Robust testing and graphs

Susan Holmes

Robust, nonparametric methods

Kostic study of colorectal carcinoma

Genomic analysis identifies association of Fusobacterium with colorectal carcinoma.
Kostic, A. D., Gevers, D., Pedamallu, C. S., Michaud, M., Duke, F., Earl, A. M., et al.
(2012). Genome research, 22(2), 292-298.

library(phyloseq)
filepath = system.file("extdata", "study_ 1457_split_library seqs_and_mapping.zip", package="phyloseq")
kostic = microbio_me_qgiime(filepath)

Found biom-format file, now parsing it...

Done parsing biom...

Importing Sample Metdadata from mapping file...
Merging the imported objects...

Successfully merged, phyloseq-class created.

Returning...

kostic

phyloseq-class experiment-level object

otu_table() OTU Table: [2505 taxa and 190 samples]
sample_data() Sample Data: [190 samples by 71 sample variables]
tax_table() Taxonomy Table: [2505 taxa by 7 taxonomic ranks]

head(sample_data(kostic) SDIAGNOSIS, 10)

[1l] Healthy Tumor Tumor Healthy Healthy Healthy Tumor Healthy
[9] Healthy Healthy
Levels: Healthy None Tumor

A little preprocessing

First remove the 5 samples that had no DIAGNOSIS attribute assigned. These
introduce a spurious third design class that is actually a rare artifact in the dataset.
Also remove samples with less than 500 reads (counts). Note that this kind of data
cleanup is useful, necessary, and should be well-documented because it can also be
dangerous to alter or omit data without clear documentation. In this case | actually
explored the data first, and am omitting some of the details (and explanatory plots)
here for clarity.

kostic <- subset_samples(kostic, DIAGNOSIS != "None")
kostic <- prune_samples(sample_sums(kostic) > 500, kostic)
kostic

phyloseq-class experiment-level object

otu_table() OTU Table: [2505 taxa and 177 samples]
sample_data() Sample Data: [177 samples by 71 sample variables]
tax_table() Taxonomy Table: [2505 taxa by 7 taxonomic ranks]

sample_sums (kostic)

CO0333.N.518126 C€0333.T.518046 38U4VAHB.518100 XZ33PN70.518030

5651 1286 6546 4572
GQ6LSNI6.518106 C0270.N.518041 HZIMMAM6.518095 LRQIWN6C.518048
8714 8018 9327 5833
ABA34NCW.518023 C0332.N.518027 Cl10.S.517995 MQE9ONGV.518038
6971 1833 4536 2666
C0230.N.517992 C0256.N.518170 HZIMMNL5.518062 GQ6LSABJ.518010
1018 8641 6394 6250
C€0282.N.518138 TV28INUO.518004 CO0315.N.518021 C0235.N.517993
1672 4250 7439 1513
5TA9VN6K.518161 A8A34AP9.518086 UEL2GAPI.518173 0436FA08.518097
8934 7214 8341 7389

CO0378.N.518158 41E1KNBP.517985 C0378.T.518104 R8J9ZNOW.518040
7613 4798 9584 7524

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

R8J9ZAGC.518059
10973
C0271.T.518078
1872
0436FNP3.518007
1041

MQETMNL4 .518037
4103
C0322.N.518165
2410
C0285.T.518044
4169
OFHRSNIH.518116
6937
C0268.N.518089
2778
UZ65XAS5.518119
7817
C0388.N.518136
7084
JIDZEN4J.518073
3016
C0159.N.518042
5583
82S3MAZ4.518145
6000
C0285.N.518084
8164
C0211.T.518096
4140
C0374.N.518099
8580
C0341.N.518101
4005
C0186.T.518019
4415
C0230.T.518144
2032
YOTV6NC8.518156
5711
82S3MNBY.518050
6896
C0241.N.518043
6053

