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Mixture Models and Simula�ons
Why mixture models?

Many sources of varia�on that can’t be thought of as addi�ve.

Types of Mixture Models
There are two types of mixture models we will discuss: finite and infinite



Simple Examples and computer experiments
Suppose we want two equally likely components, we decompose the genera�ng
process into steps:

Flip a fair coin.

If it comes up heads
+ Generate a random number from a Normal with mean 1 and variance 0.25.

If it comes up tails
+ Generate a random number from a Normal with mean 2 and variance 0.25.



Resul�ng histogram if we did this 10,000 �mes.

## coinflips 
##    0    1  
## 5024 4976

require(ggplot2)
coinflips=as.numeric(runif(10000)>0.5)
table(coinflips)

output=rep(0,10000)
sd1=0.5;sd2=0.5;mean1=1;mean2=3
for (i in 1:10000){
  if (coinflips[i]==0)
  output[i]=rnorm(1,mean1,sd1)
  else
    output[i]=rnorm(1,mean2,sd2)  }
group=coinflips+1
do=data.frame(output)
qplot(output,data=do,geom="histogram",fill=I("red"),binwidth=0.2,alpha=I(0.6))



In fact we can write the density (the limi�ng curve that the histograms tend to look
like) as



where  is the density of the Normal( ) and  is the density of
the Normal( ).

## Warning: Ignoring unknown parameters: type

f (x) = (x) + (x)
1

2
ϕ1

1

2
ϕ2

ϕ1 = 1, = 0.25μ1 σ 2 ϕ2

= 2, = 0.25μ2 σ 2

xs=seq(-1,5,length=1000)
dens2=0.5*dnorm(xs,mean=1,sd=0.5)+
      0.5*dnorm(xs,mean=3,sd=0.5)
do=data.frame(xs,dens2)
qplot(xs,dens2,type='l',col=I("blue"),data=do)



In this case of course the mixture model was extremely visible as the two
distribu�ons don’t overlap, this can happen if we have two very separate
popula�ons, for instance different species of fish whose weights are very different.
However if many cases the separa�on is not so clear.



Challenge: Here is a histogram generated by two Normals with the same variances,
can you guess the two parameters for these two Normals?

## coinflips 
##   0   1  
## 495 505

require(ggplot2)
set.seed(1233341)
coinflips=as.numeric(runif(1000)>0.5)
table(coinflips)

output=rep(0,1000)
sd1=sqrt(0.5)
sd2=sqrt(0.5)
mean1=1
mean2=2
for (i in 1:1000){
  if (coinflips[i]==0)
  output[i]=rnorm(1,mean1,sd1)
  else
    output[i]=rnorm(1,mean2,sd2)
}
group=coinflips+1

dat=data.frame(xx=output,yy=group)
ggplot(dat,aes(x=xx)) + 
    geom_histogram(data=dat,fill = "purple", alpha = 0.2)



Here is the answer: if we color in red the points that were generated from the heads
coin flip and blue the one from tails, we can see that the first normal has a range of
about



dat <- data.frame(xx=output,yy = group)
ggplot(dat,aes(x=xx)) + 
    geom_histogram(data=subset(dat,yy == 1),fill = "red", alpha = 0.2) +
    geom_histogram(data=subset(dat,yy == 2),fill = "blue", alpha = 0.2)



Less obvious mixture of two Normals: components colored in red and blue.

The overlapping points are going to be piled up on top of each other in the final
histogram, here is an overlayed plot showing the three histograms

ggplot(dat,aes(x=xx)) + 
    geom_histogram(data=dat,fill = "yellow", alpha = 0.4)+
    geom_histogram(data=subset(dat,yy == 1),fill = "red", alpha = 0.2) +
    geom_histogram(data=subset(dat,yy == 2),fill = "darkblue", alpha = 0.2)



Less obvious mixture of two Normals: components colored in orange and green.

Here we knew who had been generated from which component of the mixture, o�en
this informa�on is missing, we call the hidden variable a latent variable.



This book MacLachlan, (2004) provides a complete treatment of the subject of finite
mixtures.



