Mixture Models

Susan Holmes

December 17th, 2019

Mixture Models and Simulations

Why mixture models?

Many sources of variation that can’t be thought of as additive.

Types of Mixture Models

There are two types of mixture models we will discuss: finite and infinite

Simple Examples and computer experiments

Suppose we want two equally likely components, we decompose the generating
process into steps:

Flip a fair coin.

= |f it comes up heads
+ Generate a random number from a Normal with mean 1 and variance 0.25.

= |f it comes up tails
+ Generate a random number from a Normal with mean 2 and variance 0.25.

Resulting histogram if we did this 10,000 times.

require (ggplot2)
coinflips=as.numeric(runif (10000)>0.5)
table(coinflips)

coinflips
0 1
5024 4976

output=rep(0,10000)
sd1=0.5;sd2=0.5;meanl=1;mean2=3
for (i in 1:10000){

if (coinflips[i]==0)

output[i]=rnorm(1l,meanl,sdl)

else

output[i]=rnorm(1l,mean2,sd2) }

group=coinflips+1l
do=data. frame (output)
gplot (output,data=do,geom="histogram", £ill=I("red"),binwidth=0.2,alpha=I(0.6))

800 -

600 -

NULL
B
8

200~

0 2 4
output

In fact we can write the density (the limiting curve that the histograms tend to look
like) as

0= 5109+ 5

where ¢ is the density of the Normal(i; = 1,62 = 0.25) and ¢, is the density of
the Normal(u, = 2, c? = 0.25).

xs=seq(-1,5,1length=1000)

dens2=0.5*dnorm(xs,mean=1,sd=0.5)+
0.5*dnorm(xs,mean=3,sd=0.5)

do=data.frame(xs,dens2)

gplot (xs,dens2,type="'1l"',col=I("blue"),data=do)

Warning: Ignoring unknown parameters: type

0.4-

0.3~

dens?2
(e]
N

0.1-

0.0-

2
XS

In this case of course the mixture model was extremely visible as the two
distributions don’t overlap, this can happen if we have two very separate

populations, for instance different species of fish whose weights are very different.
However if many cases the separation is not so clear.

Challenge: Here is a histogram generated by two Normals with the same variances,
can you guess the two parameters for these two Normals?

require (ggplot2)
set.seed(1233341)
coinflips=as.numeric(runif (1000)>0.5)
table(coinflips)

coinflips
0 1
495 505

output=rep(0,1000)

sdl=sqrt(0.5)

sd2=sqrt (0.5)

meanl=1

mean2=2

for (i in 1:1000){
if (coinflips[i]==0)
output[i]=rnorm(1l,meanl,sdl)
else

output[i]=rnorm(1l,mean2,sd2)
}

group=coinflips+1

dat=data. frame (xx=output,yy=group)
ggplot (dat,aes (x=xx)) +
geom_histogram(data=dat,fill = "purple", alpha = 0.2)

100 -

75-

50 -

count

25-

XX

Here is the answer: if we color in red the points that were generated from the heads
coin flip and blue the one from tails, we can see that the first normal has a range of
about

dat <- data.frame(xx=output,yy = group)

ggplot (dat,aes (x=xx)) +

geom_histogram(data=subset(dat,yy =
geom_histogram(data=subset(dat,yy

= 1),f£ill
== 2),fill

red", alpha = 0.2) +
"blue", alpha = 0.2)

60 -

40-

count

20-

Less obvious mixture of two Normals: components colored in red and blue.

The overlapping points are going to be piled up on top of each other in the final
histogram, here is an overlayed plot showing the three histograms

ggplot (dat,aes (x=xx)) +
geom_histogram(data=dat,fill = "yellow", alpha = 0.4)+
geom_histogram(data=subset(dat,yy == 1),fill "red", alpha = 0.2) +
geom_histogram(data=subset(dat,yy == 2),fill "darkblue", alpha = 0.2)

100 -

75-

50 -

count

25~

4
XX

Less obvious mixture of two Normals: components colored in orange and green.

