220, 140)



Learn error rates and Denoise



Learn the Error Rates

errF <- learnErrors(filtFs, multithread=2) # Set multithre

## 17324880 total bases in 72187 reads from 16 samples wil.

errR <- learnErrors(filtRs, multithread=2)

## 11549920 total bases in 72187 reads from 16 samples wil:

The DADA2 algorithm makes use of a parametric error model (err)
and every amplicon dataset has a different set of error rates. The
learnErrors method learns this error model from the data, by
alternating estimation of the error rates and inference of sample
composition until they converge on a jointly consistent solution.



SANITY CHECK: Error Rates
plotErrors(errF, nominalQ=TRUE)
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SANITY CHECK: Error Rates

» Does the model (black line) reasonably fit the observations
(black points)?
» Do the error rates mostly decrease with quality score?

The goal here is good, not perfect, so don't sweat the small stuff (or
non-convergence).



Dereplicate

Dereplication combines all identical sequencing reads into “unique
sequences” with a corresponding “abundance” equal to the number
of reads with that unique sequence.

derepFs <- derepFastq(filtFs)

derepRs <- derepFastq(filtRs)

# Name the derep-class objects by the sample names
names (derepFs) <- sample.names

names (derepRs) <- sample.names

Big Data: The tutorial dataset is small enough to easily load into
memory. If your dataset exceeds available RAM, it is preferable to
process samples one-by-one in a streaming fashion: see the DADA2
Workflow on Big Data for an example.


bigdata.html
bigdata.html

Sample Inference

We are now ready to apply the core sample inference algorithm to
the dereplicated data.

dadaFs <- dada(derepFs, err=errF, multithread=2) # Set mul

## Sample 1 - 4047 reads in 1248 unique sequences.
## Sample 2 - 4638 reads in 1602 unique sequences.
## Sample 3 - 4473 reads in 1621 unique sequences.
## Sample 4 - 5239 reads in 1499 unique sequences.
## Sample 5 - 4669 reads in 1271 unique sequences.
## Sample 6 - 4755 reads in 1184 unique sequences.
## Sample 7 - 3981 reads in 1371 unique sequences.
## Sample 8 - 4987 reads in 1205 unique sequences.
## Sample 9 - 3709 reads in 1054 unique sequences.
## Sample 10 - 4115 reads in 1139 unique sequences.
## Sample 11 - 4507 reads in 1579 unique sequences.
## Sample 12 - 4626 reads in 1529 unique sequences.
## Sample 13 - 4321 reads in 1474 unique sequences.
## Sample 14 - 5167 reads in 989 unique sequences.


https://www.nature.com/articles/nmeth.3869#methods

Inspect the dada-class object
dadaFs[[1]]

## dada-class: object describing DADA2 denoising results
## 66 sequence variants were inferred from 1248 input uniq
## Key parameters: OMEGA_A = 1e-40, OMEGA_C = 1e-40, BAND_|

The getSequences and getUniques functions work on just about
any dada2-created object. getUniques returns an integer vector,
named by the sequences and valued by their abundances
getSequences just returns the sequences.

head(getSequences(dadaFs[[1]]))

##
#it
##
##
##
##

[1]
[2]
(3]
(4]
(5]
(6]

"TACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTA(
"TACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTA(
"TACGGAGGATTCAAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTA(
"TACAGAGGTCTCAAGCGTTGTTCGGAATCACTGGGCGTAAAGCGTGCGTA(
"TACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTA(
"TACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTA(



DADA2 Options: Multithreading

All computation-intensive functions in the dada2 R package have
optional multithreading via the multithread argument.

» multithread = FALSE: No multithreading. The default.

» multithread = TRUE: Detect the number of available
threads, and use that many. The fastest.

» multithread = N: Use N threads. A way to be a good citizen
on shared servers and allow processing for other tasks.

Usually you will want to turn multithreading on!



DADA2 Options: Pooling

Pooling can increase sensitivity to rare per-sample variants.
dada(..., pool=TRUE)

The cost of pooling is increasing memory and computation time
requirements. Pooled sample inference scales quadratically in the
number of samples, while the default independent sample inference

scales linearly.

Pseudo-pooling approximates pooling in linear time. dada(. ..

pool="pseudo")
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https://benjjneb.github.io/dada2/pool.html#pooling-for-sample-inference
https://benjjneb.github.io/dada2/pseudo.html#pseudo-pooling

DADA2 Options: Non-lllumnina sequencing technologies

For pyrosequencing data (e.g. 454 or lon Torrent) we recommend
a slight change in the alignment parameters to better handle those

technologies tendency to make homopolymer errors.

foo <- dada(..., HOMOPOLYMER_GAP_PENALTY=-1, BAND_SIZE=32)

For PacBio CCS amplicon sequencing, see our recent paper for
evaluation, and the reproducible workflows from the paper for

guidance.
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https://dx.doi.org/10.1093/nar/gkz569
https://github.com/benjjneb/LRASManuscript

DADA2 Options: Sensitivity

Sensitivity options

» OMEGA_A: The key sensititivy parameters, controls the p-value
threshold at which to call new ASVs.

» OMEGA_C: The error-correction threshold. One alternative is to
turn off error-correction.

» MIN_ABUNDANCE: Sets a minimum abundance threshold to call
new ASVs.

» MIN_FOLD: Minimum fold overabundance relative to error
model for new ASVs.

See also the priors argument to raise sensitivity (at no cost
to specificity) for sequences you expect might be present.



Merge, Table, Remove Chimeras, Sanity Check



Merge Paired Reads

mergers <- mergePairs(dadaFs, derepFs, dadaRs, derepRs, ve:

Most reads should pass the merging step! If that isn’t the
case, are you sure your truncated reads still overlap
sufficiently?