Discovering the hidden class: EM
First we use a method called the EM (Expecta�on-Maximiza�on) algorithm to infer
the value of the hidden variable.

On Monday we will do clustering which is does not use the same model.

The Expecta�on-Maximiza�on algorithm is an alterna�ng and itera�ve procedure.

Start with observa�ons  and we augment the data with an
unobserved (latent) cluster variable , which says which group each observa�on
came. =group

We are interested in finding the values of  and the unknown parameters of the
underlying densi�es that make the observed data  the most likely.

Y = , , … ,y1 y2 yn

U
U

( , ), ( , ), … , ( , )y1 u1 y2 u2 yn un

U
Y



Two normals example
ggplot(dat,aes(x=xx)) + 
    geom_histogram(data=dat,fill = "purple", col="white", alpha = 0.6)



##  [1]  1.7530620  1.2659780  1.5606189  1.9925737  1.2565143  0.6081198 
##  [7]  2.0529329 -0.3323572  1.1305426  1.2929795  2.1768070  1.4380620 
## [13]  2.2939339  1.7879879  2.7537675

dat$xx[1:15]



Bivariate distribu�on here: distribu�on of couples 

Suppose we have a fair mixture of two normals with parameters 
,  and  are unknown, we suppose for

now, we know that the standard devia�ons of both distribu�ons is 0.5.

If we knew the labels  we could use maximum likelihood to compute the
mu1 and mu2 means of the distribu�ons.

If we knew the true means  and , we could assign the u’s to the more
likely group.

We pretend each of these in turn.

For this bivariate distribu�on we can define a complete joint likelihood, we
usually work with its log

Marginal likelihood for the observed :

x=dat$xx

(Y, U)

f (y, u|θ) = f (u|y, θ)f (y|θ)

θ = ( =?, =?, = 0.5, = 0.5)μ1 μ2 σ1 σ2 μ1 μ2

u

mu1 mu2

loglikeli(θ) = log f (y, u|θ)

y



In�a�ze the parameter  to any value 

For instance 50-50 in each group and mu1= -0.05 and mu2 =+0.05 sigma1=0.5 and
sigma2=0.5

## [1] 144.0505

If each point had probability 0.5 of belonging to each group:

## [1] 144.0505

## [1] 181.9464

## [1] 70.21037

However, this is not true, we are going to add in the probabili�es of the different u’s
in the computa�on of the likelihood.

marglike(θ; Y) = f (Y|θ) = f (y, u|θ)∑
u

θ θ∗

sum(0.5*dnorm(x,-0.5,0.5)+0.5*dnorm(x,0.5,0.5))

sum(0.5*dnorm(x,-0.5,0.5)+0.5*dnorm(x,0.5,0.5))

sum(0.5*dnorm(x,-0.6,0.5)+0.5*dnorm(x,0.9,0.5))

sum(0.5*dnorm(x,-2,0.5)+0.5*dnorm(x,3,0.5))



## [1] 3.109796e-05 1.559878e-03 1.635991e-04 3.202308e-06 1.667423e-03

## [1] 0.034523319 0.246785475 0.084111155 0.009266551 0.254000512

E `expecta�on’ step:

Use group probabili�es under the current model giving  that are used to
compute the expecta�on

M `maximiza�on’ step:

Es�mate distribu�on parameters by maximizing the log likelihood \ This
gives a new .

Store cluster probabili�es as instance weights .

##P1's
dnorm(x,-0.5,0.5)[1:5]

##P2's
dnorm(x,0.5,0.5)[1:5]

p(y, u| )θ∗

p(u|y, ) log f (θ, y, u) = log f (θ, y, u) = Q(θ, )∑
u

θ∗ Eu|y,θ∗ θ∗

Q(θ, )θ∗

θ∗

p(u|y, )θ∗



The value of  that maximizes  is found in what is known as the M aximiza�on
step.

These two itera�ons ( E and M ) are repeated un�l the improvements are small; this
is a numerical indica�on that we are close to a fla�ening of the likelihood and so we
have reached a local maximum.