Here we knew who had been generated from which component of the mixture, often
this information is missing, we call the hidden variable a latent variable.

This book MacLachlan, (2004) provides a complete treatment of the subject of finite
mixtures.

Discovering the hidden class: EM

First we use a method called the EM (Expectation-Maximization) algorithm to infer
the value of the hidden variable.

On Monday we will do clustering which is does not use the same model.
The Expectation-Maximization algorithm is an alternating and iterative procedure.

Start with observations Y = y1, y2, ..., y, and we augment the data with an
unobserved (latent) cluster variable U, which says which group each observation
came. U=group

(y19u1)3 (Y2, M2)a 7(yn, un)

We are interested in finding the values of U and the unknown parameters of the
underlying densities that make the observed data Y the most likely.

Two normals example

ggplot (dat,aes (x=xx)) +
geom_histogram(data=dat,fill = "purple"”, col="white", alpha = 0.6)

100 -

75-
50-
25- I | |
, - _.-ll I III-I-

4
XX

count

I dat$xx[1:15]

[1] 1.7530620 1.2659780 1.5606189

[7] 2.0529329 -0.3323572

1.9925737 1.2565143
[13] 2.2939339

1.1305426 1.2929795

0.6081198
1.7879879 2.7537675

2.1768070 1.4380620

x=dat$xx
Bivariate distribution here: distribution of couples (Y, U)

SO, ul6) = f(uly, O)f (v|0)

Suppose we have a fair mixture of two normals with parameters
0= =2 u =701 =0.5,0p0 =0.5), u; and uy are unknown, we suppose for
now, we know that the standard deviations of both distributions is 0.5.

If we knew the labels u we could use maximum likelihood to compute the
mul and mu2 means of the distributions.

If we knew the true means mu; and mu,, we could assign the u’s to the more
likely group.

We pretend each of these in turn.

For this bivariate distribution we can define a complete joint likelihood, we
usually work with its log

loglikeli(d) = log £(v, u|6)

Marginal likelihood for the observed y:

marglike(6; Y) = f(Y|6) = " f(v,ul6)

Intiatize the parameter 6 to any value 8%

For instance 50-50 in each group and mul= -0.05 and mu2 =+0.05 sigma1=0.5 and
sigma2=0.5

sum(0.5*dnorm(x,-0.5,0.5)+0.5*dnorm(x,0.5,0.5))
[1] 144.0505
If each point had probability 0.5 of belonging to each group:
sum(0.5*dnorm(x,-0.5,0.5)+0.5*dnorm(x,0.5,0.5))
[1] 144.0505
sum(0.5*dnorm(x,-0.6,0.5)+0.5*dnorm(x,0.9,0.5))
[1] 181.9464
sum(0.5*dnorm(x,-2,0.5)+0.5*dnorm(x,3,0.5))

[1] 70.21037

However, this is not true, we are going to add in the probabilities of the different u’s
in the computation of the likelihood.

##P1's
dnorm(x,-0.5,0.5)[1:5]

[1] 3.109796e-05 1.559878e-03 1.635991e-04 3.202308e-06 1.667423e-03

##P2's
dnorm(x,0.5,0.5)[1:5]

[1] 0.034523319 0.246785475 0.084111155 0.009266551 0.254000512

E “expectation’ step:

Use group probabilities under the current model giving p(y, u|0*) that are used to
compute the expectation

D pluly,0*)1og f (6, y,u) = E, ;0 log (6, y,u) = 0(6,6%)

M “maximization’ step:

Estimate distribution parameters by maximizing the log likelihood Q(60, 8*)\ This
gives a new 6*.

Store cluster probabilities as instance weights p(u|y, 6%).

E*(0)

E*(0) = Eg x[log p(u, x|0*)] =)" p(ulx, 0%) log p(u, x|6%).

The value of @ that maximizes E* is found in what is known as the M aximization
step.

These two iterations (E and M) are repeated until the improvements are small; this
is a numerical indication that we are close to a flattening of the likelihood and so we
have reached a local maximum.

We need to use several initial starting points to ensure that we always get the same
answer.

