
DADA2 Tutorial: December 2019

Processing marker-gene data with. . .

Important resources:

I The DADA2 website
I The DADA2 tutorial workflow
I The DADA2 Issues forum

https://benjjneb.github.io
https://benjjneb.github.io/dada2/tutorial.html
https://github.com/benjjneb/dada2/issues

The DADA2 Workflow

1. Preprocessing
2. Filter and Trim
3. Learn Error Rates
4. Denoise/Sample Inference
5. Merge (if paired-end)
6. Remove Chimeras
7. Assign Taxonomy

Throughout: Sanity checks!

Preprocessing, Filtering and Trimming

Preprocessing

This workflow assumes that your sequencing data meets
certain criteria:

I Samples have been demultiplexed, i.e. split into individual
per-sample fastq files.

I Non-biological nucleotides have been removed, e.g. primers,
adapters, linkers, etc.

I If paired-end sequencing data, the forward and reverse fastq
files contain reads in matched order.

See the DADA2 FAQ for tips to deal with non-demultiplexed files
and primer removal.

https://benjjneb.github.io/dada2/faq.html

Load package and set path
Load the dada2 package. If you don’t already it, see the dada2
installation instructions:
library(dada2); packageVersion("dada2")

[1] '1.12.1'
library(ggplot2); packageVersion("ggplot2")

[1] '3.2.0'

Set the path to the fastq files:
path <- "data/fastqs"
head(list.files(path))

[1] "806rcbc288_R1.fastq.gz" "806rcbc288_R2.fastq.gz"
[3] "806rcbc289_R1.fastq.gz" "806rcbc289_R2.fastq.gz"
[5] "806rcbc290_R1.fastq.gz" "806rcbc290_R2.fastq.gz"

dada-installation.html
dada-installation.html

Forward, Reverse, Sample Names
Get matched lists of the forward and reverse fastq.gz files:
Forward and reverse fastq filenames have format: SAMPLENAME_R1.fastq.gz and SAMPLENAME_R2.fastq.gz
fnFs <- sort(list.files(path, pattern="_R1.fastq.gz", full.names = TRUE))
fnRs <- sort(list.files(path, pattern="_R2.fastq.gz", full.names = TRUE))
fnFs[[1]]; fnRs[[1]]

[1] "data/fastqs/806rcbc288_R1.fastq.gz"

[1] "data/fastqs/806rcbc288_R2.fastq.gz"

Extract sample names, assuming filenames have format:
SAMPLENAME_XXX.fastq.gz
sample.names <- sapply(strsplit(basename(fnFs), "_"), `[`, 1)
head(sample.names)

[1] "806rcbc288" "806rcbc289" "806rcbc290" "806rcbc291" "806rcbc292"
[6] "806rcbc293"

Check the amplicon design

We are using the 515F/806R primer set. The primers are not
sequenced. The sequencing technology is 2x250 paired end Illumina.

What does this mean for later? Artifacts? Trimming?

What is your amplicon design?

coi? trnL? amoA? ITS1? ITS2? cpn60? 18S? . . . 16S: v1v2? v1v3?
v4? v3v4? v4v5? . . .

How long is it? Length variation?

Did you sequence your primers? Are you sure?

Forward quality profiles: Truncate where?
plotQualityProfile(fnFs[c(1,11)])

Reads: 4497 Reads: 5089

806rcbc288_R1.fastq.gz 806rcbc298_R1.fastq.gz

0 50 100 150 200 250 0 50 100 150 200 250

0

10

20

30

40

Cycle

Q
ua

lit
y

S
co

re

Reverse quality profiles: Truncate where?
plotQualityProfile(fnRs[c(2,12)])

Reads: 5131 Reads: 5096

806rcbc289_R2.fastq.gz 806rcbc299_R2.fastq.gz

0 50 100 150 200 250 0 50 100 150 200 250

0

10

20

30

40

Cycle

Q
ua

lit
y

S
co

re

Filter and trim

Assign filenames for the filtered fastq.gz in the filtered/ subdirectory.
filtFs <- file.path(path, "filtered", paste0(sample.names, "_F_filt.fastq.gz"))
filtRs <- file.path(path, "filtered", paste0(sample.names, "_R_filt.fastq.gz"))

The critical parameters we chose are the truncation lengths of 240
(forward) and 170 (reverse). Why did we choose these values?
out <- filterAndTrim(fnFs, filtFs, fnRs, filtRs,

truncLen=c(240,160), maxEE=c(2,2), # maxEE=2 is the default
compress=TRUE, multithread=FALSE) # Set multithread=TRUE to use all cores

In most cases, the key quality filtering parameter is maxEE, which
sets the maximum number of expected errors allowed in each read.
This has been shown to be a better quality filter than an average
quality score filter.