We need to use several ini�al star�ng points to ensure that we always get the same
answer.

Remarks:

The EM algorithm is very instruc�ve:

1. It shows us how we can alternate tackling different unknowns in a problem
eventually finding es�mates of hidden variables.

2. It provides a first example of so� averaging i.e., where we don’t decide
whether a point belongs to one group or another, but allow it to

(θ)E∗

(θ) = [log p(u, x| )] = p(u|x, ) log p(u, x| ).E∗ E ,Xθ∗ θ∗

∑
u

θ∗ θ∗

θ E∗



par�cipate in several groups by using probabili�es of membership as
weights providing more nuanced es�mates.

3. The method employed here can be extended to the more general case of
model-averaging , where more complex models replace the clusters we are
dealing with. When we are uncertain which model is correct for the data at
hand we can average models with weights given by their likelihoods.

Stop when improvement is negligible.



Mixture Modeling Examples for Regressions
The flexmix package allows to cluster and fit regressions to the data at the same
�me. The standard M-step FLXMRglm() of FlexMix is an interface to R’s generalized
linear modelling facili�es - glm() func�on.

require(flexmix)
data(NPreg)
plot(NPreg$x,NPreg$yn)



NPreg x and yn data sca�erplot

As a simple example we use ar�ficial data with two latent classes of size 100 each:



with  and prior class probabili�es .

We can fit this model in R using the commands

##  
## Call: 
## flexmix(formula = yn ~ x + I(x^2), data = NPreg, k = 2) 
##  
## Cluster sizes: 
##   1   2  
## 100 100  
##  
## convergence after 13 iterations

and get a first look at the es�mated parameters of mixture component~1 by

##                      Comp.1 
## coef.(Intercept) 14.7171315 
## coef.x            9.8462869 
## coef.I(x^2)      -0.9683139 
## sigma             3.4801398

and

Class 1 :

Class 2 :

y = 5x + ϵ

y = 15 + 10x − + ϵx2

ϵ ∼ N(0, 9) = = 0.5π1 π2

library("flexmix")
data("NPreg")
m1 = flexmix(yn ~ x + I(x^2), data = NPreg, k = 2)
m1

parameters(m1, component = 1)



##                       Comp.2 
## coef.(Intercept) -0.20945380 
## coef.x            4.81724681 
## coef.I(x^2)       0.03621418 
## sigma             3.47590252

for component 2. The parameter es�mates of both components are close to the true
values. A cross-tabula�on of true classes and cluster memberships can be obtained
by

##     
##      1  2 
##   1  5 95 
##   2 95  5

The summary method

##  
## Call: 
## flexmix(formula = yn ~ x + I(x^2), data = NPreg, k = 2) 
##  
##        prior size post>0 ratio 
## Comp.1 0.506  100    141 0.709 
## Comp.2 0.494  100    145 0.690 
##  
## 'log Lik.' -642.5452 (df=9) 
## AIC: 1303.09   BIC: 1332.775

parameters(m1, component = 2)

table(NPreg$class, clusters(m1))

summary(m1)



gives the es�mated prior probabili�es , the number of observa�ons assigned to
the corresponding clusters, the number of observa�ons where  (with a
default of ), and the ra�o of the la�er two numbers. For well-seperated
components, a large propor�on of observa�ons with non-vanishing posteriors 
should also be assigned to the corresponding cluster, giving a ra�o close to 1. For our
example data the ra�os of both components are approximately 0.7, indica�ng the
overlap of the classes at the cross-sec�on of line and parabola.

π ̂ k
> δpnk

δ = 10−4

pnk

ggplot(NPreg,aes(x,yn)) +geom_point(aes(colour = as.factor(class),shape=as.factor(class)))



Regression example using flexmix

Zero inflated models



There are many examples and func�ons for zero inflated counts.

We will see late how we can try to tease out these clusters and assign a group to
many of the observa�ons without knowing the distribu�ons, in the nonparametric
se�ng this is called clustering.