5TA9VAT9.518088
6269
C0318.N.518105
5341
C0209.N.517984
5664
C0209.T.518128
3075
6G2KBNS6.518045
6963
41E1KAMA.517991
7016
C0271.N.518022
6316
OTGGZN5Y.518063
5324
C0311.T.518131
8921
C0186.N.518143
3523
JIDZEAPD.518149
6192
C0306.T.518122
1451
C4.T.518118
5191
C0308.N.518154
4774
C0206.N.518065
6837
C0362.N.518069
1911
Cl.T.518120
1361
G20D5N55.518146
5018
C0315.T.518034
1909
C0112.N.518001
2374
S5EKFONB3.518125
7131
Cl.S.518137
2556

OTGGZAZ0.518108
7846
C0159.T.518087
4311
C0240.N.518020
6017
C0112.T.518024
617
C0240.T.518052
3952
QFHRSAG2.518005
5150
KIXFRARY.518160
5692
C0134.N.518072
5903
S5EKFOAO4.518164
5864
38U4VNBW.518090
4320
LRQY9WAHA.518036
3868
C0394.N.518031
3371
C0398.N.518152
4906
C0355.N.518077
2306
C0149.N.518039
6303
C0211.N.518117
6653
C0399.T.518153
2115
YOTV6ASH.518142
936
C0349.N.517989
6014
C0335.N.518107
8019
C0225.N.518047
3957
XBS5MNEH.518074
3135

C0269.N.518130
7771
C0318.T.518140
7853
C0306.N.518003
6253
C0355.T.518157
3874
C0268.T.518114
1388
I7ROLN9P.518079
5630
C0133.N.518051
3594
C0395.N.518054
3874
C0294.T.518134
2594
C0334.T.518147
4759
UZ65XN27.518028
6081
C0342.N.518068
8459
C0388.T.518015
3504
C0308.T.518162
1965
C4.5.518169
5118
G3UBQNDP.518121
5902
C0294.N.517987
2454
C0258.T.517997
11187
C0212.N.518167
5222
C0344.N.518103
7234
C6.5.518082
2034
C0195.N.518110
7847

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

€0322.T.518018
868
G3UBQAJU.518060
6430
C0311.N.518124
4507
C0330.N.518148
1207
C0394.T.518064
1440
C0256.T.518080
1953
€0241.T.518067
2738
€0225.T.518033
5478
MQETMAZC.518171
2074
C0325.T.518083
4722
XZ33PA30.518135
3206
59S9WAIH.518013
3420
UEL2GN92.518058
4917
TV28IANZ.518070
2606
32I9UAPQ.518112
7359
32I9UNA9.518098
3207

C0342.T.518093
865
C0335.T.518115
3228
C0154.N.518002
6152
C0344.T.518029
2330
C0332.T.518017
2322
C0095.T.518141
1992
C0198.N.518081
3532
C0154.T.518091
1477
C0095.N.518123
2642
C0212.T.518155
524
KIXFRNL2.518129
6973
C0314.T.518025
3099
59S9WNC6.518055
4724
Cl10.T.518056
812
UTWNWANU.518168
6669

summary (sample_sums (kostic))

##
##

Min.
524

1st Qu.
2606

Mean
4726

Median
4722

C0198.T.518166
2147
C0349.T.518111
5434
C0258.N.518014
5458
C0206.T.518053
2717
G20D5ABL.518057
6628
C0252.T.518006
2354
C0330.T.518035
1925
C0366.N.518094
5503
C0341.T.518113
4233
C0399.N.518011
9734
C0374.T.518127
926
6G2KBASQ.517999
3098
C0235.T.518049
4566
C0275.T.518032
6317
UTWNWN3P.518012
7122

Max.
11187

3rd Qu.
6430

C0395.T.518075
2581
C0149.T.518132
4504
C0371.N.518009
7256
C0371.T.518139
6757
C6.T.518061
20717
C0366.T.518172
7770
C0325.N.518109
3966
C0270.T.518163
3560
C0252.N.518016
5628
C0334.N.518066
2285
C0275.N.518076
5875
C0133.T.518133
2694
C0362.T.518026
4063
MQE90AS7.518008
4263
BFJMKAKB.518159
2283

A tidy trick (using the pipe operator $>%)

I library(dplyr)

sample_sums (kostic) %>% summary()

Min. 1st Qu. Median Mean 3rd Qu. Max.
524 2606 4722 4726 6430 11187

Question 1a: How many nonzero elements in the matrix ?