Merging options

a) overlap b) overhang

— e
_ —

Forward read

» If (a): Use normally.

» If (b or a+b): mergePairs(..., trimOverhang=TRUE) (but
you probably should have trimmed away the overhang earlier,
see ITS workflow)

» If (c): mergePairs(..., justConcatenate=TRUE).

» If (a+c or a+b+c): Trouble.



Construct Sequence Table (ASV Table)

seqtab <- makeSequenceTable(mergers)

The sequence table is a matrix with rows corresponding to (and
named by) the samples, and columns corresponding to (and named
by) the sequence variants.

dim(seqtab)

## [1] 16 200
table(nchar (getSequences (seqtab)))

#Hit
## 252 253 254
## 62 135 3

The lengths of the merged sequences all fall in the expected range
for this amplicon.



Remove chimeras

Chimeric sequences are identified if they can be exactly
reconstructed by combining a left-segment and a right-segment
from two more abundant “parent” sequences.

seqtab.nochim <- removeBimeraDenovo(seqtab, method="consen:
# Set multithread=TRUE to use all cores
sum(seqtab.nochim) /sum(seqtab)

## [1] 0.9209602

In some cases, most sequences will be chimeric. But most
reads should not be. If they are, you probably have
unremoved primers.

If you used pool=TRUE during sample inference, you should use
method="pooled" for chimera removal.



Track reads through the pipeline
Look at the number of reads that made it through each step in the
pipeline:

getN <- function(x) sum(getUniques(x))
track <- cbind(out, sapply(dadaFs, getN), sapply(dadaRs, g

colnames (track) <- c("input", "filtered", "denoisedF", "de:
rownames (track) <- sample.names

head (track)

#Hit input filtered denoisedF denoisedR merged no:
## 806rcbc288 4497 4047 3918 3949 3632

## 806rcbc289 5131 4638 4480 4563 4191

## 806rcbc290 4921 4473 4315 4354 3972

## 806rcbc291 5886 5239 5096 5165 4773

## 806rcbc292 5116 4669 4550 4607 4313

## 806rcbc293 5318 4755 4584 4695 4379

Looks good! We kept the majority of our raw reads, and there is no
over-large drop associated with any single step.



SANITY CHECK: Read Tracking

head (track)

## input filtered denoisedF denoisedR merged no:
## 806rcbc288 4497 4047 3918 3949 3632

## 806rcbc289 5131 4638 4480 4563 4191

## 806rcbc290 4921 4473 4315 4354 3972

## 806rcbc291 5886 5239 5096 5165 4773

## 806rcbc292 5116 4669 4550 4607 4313

## 806rcbc293 5318 4755 4584 4695 4379

> If a majority of reads failed to merge, you may need to revisit
truncLen to ensure overlap.

> If a majority of reads were removed as chimeric, you may have
unremoved primers.

This is the single most important place to inspect your
workflow to make sure everything went as expected!



Assign Taxonomy

The assignTaxonomy function takes as input a set of sequences to
ba classified, and a training set of reference sequences with known
taxonomy, and outputs taxonomic assignments with at least
minBoot bootstrap confidence.

taxa <- assignTaxonomy(seqtab.nochim, "tax/rdp_train_set_1¢

| recommend the Silva database for 16S data. We are using
the RDP database here to keep file sizes down.


file:///Users/bcallah/dada2/training.html

Taxonomic assignment methods

The dada2 assignTaxonomy function is just a reimplementation of
the naive Bayesian classifer developed as part of the RDP project. It
is based on shredding reads into kmers, matching against a
reference database, and assigning if classification is consistent over
subsets of the shredded reads.
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https://benjjneb.github.io/dada2/tutorial.html#assign-taxonomy

Taxonomic assignment databases

Having a good reference database is usually much more
important than the difference between the good taxonomic
assignment methods.

What is the reference database for your metabarcoding locus? Is it
comprehensive? Appropriate for the environments you are sampling?
Do you need to augment or construct your own?



SANITY CHECK: Taxonomic Assignments

head (unname (taxa))

##
##
##
#it
##
##
##
##
##
##
##
##
##
##

[1,]
[2,]
(3,]
(4,]
(5,]
(6,1

[,1] [,2] [,3]

"Bacteria" "Bacteroidetes" "Bacteroidia"
"Bacteria" "Bacteroidetes" "Bacteroidia"
"Bacteria" "Bacteroidetes" "Bacteroidia"

"Bacteria" "Verrucomicrobia" "Verrucomicrobiae"

"Bacteria" "Bacteroidetes" "Bacteroidia"
"Bacteria" "Firmicutes" "Clostridia"
[,5] [,6]
"Porphyromonadaceae" NA

"Rikenellaceae" "Alistipes"

"Porphyromonadaceae" NA
"Verrucomicrobiaceae" "Akkermansia"
"Porphyromonadaceae" NA
"Lachnospiraceae" NA

Do the taxonomies assigned to the top ASVs make sense in
the sampled environment?

[,¢
"B:
"B:
"B:
"V
"B:
"C.



Handoff to Phyloseq

library("phyloseq"); packageVersion("phyloseq")

## [1] '1.28.0'

Create a phyloseq object from the ASV table and taxonomy
assigned by DADAZ2.

ps <- phyloseq(otu_table(seqtab.nochim, taxa_are_rows=FALS]
tax_table(taxa))

ps

## phyloseq-class experiment-level object
## otu_table()  OTU Table: [ 154 taxa and 16 samp!
## tax_table()  Taxonomy Table: [ 154 taxa by 6 taxonor

Usually you'll want to add sample metadata at this point as well.