= αδ(y) + (1 − α) (y)  where δ(y) = 1 and 0 elsewherefzi fcount



Real Example of zero-infla�on
Example: CHip-seq data

Let’s consider the example of ChIP-sequencing data. These data are sequences that
result from using chroma�n immunoprecipita�on (ChIP) assays that iden�fy genome-
wide DNA binding sites for transcrip�on factors and other proteins.

This enables the mapping of the chromosomal loca�ons of transcrip�on factors,
nucleosomes, histone modifica�ons, chroma�n remodeling enzymes, chaperones,
and polymerases. This mapping the main technology used by the Encyclopedia of
DNA Elements (ENCODE) Project. Here we use an example from the package which
shows data measured on chromosome 22 from ChIP-seq counts of STAT1 binding
and H3K4me3 modifica�on in the GM12878 cell line.

We read in the data as shown in the vigne�e and transform the BinData object into a
simple data.frame (the code for preprocessing the data is not displayed).

## Summary: bin-level data (class: BinData) 
## ---------------------------------------- 
## - # of chromosomes in the data: 1 
## - total effective tag counts: 462479 
##   (sum of ChIP tag counts of all bins) 
## - control sample is incorporated 
## - mappability score is NOT incorporated 
## - GC content score is NOT incorporated 

library("mosaics")
library("mosaicsExample")



## - uni-reads are assumed 
## ----------------------------------------

We can then create a histogram of the data as shown in Figure .

bincts = print(binTFBS)
ggplot(bincts,aes(x=tagCount)) +
 geom_histogram(binwidth=1, fill="forestgreen")



Over-abundant/over-expressed genes/proteins/taxa
Mainstay in mul�ple tes�ng when trying to find relevant genes in microarray and
RNA-seq or proteiomic studies



Here there are two distribu�ons, usually not Normals, one for the unexpressed genes
( ) and one for the expressed genes . An ideal situa�on is when the histogram is
bimodal.

Example RforProteiomics

= + (1 − )fm p0fu p0 fe

fu fe



More than two components
So far we have looked at mixtures of two components. We can extend our
descrip�on to cases where there may be more. For instance, when weighing
N=7,000 nucleo�des obtained from mixtures of Deoxyribonucleo�de
Monophosphates (each type has a different weight, measured with the same
standard devia�on sd=3), we might observe the histogram such as Figure
@ref(fig:nucleo�deweights) generated by the code:

mA=331;mC=307;mG=347;mT=322; sd=3;
p_C=0.38; p_G=0.36; p_A=0.12; p_T=0.14
pvec=c(p_A,p_C,p_G,p_T); N=7000
nuclt=sample(4,N,replace=TRUE,prob=pvec)
quadwts = rnorm(length(nuclt),
          mean = c(mA, mC, mG, mT)[nuclt],
          sd   = sd)
ggplot(data.frame(quadwts),aes(x=quadwts))+
          geom_histogram(bins=100,col="white",fill="purple") +xlab("")





Special boundary case:  components: the
bootstrap

Empirical Distribu�ons and the nonparametric bootstrap
Given a set of measurements, for instance the differences in heights of 15 pairs (15
self hybridized and 15 crossed) of Zea Mays plants

##  [1]  6.125 -8.375  1.000  2.000  0.750  2.875  3.500  5.125  1.750  3.625 
## [11]  7.000  3.000  9.375  7.500 -6.000

n

library("HistData")
ZeaMays$diff

ggplot(data.frame(ZeaMays,y=1/15),
       aes(x=diff, ymax=1/15, ymin=0)) +
  geom_linerange(size=1, col= "forestgreen") +ylim(0,0.25)



The empirical cumula�ve distribu�on func�on for a sample of size  was wri�en

The empirical cumula�ve distribu�on can be easier to understand than the empirical
mass func�on �ed to a finite sample:

But we can see now that the sample data can be considered a mixture of at the
observed values  as show in the Figure below.

n

(x) =F̂ n
1

n ∑
i=1

n

𝟙x≤xi

(x) = (x)f ̂ 
n

1

n ∑
i=1

n

δxi

, , … ,x1 x2 xn



fig:bootpple

A sta�s�c such as the mean, minimum or median of a sample can be wri�en as a
func�on of the empirical distribu�on , and for  an odd number, 

.
= mean( )x̄ F̂ n n

median = x( )n+1

2



The true sampling distribu�on of a sta�s�c  is o�en hard to know as it requires
many different data samples from which to compute the sta�s�c; this is shown in the
Figure above.