Remarks:

The EM algorithm is very instructive:

1. It shows us how we can alternate tackling different unknowns in a problem
eventually finding estimates of hidden variables.

2. It provides a first example of soft averaging i.e., where we don’t decide
whether a point belongs to one group or another, but allow it to

participate in several groups by using probabilities of membership as
weights providing more nuanced estimates.

3. The method employed here can be extended to the more general case of
model-averaging , where more complex models replace the clusters we are
dealing with. When we are uncertain which model is correct for the data at
hand we can average models with weights given by their likelihoods.

Stop when improvement is negligible.

Mixture Modeling Examples for Regressions

The flexmix package allows to cluster and fit regressions to the data at the same
time. The standard M-step FLXMRglm() of FlexMix is an interface to R’s generalized

linear modelling facilities - glm() function.

require (flexmix)
data(NPreg)
plot (NPreg$x,NPreg$Syn)

o
o ®
Vo I o OO © o
o
o
o ®
o & o] Oo % o
¥ o 0% o @ §oooo‘2§3
o o% N ® °c @
o) @O @] 00%0@0
o o 8 o 0 Q° ogoo P o
o
c o o o 00
> ® 0 o 0009 o0 ©
B o © o o O o)
2 © 0 o 8 8 o (800
o 0 00 ® 4 0 o o°
pd o
o _| O o o o0
N P %) o} o}
o 5 ©
o
5 09, o
o _] o e} O OO
© o o
o
0®0800%o
o)
o — 16))
© o o
[[[[| |
0 2 4 6 8 10
NPreg$x

NPreg x and yn data scatterplot

As a simple example we use artificial data with two latent classes of size 100 each:

Class1: y=5x+¢€
Class2: y=15+10x—x*> + ¢

with € ~ N(0,9) and prior class probabilities 7; = 7p = 0.5.

We can fit this model in R using the commands

library("flexmix")

data("NPreg")

ml = flexmix(yn ~ x + I(x"2), data = NPreg, k = 2)
ml

##

call:

flexmix(formula = yn ~ x + I(x"2), data = NPreg, k = 2)
#t

Cluster sizes:

1 2

100 100

##

convergence after 13 iterations

and get a first look at the estimated parameters of mixture component~1 by

parameters(ml, component = 1)

Comp.1
coef.(Intercept) 14.7171315
coef.x 9.8462869
coef.I(x°2) -0.9683139
sigma 3.4801398

and

parameters(ml, component = 2)
Comp. 2
coef.(Intercept) -0.20945380
coef.x 4.81724681
coef.I(x"2) 0.03621418
sigma 3.47590252

for component 2. The parameter estimates of both components are close to the true

values. A cross-tabulation of true classes and cluster memberships can be obtained
by

table (NPreg$class, clusters(ml))

##

1 2
1 5095
2 95 5

The summary method

summary (ml)

##

call:

flexmix(formula = yn ~ x + I(x"2), data = NPreg, k = 2)
##

prior size post>0 ratio

Comp.l1l 0.506 100 141 0.709
Comp.2 0.494 100 145 0.690
4

'log Lik.' -642.5452 (df=9)

AIC: 1303.09 BIC: 1332.775

gives the estimated prior probabilities 71, the number of observations assigned to
the corresponding clusters, the number of observations where p,;x > 6 (with a
default of 6 = 10_4), and the ratio of the latter two numbers. For well-seperated
components, a large proportion of observations with non-vanishing posteriors p,x
should also be assigned to the corresponding cluster, giving a ratio close to 1. For our

example data the ratios of both components are approximately 0.7, indicating the
overlap of the classes at the cross-section of line and parabola.

ggplot (NPreg,aes(x,yn)) +geom_point(aes(colour = as.factor(class),shape=as.factor(class)))

q °
A . °
‘ L]
A A e > I
1 A ¢ o. o
.
40 - AA A a . AL . o . °
A A A 4 pMa s
A A °
& Aﬂ A A A F'Y
A A A, ~A‘
A Fy A A -‘. Ag ®e Py
A Y ° L A
A
A
N A . ‘.. .A‘A . A
A a At as.factor(class)
A A
c A A ° ¢ o °® A a A [] 1
> A) A 4 A
[] ° A
S *® ° A a M 2
°
- A A A
20 A . o N R
a []
L]
® .
e ® °
°
A LN
° b ® .
°
[] ... *
° ° °
ot ~ o. > =
[]
L)
0- []
L] []
1 1 1 1 1
0.0 25 5.0 75 10.0