I sum(otu_table(kostic)>0)

I ## [1] 34776

Question 1b: How many cells have more than 3 reads in the
matrix ?

I sum(otu_table(kostic)>3)

I B4 [1] 14773

Question 2a: How to make a presence / absence matrix such
that presence is defined as at least 3 reads?

PA[PA<3] = 0
PA[PA>2] = 1

PA = data.frame(otu_table(kostic))
apply(PA,2,sum)

100 70 119 97

C0333.N.518126 C0333.T.518046 X38U4VAHB.518100 XZ33PN70.518030
GQ6LSNI6.518106 C0270.N.518041 HZIMMAM6.518095 LRQI9WN6C.518048

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

143
A8SA34NCW.518023
108
C0230.N.517992
83
C0282.N.518138
92
X5TA9VN6K.518161
128
C0378.N.518158
210
R8J9ZAGC.518059
99
C0271.T.518078
124
0436FNP3.518007
31

MQETMNL4 .518037
85
C0322.N.518165
111
C0285.T.518044
106
OFHRSNIH.518116
141
C0268.N.518089
134
UZ65XAS5.518119
123
C0388.N.518136
141
JIDZEN4J.518073
130
C0159.N.518042
117
X82S3MAZ4.518145
90
C0285.N.518084
120
C0211.T.518096
129
C0374.N.518099
158
C0341.N.518101

139
C0332.N.518027
100
C0256.N.518170
124
TV28INUO.518004
717
A8A34AP9.518086
105
X41E1KNBP.517985
75
X5TA9VAT9.518088
90
C0318.N.518105
148
C0209.N.517984
89
C0209.T.518128
74
X6G2KBNS6.518045
160
X41E1KAMA.517991
64
C0271.N.518022
194
OTGGZN5Y.518063
148
C0311.T.518131
84
C0186.N.518143
112
JIDZEAPD.518149
121
C0306.T.518122
63

C4.T.518118

97
C0308.N.518154
163
C0206.N.518065
81
C0362.N.518069
96

Cl1l.T.518120

115
Cl10.8.517995
111
518062
103
518021
113
518173
124
518104
106
518108
107
518087
88
518020
138
518024
41
518052
134
518005
129
518160
201
518072
196
518164
111
518090
96
518036
177
C0394.N.518031
114
C0398.N.518152
135
C0355.N.518077
103
C0149.N.518039
114
C0211.N.518117
152
C0399.T.518153

HZIMMNLS.
C0315.N.
UEL2GAPI.
C0378.T.
OTGGZAZO.
C0159.T.
C0240.N.
coliz2.T.
Cc0240.T.
QFHRSAG2.
KIXFRARY.
CO0134.N.
X5EKFOAO4.
X38U4VNBW.

LRQ9WAHA.

102
MQOE9ONGV.518038
68
GQ6LSABJ.518010
130
C0235.N.517993
70
0436FA08.518097
25
R8J9ZNOW.518040
98
C0269.N.518130
194
C0318.T.518140
68
C0306.N.518003
147
C0355.T.518157
89
C0268.T.518114
68
I7ROLN9P.518079
59
C0133.N.518051
115
C0395.N.518054
104
C0294.T.518134
116
C0334.T.518147
108
UZ65XN27.518028
189
C0342.N.518068
197
C0388.T.518015
111
C0308.T.518162
100

C4.S5.518169

150
G3UBQNDP.518121
96
C0294.N.517987

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

148
C0186.T.518019
105
C0230.T.518144
92
YOTV6NC8.518156
920

X82S3MNBY.518050

108
C0241.N.518043
112
C0322.T.518018
57
G3UBQAJU.518060
60
C0311.N.518124
717
C0330.N.518148
62
C0394.T.518064
42
C0256.T.518080
60
C0241.T.518067
79
C0225.T.518033
65
MQETMAZC.518171
51
C0325.T.518083
84
XZ33PA30.518135
62