The bootstrap principle approximates the true sampling distribu�on of  by crea�ng
new samples drawn from the empirical distribu�on built from the original sample.

We reuse the data as a mixture to create several plausible data sets by taking
subsamples and looking at the different sta�s�cs  that we compute from the
resamples. This is called the nonparametric bootstrap resampling approach, see
Efron and Tibshirani’s 1994 book for a complete reference.

It is a convenient method that generates a simulated sampling distribu�on for any
sta�s�c whose varia�on we would like to study (we will see several examples of this
method, in par�cular in clustering).

τ ̂ 

τ ̂ 

τ ̂ ∗



Bootstrap Principle

Let’s make a 95% confidence interval for the median of the Zea Mays differences
show in Figure @ref(fig:ecdfZ). We use similar simula�ons to those in the previous
sec�ons: Draw  samples of size 15 from the 15 values (each their own
li�le component in the 15 part mixture). Then compute the 10,000 medians of each

B = 10, 000



of these sets of 15 values and look at their distribu�on: this is called the sampling
distribu�on of the median.

B = 1000
diff = ZeaMays$diff
samplesB = replicate(B,sample(15,15,replace=T))
samplingDist = apply(samplesB,2,function(x){return(median(diff[x]))})
ggplot(data.frame(samplingDist),aes(x=samplingDist))+
geom_histogram(bins=30,col="white",fill="purple")



Why nonparametric?



(Despite their name, nonparametric methods are not methods that do not use
parameters, all sta�s�cal methods es�mate unknown quan��es.)

In theore�cal sta�s�cs, nonparametric methods are those that have infinitely many
degrees of freedom or parameters. In prac�ce, we do not wait for infinity; when the
number of parameters becomes as large or larger than the amount of data available,
we say the method is nonparametric.

The bootstrap uses a mixture with  components, so with a sample of size , it
qualifies as a nonparametric method.

n n



Infinite Mixtures
The Gamma–Poisson Mixture Model

Count data are o�en messier than simple Poisson and Binomial distribu�ons serve as
building blocks for more sophis�cated models called mixtures.



Three Worlds

What’s a Gamma–Poisson mixture model used for?



Overdispersion (in Ecology)

Simplest Mixture Model for Counts

Different evolu�onary muta�on rates

Throughout Bioinforma�cs and Bayesian Sta�s�cs

Abundance data

In ecology, for instance, we might be interested in varia�ons of fish species in all the
lakes in a region.

We sample the fish species in each lake to es�mate their true abundances, and that
could be modeled by a Poisson.

But the true abundances will vary from lake to lake.

The different Poisson rate parameters  can be modeled as coming from a
distribu�on of rates.

This is a hierarchical model, this type of model will also allow us to add
supplementary steps in the hierarchy, for instance we could be interested in many
different types of fish, etc…

λ



Gamma Distribu�on: two parameters (shape and
scale)

wikigamma Like the Beta distribu�on, the Gamma distribu�on is used to model
certain con�nuous variables, however the random variables that have a Gamma
distribu�on can take on any posi�ve values, typical quan��es that follow this
distribu�on are wai�ng �mes and survival �mes.

It is o�en used in Bayesian inference to model the variability of the Poisson or
Exponen�al parameters (conjugate family).

This is not unrelated to why we use it for mixture modeling.

Let’s explore it by simula�on and examples:

require(ggplot2)
nr=10000
set.seed(20130607)
outg=rgamma(nr,shape=2,scale=3)
#
p=qplot(outg,geom="histogram",binwidth=1)
p

http://en.wikipedia.org/wiki/Gamma_distribution


A histogram of randomly generated Gamma(2,3) generated points.