Regression example using flexmix

Zero inflated models

fzi = ad(y) + (1 — a)fcount(y) where 6(y) = 1 and O elsewhere
There are many examples and functions for zero inflated counts.

We will see late how we can try to tease out these clusters and assign a group to
many of the observations without knowing the distributions, in the nonparametric
setting this is called clustering.

Real Example of zero-inflation

Example: CHip-seq data

Let’s consider the example of ChlP-sequencing data. These data are sequences that
result from using chromatin immunoprecipitation (ChlP) assays that identify genome-
wide DNA binding sites for transcription factors and other proteins.

This enables the mapping of the chromosomal locations of transcription factors,
nucleosomes, histone modifications, chromatin remodeling enzymes, chaperones,
and polymerases. This mapping the main technology used by the Encyclopedia of
DNA Elements (ENCODE) Project. Here we use an example from the package which
shows data measured on chromosome 22 from ChlP-seq counts of STAT1 binding
and H3K4me3 modification in the GM12878 cell line.

library("mosaics")
library("mosaicsExample")

We read in the data as shown in the vignette and transform the BinData object into a
simple data.frame (the code for preprocessing the data is not displayed).

Summary: bin-level data (class: BinData)

- # of chromosomes in the data: 1

- total effective tag counts: 462479

(sum of ChIP tag counts of all bins)

- control sample is incorporated

- mappability score is NOT incorporated
- GC content score is NOT incorporated

- uni-reads are assumed

B mm oo

We can then create a histogram of the data as shown in Figure .

bincts = print (binTFBS)
ggplot (bincts,aes(x=tagCount)) +
geom_histogram(binwidth=1, fill="forestgreen")

90000 -

60000 -

count

30000 -

20 40 60
tagCount

Over-abundant/over-expressed genes/proteins/taxa

Mainstay in multiple testing when trying to find relevant genes in microarray and
RNA-seq or proteiomic studies

fm — pOfu + (1 _pO)fe

Here there are two distributions, usually not Normals, one for the unexpressed genes
(f.) and one for the expressed genes f... An ideal situation is when the histogram is
bimodal.

Example RforProteiomics

More than two components

So far we have looked at mixtures of two components. We can extend our
description to cases where there may be more. For instance, when weighing
N=7,000 nucleotides obtained from mixtures of Deoxyribonucleotide
Monophosphates (each type has a different weight, measured with the same
standard deviation sd=3), we might observe the histogram such as Figure
@ref(fig:nucleotideweights) generated by the code:

mA=331;mC=307;mG=347;mT=322; sd=3;
p_C=0.38; p_G=0.36; p_A=0.12; p _T=0.14
pvec=c(p_A,p C,p_G,p_T); N=7000
nuclt=sample(4,N,replace=TRUE, prob=pvec)
quadwts = rnorm(length(nuclt),
mean = c(mA, mC, mG, mT)[nuclt],
sd = sd)
ggplot (data. frame (quadwts) , aes (x=quadwts))+
geom_histogram(bins=100,col="white",fill="purple") +xlab("")

count

200~

150 -

100 -

50 -

0-

300 320 340

Special boundary case: n components: the
bootstrap

Empirical Distributions and the nonparametric bootstrap

Given a set of measurements, for instance the differences in heights of 15 pairs (15
self hybridized and 15 crossed) of Zea Mays plants

library("HistData")
ZeaMays$Sdiff

[1] 6.125 -8.375 1.000 2.000 0.750 2.875 3.500 5.125 1.750 3.625
[11] 7.000 3.000 9.375 7.500 -6.000

aes(x=diff, ymax=1/15, ymin=0)) +

ggplot (data. frame(ZeaMays,y=1/15),
geom_linerange(size=1, col= "forestgreen") +ylim(0,0.25)