Quality filtering options

I maxEE: Maximum expected errors, usually the only quality filter
needed.

I truncQ: Truncate at first occurrence of this quality score.
I maxLen: Remove sequences greater than this length (mostly

for pyrosequencing).
I minLen: Remove sequences less than this length.
I maxN: Remove sequences with more than this many Ns. dada2

requires no Ns, so maxN=0 by default.
I rm.lowcomplex: Remove reads with complexity less than this

value.

Usually maxEE is enough, but for non-Illumina sequencing
technologies, or less standard setups, the other options can be useful
as well. Remember that help is your friend! ?filterAndTrim

SANITY CHECK: Filtering Stats
head(out)

reads.in reads.out
806rcbc288_R1.fastq.gz 4497 4047
806rcbc289_R1.fastq.gz 5131 4638
806rcbc290_R1.fastq.gz 4921 4473
806rcbc291_R1.fastq.gz 5886 5239
806rcbc292_R1.fastq.gz 5116 4669
806rcbc293_R1.fastq.gz 5318 4755

I What fraction of reads were kept?
I Was that fraction reasonably connsistent among samples?
I Were enough reads kept to achieve your analysis goals?

The truncation lengths are the most likely parameters you
might want to revisit.

Basic strategy: While preserving overlap of 12nts + biological
length variation, truncate off quality crashes.

Primer removal

For common primer designs, in which a primer of fixed length is at
the start of the forward (and reverse) reads, primers can be removed
by dada2 in the filterAndTrim step.

Single-end reads
filterAndTrim(..., trimLeft=FWD_PRIMER_LENGTH)
Paired-end reads
filterAndTrim(..., trimLeft=c(FWD_PRIMER_LENGTH, REV_PRIMER_LENGTH))

However! There are other scenarios that this won’t handle, in
particular when amplicon length is too so variable that reads
sometime read into the other primer at the end:

Primer removal - ITS

With highly variable amlicons, you will need to use an outside
program to remove primers prior to running the dada2 workflow. If
you are in that scenario, please see the DADA2 ITS workflow.

https://benjjneb.github.io/dada2/ITS_workflow.html

Exercise: Pick truncation and trimming values

Sequenced amplicon length: 400-420nts. Primers are sequenced.

Exercise: Pick truncation and trimming values

Sequenced amplicon length: 400-420nts. Primers are sequenced.

I trimLeft=c(17, 21)
I truncLen=c(245, 195)

Exercise: Pick truncation and trimming values

Sequenced amplicon length: 220-320nts. Primers are not
sequenced.

Exercise: Pick truncation and trimming values
Sequenced amplicon length: 220-320nts. Primers are not
sequenced.

I trimLeft=0
I truncLen=c(210, 160)

Exercise: Pick truncation and trimming values

Sequenced amplicon length: 250-260nts. Primers are sequenced.

Exercise: Pick truncation and trimming values

Sequenced amplicon length: 250-260nts. Primers are sequenced.

I trimLeft=c(14, 17)
I truncLen=c(220, 140)

Learn error rates and Denoise

Learn the Error Rates

errF <- learnErrors(filtFs, multithread=2) # Set multithread=TRUE to use all cores

17324880 total bases in 72187 reads from 16 samples will be used for learning the error rates.
errR <- learnErrors(filtRs, multithread=2)

11549920 total bases in 72187 reads from 16 samples will be used for learning the error rates.

The DADA2 algorithm makes use of a parametric error model (err)
and every amplicon dataset has a different set of error rates. The
learnErrors method learns this error model from the data, by
alternating estimation of the error rates and inference of sample
composition until they converge on a jointly consistent solution.

SANITY CHECK: Error Rates
plotErrors(errF, nominalQ=TRUE)

T2A T2C T2G T2T

G2A G2C G2G G2T

C2A C2C C2G C2T

A2A A2C A2G A2T

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

1e−04

1e−03

1e−02

1e−01

1e+00

1e−04

1e−03

1e−02

1e−01

1e+00

1e−04

1e−03

1e−02

1e−01

1e+00

1e−04

1e−03

1e−02

1e−01

1e+00

Consensus quality score

E
rr

or
 fr

eq
ue

nc
y

(lo
g1

0)

SANITY CHECK: Error Rates

I Does the model (black line) reasonably fit the observations
(black points)?

I Do the error rates mostly decrease with quality score?