Note on fi�ng distribu�ons:



##    shape     rate  
##   6.4870   0.1365  
##  (0.8946) (0.0196)

##    shape     rate  
##   6.4869   0.1365  
##  (0.8944) (0.0196)

require(MASS)
## avoid spurious accuracy
op = options(digits = 3)
set.seed(123)
x = rgamma(100, shape = 5, rate = 0.1)
fitdistr(x, "gamma")

## now do this directly with more control.
fitdistr(x, dgamma, list(shape = 1, rate = 0.1), lower = 0.001)

require(ggplot2)
pts=seq(0,max(outg),0.5)
outf=dgamma(pts,shape=3,scale=2)
p=qplot(pts,outf,geom="line")
p+ theme_bw(10)



The theore�cal Gamma (2,3) probability density.

We are going to use this type of variability for the varia�on in our Poisson
parameters.



Gamma mixture of Poissons: a hierarchical model

This is a two step process:

1. Generate a whole set of Poisson parameters:  from a
Gamma(2,3) distribu�on.

2. Generate a set of Poisson( ) random variables.

## Warning in densfun(x, parm[1], parm[2], ...): NaNs produced

##  
## Observed and fitted values for nbinomial distribution 
## with parameters estimated by `ML'  
##  
##  count observed fitted pearson residual 
##      0       10  7.673           0.8399 
##      1        6  9.895          -1.2383 
##      2       12 10.191           0.5668 
##      3        9  9.613          -0.1977 
##      4        9  8.652           0.1184 

, , . . .λ1 λ2 λ90

λi

ng=90
set.seed(1001015)
lambdas=rgamma(ng,shape=2,scale=3)
####Rate is usually the second it is 1/scale
veco=rep(0,ng)
for (j in (1:ng)){
  veco[j]=rpois(1,lambda=lambdas[j]) }
require(vcd)
goodnb=goodfit(veco,"nbinomial")

goodnb  



##      5        6  7.562          -0.5681 
##      6        6  6.479          -0.1881 
##      7        6  5.471           0.2264 
##      8        6  4.568           0.6698 
##      9        3  3.782          -0.4022 
##     10        2  3.109          -0.6291 
##     11        2  2.542          -0.3397 
##     12        2  2.067          -0.0469 
##     13        2  1.675           0.2512 
##     14        3  1.352           1.4171 
##     15        3  1.088           1.8327 
##     16        1  0.873           0.1354 
##     17        2  0.699          -0.7622

nbinomial stands for the Nega�ve Binomial and is another distribu�on for count
data. In general it is used to model the number of trials un�l we obtain a success in a
Binomial (p) experiment.

rnegbin, dnegbin,pnegbin are the corresponding func�ons.

Fi�ng a Nega�ve Binomial with fitdistr:

##    size     mu   
##   4.216   4.945  
##  (0.504) (0.147)

set.seed(123)
x4 = rnegbin(500, mu = 5, theta = 4)
fitdistr(x4, "Negative Binomial")



The Mathema�cal explana�on
The Nega�ve Binomial probability distribu�on func�on

This can be interpreted as the probability of wai�ng to have k failures un�l the rth
success occurs. Success having probability 

Does it have a Nega�ve Binomial distribu�on?
We can compate the theore�cal fit of the Nega�ve Binomial with the data using a
rootogram.

##  
##   Goodness-of-fit test for nbinomial distribution 
##  
##                   X^2 df P(> X^2) 
## Likelihood Ratio 15.2 15    0.435

## $size 
## [1] 1.67 
##  

dnbinom(k, size = r, prob = p) = ( ) (1 − p
r + k − 1

k
pr )k

p

summary(goodnb)

goodnb$par



## $prob 
## [1] 0.23

## veco 
##  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17  
## 10  6 12  9  9  6  6  6  6  3  2  2  2  2  3  3  1  2

table(veco)



##Rootogram showing the theore�cal and observed data for NB

cts=0:11
out=dnbinom(cts,size=4,p=0.5)



Barplot from a theore�cal nega�ve binomial with p=0.5, un�l 4 successes.

dfnb=data.frame(counts=cts,freqs=out)
ggplot(data=dfnb, aes(x=counts, y=freqs)) + geom_bar(stat="identity",fill="#DD8888")



Gamma Mixture of Poissons: the densi�es

Theore�cally taking a mixture of Poisson( ) variables where .