0.25-
0.20 -
0.15-

0.10 -

0.00 -
5

0
di

a

1ID
The empirical cumulative distribution function for a sample of size n was written
1 n
Fn(x) — ; Zl]]xgx,-
1=

The empirical cumulative distribution can be easier to understand than the empirical
mass function tied to a finite sample:

R 1 «
nw=;;%m

But we can see now that the sample data can be considered a mixture of at the
observed values x1, x>, ..., x;,, as show in the Figure below.

fig:bootpple

A statistic such as the mean, minimum or median of a sample can be written as a
function of the empirical distribution X = mean(F',), and for n an odd number,

median = x, n+1 ..
(L)

The true sampling distribution of a statistic 7 is often hard to know as it requires

many different data samples from which to compute the statistic; this is shown in the
Figure above.

The bootstrap principle approximates the true sampling distribution of 7 by creating
new samples drawn from the empirical distribution built from the original sample.

We reuse the data as a mixture to create several plausible data sets by taking
subsamples and looking at the different statistics 7~ that we compute from the
resamples. This is called the nonparametric bootstrap resampling approach, see
Efron and Tibshirani’s 1994 book for a complete reference.

It is a convenient method that generates a simulated sampling distribution for any
statistic whose variation we would like to study (we will see several examples of this
method, in particular in clustering).

Bootstrap Principle

Let's make a 95% confidence interval for the median of the Zea Mays differences
show in Figure @ref(fig:ecdfZ). We use similar simulations to those in the previous
sections: Draw B = 10, 000 samples of size 15 from the 15 values (each their own
little component in the 15 part mixture). Then compute the 10,000 medians of each

of these sets of 15 values and look at their distribution: this is called the sampling
distribution of the median.

B = 1000

diff = ZeaMaysS$diff

samplesB = replicate(B,sample (15,15, replace=T))

samplingDist = apply(samplesB,2,function(x){return(median(diff[x]))})
ggplot (data.frame(samplingDist) , aes(x=samplingDist))+
geom_histogram(bins=30,col="white" ,fill="purple")

200 -

150 -
c
2
Q 100-
50~ “\
N I I []
5 ; 5

samplingDist

Why nonparametric?

(Despite their name, nonparametric methods are not methods that do not use
parameters, all statistical methods estimate unknown quantities.)

In theoretical statistics, nonparametric methods are those that have infinitely many
degrees of freedom or parameters. In practice, we do not wait for infinity; when the
number of parameters becomes as large or larger than the amount of data available,
we say the method is nonparametric.

The bootstrap uses a mixture with n components, so with a sample of size n, it
qualifies as a nonparametric method.

Infinite Mixtures

The Gamma-Poisson Mixture Model

Count data are often messier than simple Poisson and Binomial distributions serve as
building blocks for more sophisticated models called mixtures.

Three Worlds

What'’s a Gamma-Poisson mixture model used for?

Overdispersion (in Ecology)

Simplest Mixture Model for Counts

Different evolutionary mutation rates

Throughout Bioinformatics and Bayesian Statistics

Abundance data

In ecology, for instance, we might be interested in variations of fish species in all the
lakes in a region.

We sample the fish species in each lake to estimate their true abundances, and that
could be modeled by a Poisson.

But the true abundances will vary from lake to lake.

The different Poisson rate parameters A can be modeled as coming from a
distribution of rates.

This is a hierarchical model, this type of model will also allow us to add
supplementary steps in the hierarchy, for instance we could be interested in many
different types of fish, etc...

Gamma Distribution: two parameters (shape and
scale)

wikigamma Like the Beta distribution, the Gamma distribution is used to model
certain continuous variables, however the random variables that have a Gamma
distribution can take on any positive values, typical quantities that follow this
distribution are waiting times and survival times.

It is often used in Bayesian inference to model the variability of the Poisson or
Exponential parameters (conjugate family).

This is not unrelated to why we use it for mixture modeling.