The goal here is good, not perfect, so don’t sweat the small stuff (or
non-convergence).

Dereplicate

Dereplication combines all identical sequencing reads into “unique
sequences” with a corresponding “abundance” equal to the number
of reads with that unique sequence.
derepFs <- derepFastq(filtFs)
derepRs <- derepFastq(filtRs)
Name the derep-class objects by the sample names
names(derepFs) <- sample.names
names(derepRs) <- sample.names

Big Data: The tutorial dataset is small enough to easily load into
memory. If your dataset exceeds available RAM, it is preferable to
process samples one-by-one in a streaming fashion: see the DADA2
Workflow on Big Data for an example.

bigdata.html
bigdata.html

Sample Inference
We are now ready to apply the core sample inference algorithm to
the dereplicated data.
dadaFs <- dada(derepFs, err=errF, multithread=2) # Set multithread=TRUE to use all cores

Sample 1 - 4047 reads in 1248 unique sequences.
Sample 2 - 4638 reads in 1602 unique sequences.
Sample 3 - 4473 reads in 1621 unique sequences.
Sample 4 - 5239 reads in 1499 unique sequences.
Sample 5 - 4669 reads in 1271 unique sequences.
Sample 6 - 4755 reads in 1184 unique sequences.
Sample 7 - 3981 reads in 1371 unique sequences.
Sample 8 - 4987 reads in 1205 unique sequences.
Sample 9 - 3709 reads in 1054 unique sequences.
Sample 10 - 4115 reads in 1139 unique sequences.
Sample 11 - 4507 reads in 1579 unique sequences.
Sample 12 - 4626 reads in 1529 unique sequences.
Sample 13 - 4321 reads in 1474 unique sequences.
Sample 14 - 5167 reads in 989 unique sequences.
Sample 15 - 4654 reads in 1096 unique sequences.
Sample 16 - 4299 reads in 1247 unique sequences.
dadaRs <- dada(derepRs, err=errR, multithread=2)

https://www.nature.com/articles/nmeth.3869#methods

Inspect the dada-class object
dadaFs[[1]]

dada-class: object describing DADA2 denoising results
66 sequence variants were inferred from 1248 input unique sequences.
Key parameters: OMEGA_A = 1e-40, OMEGA_C = 1e-40, BAND_SIZE = 16

The getSequences and getUniques functions work on just about
any dada2-created object. getUniques returns an integer vector,
named by the sequences and valued by their abundances.
getSequences just returns the sequences.
head(getSequences(dadaFs[[1]]))

[1] "TACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTAGGCGGGATGCCAAGTCAGCGGTAAAAAAGCGGTGCTCAACGCCGTCGAGCCGTTGAAACTGGCGTTCTTGAGTGGGCGAGAAGTATGCGGAATGCGTGGTGTAGCGGTGAAATGCATAGATATCACGCAGAACTCCGATTGCGAAGGCAGCATACCGGCGCCCTACTGACGCTGAGGCACGAAAGCGTGG"
[2] "TACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTAGGCGGTCCGTTAAGTCAGCGGTAAAATTGCGGGGCTCAACCCCGTCGAGCCGTTGAAACTGGCAGACTTGAGTTGGCGAGAAGTACGCGGAATGCGCGGTGTAGCGGTGAAATGCATAGATATCGCGCAGAACTCCGATTGCGAAGGCAGCGTACCGGCGCCAGACTGACGCTGAGGCACGAAAGCGTGG"
[3] "TACGGAGGATTCAAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTAGGCGGTCGGATAAGTTAGAGGTGAAATCCCGAGGCTCAACTTCGGAATTGCCTCTGATACTGTTCGGCTAGAGAGTAGTTGCGGTAGGCGGAATGTATGGTGTAGCGGTGAAATGCTTAGAGATCATACAGAACACCGATTGCGAAGGCAGCTTACCAAGCTACTTCTGACGTTGAGGCACGAAAGCGTG"
[4] "TACAGAGGTCTCAAGCGTTGTTCGGAATCACTGGGCGTAAAGCGTGCGTAGGCTGTTTCGTAAGTCGTGTGTGAAAGGCGCGGGCTCAACCCGCGGACGGCACATGATACTGCGAGACTAGAGTAATGGAGGGGGAACCGGAATTCTCGGTGTAGCAGTGAAATGCGTAGATATCGAGAGGAACACTCGTGGCGAAGGCGGGTTCCTGGACATTAACTGACGCTGAGGCACGAAGGCCAG"
[5] "TACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTAGGCGGACTGTCAAGTCAGCGGTAAAATTGAGAGGCTCAACCTCTTCCCGCCGTTGAAACTGGTGGTCTTGAGTGGATGAGAAGTACGCGGAATGCGTGGTGTAGCGGTGAAATGCATAGATATCACGCAGAACTCCGATTGCGAAGGCAGCGTACCGGCATCCAACTGACGCTGAGGCACGAAAGCGTGG"
[6] "TACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTAGGCGGCCTGCCAAGTCAGCGGTAAAATTGCGGGGCTCAACCCCGTACAGCCGTTGAAACTGCCGGGCTCGAGTGGGCGAGAAGTATGCGGAATGCGTGGTGTAGCGGTGAAATGCATAGATATCACGCAGAACCCCGATTGCGAAGGCAGCATACCGGCGCCCGACTGACGCTGAGGCACGAAAGTGCGG"