The final distribu�on is the result of a two step process: \ - 1. Generate a Gamma
 distributed number, call it  from density

\ - 2. Generate a number from the Poisson( ) distribu�on with parameter , call it .

If  only took on integer numbers from 0 to 10 then we would write

It’s not quite that simple and we have to write it out as an integral sum instead of a
discrete sum.

Gamma-Poisson is Nega�ve Binomial

μ μ ∼ Gamma(α = k, β)

(α, β) z

dgamma(z, α, β) =
βα

Γ(α)
zα−1e−βz

z z y

dpois(y, λ = z) =
zye−z

y!

z

P(Y = y) = P(Y = y|z = 0)P(z = 0) + P(Y = y|z = 1)P(z = 1)

… + P(Y = y|z = 10)P(z = 10)



We call the distribu�on of  the marginal and it is given by

Remembering that 

Now we use that the integral

so

giving the nega�ve binomial with size parameter  and probability of success .

Y

P(Y = y) = ∫ dgamma(z, a, b)dpois(y, z)dz = ∫ dz
ba

Γ(a)
za−1e−bz zye−z

y!

Γ(a) = (a − 1)!

P(Y = y) = ∫ dz
ba

(a − 1)!y!
zy+a−1e−z(b+1)

∫ dz =zr−1e−wz Γ(r)

wr

P(Y = y) = = ( )( (1 −
(y + a − 1)!

(a − 1)!y!

ba

(b + 1 (b + 1)a )y
y + a − 1

y

b

b + 1
)a

b

b + 1
)y

a b
b+1





Visualiza�on of the hierarchical model that generates the Gamma-Poisson
distribu�on.

The top panel shows the density of a Gamma distribu�on with mean 50 (ver�cal
black line) and variance 30. Assume that in one par�cular experimental replicate, the
value 60 is realized. This is our latent variable. The observable outcome is distributed
according to the Poisson distribu�on with that rate parameter, shown in the middle
panel. In one par�cular experiment the outcome may be, say, 55, indicated by the
dashed green line. Overall, if we repeat these two subsequent random process many
�mes, the outcomes will be distributed as shown in the bo�om panel the Gamma-
Poisson distribu�on.



Read Noise Modeling

Nega�ve Binomial :hierarchical mixture for reads

In biological contexts such as RNA-seq and microbial count data the nega�ve
binomial distribu�on arises as a hierarchical mixture of Poisson distribu�ons. This is
due to the fact that if we had technical replicates with the same read counts, we
would see Poisson varia�on with a given mean. However, the varia�on among
biological replicates and library size differences both introduce addi�onal sources of
variability.

To address this, we take the means of the Poisson variables to be random variables
themselves having a Gamma distribu�on with (hyper)parameters shape  and scale 

. We first generate a random mean, , for the Poisson from the Gamma,
and then a random variable, , from the Poisson( ). The marginal distribu�on is:

r
p/(1 − p) λ

k λ



P(X = k) =

=

=

=

=

P (k) × dλ∫
∞

0

oλ γ(r, )
p

1−p

× dλ∫
∞

0

λk

k!
e−λ λr−1e

−λ
1−p

p

( Γ(r)
p

1−p
)r

dλ
(1 − p)r

k!Γ(r)pr ∫
∞

0

λr+k−1e−λ/p

Γ(r + k)
(1 − p)r

k!Γ(r)pr
pr+k

(1 − p
Γ(r + k)

k!Γ(r)
pk )r



Variance Stabiliza�on
Take for instance different Poisson variables with mean . Their variances are all
different if the  are different.

However, if the square root transforma�on is applied to each of the variables, then
the transformed variables will have approximately constant variance.