Let's explore it by simulation and examples:

require (ggplot2)

nr=10000

set.seed(20130607)

outg=rgamma (nr,shape=2,scale=3)

#

pP=gqplot (outg,geom="histogram" ,binwidth=1)
p

http://en.wikipedia.org/wiki/Gamma_distribution

1250 -

1000 -

750 -

NULL

500 -

250 -

outg

A histogram of randomly generated Gamma(2,3) generated points.

Note on fitting distributions:

require (MASS)

avoid spurious accuracy

op = options(digits = 3)

set.seed(123)

x = rgamma (100, shape = 5, rate = 0.1)
fitdistr(x, "gamma")

shape rate
6.4870 0.1365
(0.8946) (0.0196)

now do this directly with more control.
fitdistr(x, dgamma, list(shape = 1, rate = 0.1), lower = 0.001)

shape rate
6.4869 0.1365
4% (0.8944) (0.0196)

require (ggplot2)
pts=seq(0,max(outg),0.5)
outf=dgamma (pts, shape=3,scale=2)
p=gplot (pts,outf,geom="1line")
p+ theme_bw(10)

0.104

outf

0.054

0.004

20 30
pts

The theoretical Gamma (2,3) probability density.

We are going to use this type of variability for the variation in our Poisson
parameters.

Gamma mixture of Poissons: a hierarchical model

This is a two step process:

1. Generate a whole set of Poisson parameters: A1, 4>, ... Ag9p from a
Gamma(2,3) distribution.

2. Generate a set of Poisson(4;) random variables.

ng=90

set.seed(1001015)

lambdas=rgamma (ng, shape=2,scale=3)

####Rate is usually the second it is 1/scale

veco=rep(0,nqg)

for (j in (1l:ng)){
veco[j]=rpois(1l,lambda=lambdas[j]) }

require(ved)

goodnb=goodfit (veco, "nbinomial")

Warning in densfun(x, parm[l], parm[2], ...): NaNs produced

goodnb

##
Observed and fitted values for nbinomial distribution
with parameters estimated by "ML'

##

count observed fitted pearson residual
4 0 10 7.673 0.8399
1 6 9.895 -1.2383
4 2 12 10.191 0.5668
3 9 9.613 -0.1977
4 9 8.652 0.1184

5 6 7.562 -0.5681
6 6 6.479 -0.1881
7 6 5.471 0.2264
8 6 4.568 0.6698
9 3 3.782 -0.4022
10 2 3.109 -0.6291
11 2 2.542 -0.3397
12 2 2.067 -0.0469
13 2 1.675 0.2512
14 3 1.352 1.4171
15 3 1.088 1.8327
16 1 0.873 0.1354
17 2 0.699 -0.7622

nbinomial stands for the Negative Binomial and is another distribution for count
data. In general it is used to model the number of trials until we obtain a success in a
Binomial (p) experiment.

rnegbin, dnegbin,pnegbin are the corresponding functions.

Fitting a Negative Binomial with fitdistr:

set.seed(123)
x4 = rnegbin(500, mu = 5, theta = 4)
fitdistr (x4, "Negative Binomial")

size mu
4.216 4.945
(0.504) (0.147)

The Mathematical explanation

The Negative Binomial probability distribution function

r+k—1

r k
' >p (1-p)

dnbinom(k, size = r, prob = p) = <

This can be interpreted as the probability of waiting to have k failures until the rth
success occurs. Success having probability p

Does it have a Negative Binomial distribution?

We can compate the theoretical fit of the Negative Binomial with the data using a
rootogram.

summary (goodnb)

4

4 Goodness-of-fit test for nbinomial distribution
4

X*2 df P(> X"2)

Likelihood Ratio 15.2 15 0.435

goodnb$par

Ssize
[1] 1.67
##

Sprob
[1] 0.23

. table(veco)

veco
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
10 612 9 9 6 6 6 6 3 2 2 2 2 3 3 1 2

sqrt(Frequency)

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Number of Occurrences

##Rootogram showing the theoretical and observed data for NB

cts=0:11
out=dnbinom(cts,size=4,p=0.5)

dfnb=data. frame (counts=cts, freqs=out)
ggplot (data=dfnb, aes(x=counts, y=freqgs)) + geom_bar(stat="identity",£fill="#DD8888")

0.15-

0.10-
OIOS- I II
0.00- I I . -

0 3 6 9 12
counts

freqs

Barplot from a theoretical negative binomial with p=0.5, until 4 successes.