DADA2 Options: Multithreading

All computation-intensive functions in the dada2 R package have
optional multithreading via the multithread argument.

I multithread = FALSE: No multithreading. The default.
I multithread = TRUE: Detect the number of available

threads, and use that many. The fastest.
I multithread = N: Use N threads. A way to be a good citizen

on shared servers and allow processing for other tasks.

Usually you will want to turn multithreading on!

DADA2 Options: Pooling
Pooling can increase sensitivity to rare per-sample variants.
dada(..., pool=TRUE)

The cost of pooling is increasing memory and computation time
requirements. Pooled sample inference scales quadratically in the
number of samples, while the default independent sample inference
scales linearly.

Pseudo-pooling approximates pooling in linear time. dada(...,
pool="pseudo")

https://benjjneb.github.io/dada2/pool.html#pooling-for-sample-inference
https://benjjneb.github.io/dada2/pseudo.html#pseudo-pooling

DADA2 Options: Non-Illumnina sequencing technologies
For pyrosequencing data (e.g. 454 or Ion Torrent) we recommend
a slight change in the alignment parameters to better handle those
technologies tendency to make homopolymer errors.
foo <- dada(..., HOMOPOLYMER_GAP_PENALTY=-1, BAND_SIZE=32)

For PacBio CCS amplicon sequencing, see our recent paper for
evaluation, and the reproducible workflows from the paper for
guidance.

https://dx.doi.org/10.1093/nar/gkz569
https://github.com/benjjneb/LRASManuscript

DADA2 Options: Sensitivity

Sensitivity options

I OMEGA_A: The key sensititivy parameters, controls the p-value
threshold at which to call new ASVs.

I OMEGA_C: The error-correction threshold. One alternative is to
turn off error-correction.

I MIN_ABUNDANCE: Sets a minimum abundance threshold to call
new ASVs.

I MIN_FOLD: Minimum fold overabundance relative to error
model for new ASVs.

See also the priors argument to raise sensitivity (at no cost
to specificity) for sequences you expect might be present.

Merge, Table, Remove Chimeras, Sanity Check

Merge Paired Reads

mergers <- mergePairs(dadaFs, derepFs, dadaRs, derepRs, verbose=TRUE)

Most reads should pass the merging step! If that isn’t the
case, are you sure your truncated reads still overlap
sufficiently?

Merging options

I If (a): Use normally.
I If (b or a+b): mergePairs(..., trimOverhang=TRUE) (but

you probably should have trimmed away the overhang earlier,
see ITS workflow)

I If (c): mergePairs(..., justConcatenate=TRUE).
I If (a+c or a+b+c): Trouble.

Construct Sequence Table (ASV Table)

seqtab <- makeSequenceTable(mergers)

The sequence table is a matrix with rows corresponding to (and
named by) the samples, and columns corresponding to (and named
by) the sequence variants.
dim(seqtab)

[1] 16 200
table(nchar(getSequences(seqtab)))

##
252 253 254
62 135 3

The lengths of the merged sequences all fall in the expected range
for this amplicon.

Remove chimeras

Chimeric sequences are identified if they can be exactly
reconstructed by combining a left-segment and a right-segment
from two more abundant “parent” sequences.
seqtab.nochim <- removeBimeraDenovo(seqtab, method="consensus", multithread=2, verbose=TRUE)
Set multithread=TRUE to use all cores
sum(seqtab.nochim)/sum(seqtab)

[1] 0.9209602

In some cases, most sequences will be chimeric. But most
reads should not be. If they are, you probably have
unremoved primers.

If you used pool=TRUE during sample inference, you should use
method="pooled" for chimera removal.