μi

μi

library("dplyr")
lambdas = seq(100, 500, by = 100)
simdat = lapply(lambdas, function(l)
  tibble(y = rpois( n = 30, lambda=l),
            lambda = l)) %>% bind_rows
library("ggbeeswarm")
ggplot(simdat, aes( x=lambda, y=y)) +
  geom_beeswarm(alpha = 0.6, color="purple")



Series of Poisson

We have equalized the variances at the different levels by taking a square root
transforma�on of the  variable.y



A�er transforma�on

ggplot(simdat, aes( x=lambda, y=sqrt(y))) +
  geom_beeswarm(alpha = 0.6, color="purple")



More generally, choosing a transforma�on that makes the variance constant is done
by using a Taylor series expansion, called the delta method. We will not give the
complete development of variance stabiliza�on in the context of mixtures but point
the interested reader to the standard texts in Theore�cal sta�s�cs such as and one
of the original ar�cles on variance stabiliza�on.

Anscombe showed that there are several transforma�ons that stabilize the variance
of the Nega�ve Binomial depending on the values of the parameters  and , where 

, some�mes called the {} of the Nega�ve Binomial. For large  and constant 
, the transforma�on

gives a constant variance around . Whereas for  large and  not substan�ally
increasing, the following simpler transforma�on is preferable

Modeling read counts
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If we have technical replicates with the same number of reads , we expect to see
Poisson varia�on with mean , for each gene or taxa or locus  whose
incidence propor�on we denote by .

Thus the number of reads for the sample  and taxa  would be

We use the nota�onal conven�on that lower case le�ers designate fixed or observed
values whereas upper case le�ers designate random variables.

For biological replicates within the same group – such as treatment or control groups
or the same environments – the propor�ons  will be variable between samples.

A flexible model that works well for this variability is the Gamma distribu�on, as it
has two parameters and can be adapted to many distribu�onal shapes.

Call the two parameters  and . So that  the propor�on of taxa  in sample 

is distributed according to Gamma .

Thus we obtain that the read counts  have a Poisson-Gamma mixture of different
Poisson variables. As shown above we can use the Nega�ve Binomial with
parameters  and  as a sa�sfactory model of the variability.

sj

μ = sjui i

ui

j i

∼  Poisson ( )Kij sjui

ui

ri
pi

1−pi
Uij i j

( , )ri
pi

1−pi

Kij

(m = )uisj ϕi



The counts for the gene/taxa  and sample  in condi�on  having a Nega�ve
Binomial distribu�on with  and  so that the variance is wri�en

We can es�mate the parameters  and  from the data.

Random Effects
This applica�on of a hierarchical mixture model is equivalent to the random effects
models used in the classical context of analysis of variance.

Applica�ons
Mixtures occur naturally because of heterogeneous data, an experiment may be run
by different labs, use differing technologies.

There are o�en differing binding propensi�es in different parts of the genome, PCR
biases can occur when different operators use different protocols.

The most common problems involve different distribu�ons because both the means
and the variances are different. This requires variance stabiliza�on to do sta�s�cal
tes�ng.

Mixture models can o�en lead us to be able to use data transforma�ons are actually
used in what is o�en known as a generalized logarithmic transforma�on applied in

i j c
=mc uicsj ϕic

+ .uicsj ϕics2j u2
ic

uic ϕic



microarray variance stabilizing transforma�ons and RNA-seq normaliza�on that we
will study in depth in chapter 7 and which also proves useful in the normaliza�on of
next genera�on reads in microbial ecology and Chip-SEQ analysis .



Wrapup about Mixture Models

Finite Mixture Models

Mixture of Normals with different means and variances.

Mixtures of mul�variate Normals with different means and covariance matrices
(we’ll study next week).

Decomposing the mixtures using the EM algorithm.

Common Infinite Mixture Models

Mixtures of Normals (o�en with a hierarchical model on the variances).

Beta-Binomial Mixtures (the p in the Binomial is generated according to a Beta(a,b)
distribu�on.

Gamma-Poisson for read counts.

Gamma-Exponen�al for PCR.

Dirichlet-Mul�nomial (Birthday problem and the Bayesian se�ng).