Gamma Mixture of Poissons: the densities

Theoretically taking a mixture of Poisson(u) variables where u ~ Gamma(a = k,).

The final distribution is the result of a two step process: \ - 1. Generate a Gamma
(a, f) distributed number, call it z from density

a

I'a)

Za—l e—ﬁz

dgamma(z, a,) =

\ - 2. Generate a number from the Poisson(z) distribution with parameter z, call it y.

e *
y!

dpois(y,A = 2) =

If z only took on integer numbers from O to 10 then we would write
PY=y)=PXY =ylz=0Pz=0+PY =ylz=1DPiz=1)
...+ P(Y =y|z=10)P(z = 10)

It's not quite that simple and we have to write it out as an integral sum instead of a
discrete sum.

Gamma-Poisson is Negative Binomial

We call the distribution of Y the marginal and it is given by

. ba a—1 —bz Zye_z
P(Y =y) = [dgamma(z, a, b)dpois(y, z)dz = et I ——dz
I'(a) y!
Remembering thatI'(a) = (a — 1)!
ba
P Y — — y+Cl—1 —Z(b+1)d
=y (a—l)!y!/Z s
Now we use that the integral
I’
/Zr—le—wzdZ — (7;)
w
SO
y+a-1)! b +a-—1 b b
P(Y=y) =~ =’ () (1=)
(a—Dly! b+ 14D+ 1y y b+ 1 b+ 1

giving the negative binomial with size parameter a and probability of success %.

0.02 0.03 0.04 0.05 0.00 0.02 0.04 0.06

0.01

0.00

0.010 0.020 0.030

100

I
|
I | | | |
0 20 40 60 80
|
I
I
I
I
I
I
I
I
I I I I
0 20 40 60 80

|

Visualization of the hierarchical model that generates the Gamma-Poisson
distribution.

The top panel shows the density of a Gamma distribution with mean 50 (vertical
black line) and variance 30. Assume that in one particular experimental replicate, the
value 60 is realized. This is our latent variable. The observable outcome is distributed
according to the Poisson distribution with that rate parameter, shown in the middle
panel. In one particular experiment the outcome may be, say, 55, indicated by the
dashed green line. Overall, if we repeat these two subsequent random process many

times, the outcomes will be distributed as shown in the bottom panel the Gamma-
Poisson distribution.

Read Noise Modeling

Negative Binomial :hierarchical mixture for reads

In biological contexts such as RNA-seq and microbial count data the negative
binomial distribution arises as a hierarchical mixture of Poisson distributions. This is
due to the fact that if we had technical replicates with the same read counts, we
would see Poisson variation with a given mean. However, the variation among
biological replicates and library size differences both introduce additional sources of

variability.

To address this, we take the means of the Poisson variables to be random variables
themselves having a Gamma distribution with (hyper)parameters shape r and scale
p/(1 — p). We first generate a random mean, 4, for the Poisson from the Gamma,
and then a random variable, k, from the Poisson(4). The marginal distribution is:

PX =k) = / Po,(k) Xy, »_dA
0 o

1-p

00 /11(}Lr—l —/17
_ / Cetx c " a
o k! (1) T(r)

_A=p)" [T e
“ymre f, BT

_(-p)y
prkll'(r)
_I'(r+k) 4

= ary P4

pr+kr(r + k)

Variance Stabilization

Take for instance different Poisson variables with mean ;. Their variances are all
different if the y; are different.