Track reads through the pipeline
Look at the number of reads that made it through each step in the
pipeline:
getN <- function(x) sum(getUniques(x))
track <- cbind(out, sapply(dadaFs, getN), sapply(dadaRs, getN), sapply(mergers, getN), rowSums(seqtab.nochim))
colnames(track) <- c("input", "filtered", "denoisedF", "denoisedR", "merged", "nonchim")
rownames(track) <- sample.names
head(track)

input filtered denoisedF denoisedR merged nonchim
806rcbc288 4497 4047 3918 3949 3632 3202
806rcbc289 5131 4638 4480 4563 4191 3951
806rcbc290 4921 4473 4315 4354 3972 3765
806rcbc291 5886 5239 5096 5165 4773 4130
806rcbc292 5116 4669 4550 4607 4313 3866
806rcbc293 5318 4755 4584 4695 4379 3892

Looks good! We kept the majority of our raw reads, and there is no
over-large drop associated with any single step.

SANITY CHECK: Read Tracking

head(track)

input filtered denoisedF denoisedR merged nonchim
806rcbc288 4497 4047 3918 3949 3632 3202
806rcbc289 5131 4638 4480 4563 4191 3951
806rcbc290 4921 4473 4315 4354 3972 3765
806rcbc291 5886 5239 5096 5165 4773 4130
806rcbc292 5116 4669 4550 4607 4313 3866
806rcbc293 5318 4755 4584 4695 4379 3892

I If a majority of reads failed to merge, you may need to revisit
truncLen to ensure overlap.

I If a majority of reads were removed as chimeric, you may have
unremoved primers.

This is the single most important place to inspect your
workflow to make sure everything went as expected!

Assign Taxonomy

The assignTaxonomy function takes as input a set of sequences to
ba classified, and a training set of reference sequences with known
taxonomy, and outputs taxonomic assignments with at least
minBoot bootstrap confidence.
taxa <- assignTaxonomy(seqtab.nochim, "tax/rdp_train_set_16.fa.gz", multithread=2)

I recommend the Silva database for 16S data. We are using
the RDP database here to keep file sizes down.

file:///Users/bcallah/dada2/training.html

Taxonomic assignment methods
The dada2 assignTaxonomy function is just a reimplementation of
the naive Bayesian classifer developed as part of the RDP project. It
is based on shredding reads into kmers, matching against a
reference database, and assigning if classification is consistent over
subsets of the shredded reads.

This method has held up well over the years, but additional options
are now available. For classification based on exact matching,
consider assignSpecies. For general purpose classification with
reported higher accuracy, consider the reently published IDTaxa
method in the DECIPHER package. You can see how to use
IDTaxa in the DADA2 tutorial.

https://benjjneb.github.io/dada2/tutorial.html#assign-taxonomy

Taxonomic assignment databases

Having a good reference database is usually much more
important than the difference between the good taxonomic
assignment methods.

What is the reference database for your metabarcoding locus? Is it
comprehensive? Appropriate for the environments you are sampling?
Do you need to augment or construct your own?

SANITY CHECK: Taxonomic Assignments
head(unname(taxa))

[,1] [,2] [,3] [,4]
[1,] "Bacteria" "Bacteroidetes" "Bacteroidia" "Bacteroidales"
[2,] "Bacteria" "Bacteroidetes" "Bacteroidia" "Bacteroidales"
[3,] "Bacteria" "Bacteroidetes" "Bacteroidia" "Bacteroidales"
[4,] "Bacteria" "Verrucomicrobia" "Verrucomicrobiae" "Verrucomicrobiales"
[5,] "Bacteria" "Bacteroidetes" "Bacteroidia" "Bacteroidales"
[6,] "Bacteria" "Firmicutes" "Clostridia" "Clostridiales"
[,5] [,6]
[1,] "Porphyromonadaceae" NA
[2,] "Rikenellaceae" "Alistipes"
[3,] "Porphyromonadaceae" NA
[4,] "Verrucomicrobiaceae" "Akkermansia"
[5,] "Porphyromonadaceae" NA
[6,] "Lachnospiraceae" NA

Do the taxonomies assigned to the top ASVs make sense in
the sampled environment?

Handoff to Phyloseq

library("phyloseq"); packageVersion("phyloseq")

[1] '1.28.0'

Create a phyloseq object from the ASV table and taxonomy
assigned by DADA2.
ps <- phyloseq(otu_table(seqtab.nochim, taxa_are_rows=FALSE),

tax_table(taxa))
ps

phyloseq-class experiment-level object
otu_table() OTU Table: [154 taxa and 16 samples]
tax_table() Taxonomy Table: [154 taxa by 6 taxonomic ranks]

Usually you’ll want to add sample metadata at this point as well.