However, if the square root transformation is applied to each of the variables, then
the transformed variables will have approximately constant variance.

library("dplyr")

lambdas = seq(100, 500, by = 100)

simdat = lapply(lambdas, function(l)
tibble(y = rpois(n = 30, lambda=l),

lambda = 1)) %>% bind_rows

library("ggbeeswarm")

ggplot(simdat, aes(x=lambda, y=y)) +
geom_beeswarm(alpha = 0.6, color="purple")

500 -

“Letoid -

e°
o0
400 - ."t-'. s —

4
=300~ %
¥

200 . %

100 - \g&gr"

1 1 1 1 1
100 200 300 400 500
lambda

Series of Poisson

We have equalized the variances at the different levels by taking a square root
transformation of the y variable.

ggplot (simdat, aes(x=lambda, y=sqrt(y))) +

geom_beeswarm(alpha = 0.6, color="purple")

20-
>
£ 16~
o
2]
L]
(]
L]
12 -

3" eﬁr :

200

After transformation

{3-1{{3 o

500

More generally, choosing a transformation that makes the variance constant is done
by using a Taylor series expansion, called the delta method. We will not give the
complete development of variance stabilization in the context of mixtures but point
the interested reader to the standard texts in Theoretical statistics such as and one
of the original articles on variance stabilization.

Anscombe showed that there are several transformations that stabilize the variance
of the Negative Binomial depending on the values of the parameters m and r, where
r = % sometimes called the {} of the Negative Binomial. For large m and constant

me, the transformation

' 3
l_ X+§

sinh™! [(y

1
E)L_é
¢ 4

gives a constant variance around %. Whereas for m large and % not substantially

increasing, the following simpler transformation is preferable

1
log(x + ﬂ)

Modeling read counts

If we have technical replicates with the same number of reads s;, we expect to see
Poisson variation with mean 4 = s;u;, for each gene or taxa or locus I whose
incidence proportion we denote by u;.

Thus the number of reads for the sample j and taxa i would be
K;; ~ Poisson (s;u;)

We use the notational convention that lower case letters designate fixed or observed
values whereas upper case letters designate random variables.

For biological replicates within the same group - such as treatment or control groups
or the same environments - the proportions u; will be variable between samples.

A flexible model that works well for this variability is the Gamma distribution, as it
has two parameters and can be adapted to many distributional shapes.
Call the two parameters r; and 16—;}. So that U;; the proportion of taxa i in sample j

is distributed according to Gamma(r;, 1{—;}).

Thus we obtain that the read counts K;; have a Poisson-Gamma mixture of different

Poisson variables. As shown above we can use the Negative Binomial with
parameters (m = u;s;) and ¢; as a satisfactory model of the variability.

The counts for the gene/taxa i and sample j in condition ¢ having a Negative
Binomial distribution with m. = u;.s; and ¢;. so that the variance is written

2.2

We can estimate the parameters u;. and ¢;. from the data.

Random Effects

This application of a hierarchical mixture model is equivalent to the random effects
models used in the classical context of analysis of variance.

Applications

Mixtures occur naturally because of heterogeneous data, an experiment may be run
by different labs, use differing technologies.

There are often differing binding propensities in different parts of the genome, PCR
biases can occur when different operators use different protocols.

The most common problems involve different distributions because both the means
and the variances are different. This requires variance stabilization to do statistical
testing.

Mixture models can often lead us to be able to use data transformations are actually
used in what is often known as a generalized logarithmic transformation applied in

microarray variance stabilizing transformations and RNA-seq normalization that we
will study in depth in chapter 7 and which also proves useful in the normalization of
next generation reads in microbial ecology and Chip-SEQ analysis .

Wrapup about Mixture Models

Finite Mixture Models

m Mixture of Normals with different means and variances.

m Mixtures of multivariate Normals with different means and covariance matrices
(we'll study next week).

= Decomposing the mixtures using the EM algorithm.

Common Infinite Mixture Models

Mixtures of Normals (often with a hierarchical model on the variances).

Beta-Binomial Mixtures (the p in the Binomial is generated according to a Beta(a,b)
distribution.

Gamma-Poisson for read counts.

Gamma-Exponential for PCR.

Dirichlet-Multinomial (Birthday problem and the Bayesian setting).