X59S9WAIH.518013

63
UEL2GN92.518058
95
TV28IANZ.518070
62

X32I9UAPQ.518112

41

X32I9UNA9.518098

40

51
G20D5N55.518146
79
C0315.T.518034
52
C0112.N.518001
97

X5EKFONB3.518125

117
Cl.5.518137

75
C0342.T.518093
58
C0335.T.518115
102
C0154.N.518002
120
C0344.T.518029
74
C0332.T.518017
52
C0095.T.518141
80
C0198.N.518081
96
C0154.T.518091
51
C0095.N.518123
717
C0212.T.518155
47
KIXFRNL2.518129
78
C0314.T.518025
28

X59S9WNC6.518055

70

C10.T.518056

41
UTWNWANU.518168
47

X6G2KBASQ.

105
518142
39
517989
126
518107
143
518047
79
518074
16
518166
64
518111
94
518014
134
518053
34
518057
102
518006
58
518035
86
518094
144
518113
41
518011
180
518127
53
517999
117
C0235.T.518049
37
C0275.T.518032
55
UTWNWN3P.518012
35

YOTV6ASH.

C0349.N.

C0335.N.

C0225.N.

XBS5MNEH.

C0198.T.

C0349.T.

C0258.N.

C0206.T.

G20D5ABL.

C0252.T.

C0330.T.

C0366.N.

C0341.T.

C0399.N.

C0374.T.

147
C0258.T.517997
166
C0212.N.518167
137
C0344.N.518103
123
C6.5.518082

69
C0195.N.518110
146
C0395.T.518075
73
C0149.T.518132
122
C0371.N.518009
117
C0371.T.518139
117
C6.T.518061

64
C0366.T.518172
162
C0325.N.518109
106
C0270.T.518163
71
C0252.N.518016
193
C0334.N.518066
97
C0275.N.518076
103
C0133.T.518133
64
C0362.T.518026
34
MQE90AS7.518008
43
BFJMKAKB.518159
25

apply(PA,2,sum) %>% summary()

Min. 1lst Qu. Median Mean 3rd Qu. Max.
16.00 68.00 99.00 99.28 123.00 210.00

If we actually want to have a phyloseq object and have a new otu_table with only
presence absence, we do the following.

joey version
kMat <- kostic %>% otu_table %>% as("matrix")
PA <- ifelse(kMat > 2, 1, 0) %>% otu_table(taxa_are_rows = TRUE)

Use rankings instead of values.

What is the highest rank in the following vector?

tt = sample(100,19)
tt

[1]1 29 19 86 11 40 55 77 17 7 87 25 32 53 20 18 97 76 72 64
rank(tt)
#%# [1] 8 517 2101216 3 118 7 9 11 6 4 19 15 14 13

abund <- otu_table(kostic)
abund[1:5,1:8]

OTU Table: [5 taxa and 8 samples]

taxa are rows

C0333.N.518126 C0333.T.518046 38U4VAHB.518100 XZ33PN70.518030
304309 40 4 1 2

469478 0 0 0 0

##
##
##
##
##
##
##
##
##

208196
358030
16076

304309
469478
208196
358030
16076

0 0 0
0 0 0
271 28 110
GQ6LSNI6.518106 C0270.N.518041 HZIMMAM6.518095 LRQY9WN6C.5180
30 1 4
0 0 0
0 0 0
0 0 0
34 0 0

0
0
7
4

abund_ranks[1:5,1:8]

I abund_ranks <- apply(abund, 2, rank)

##
##
##
##
##
##
##
##
##
##
##
##

304309
469478
208196
358030
16076

304309
469478
208196
358030
16076

C0333.N.518126 C0333.T.518046 38U4VAHB.518100 XZ33PN70.518030

2477.0 2452.0 2326 2398.5
1146.5 1183.5 1145 1164.5
1146.5 1183.5 1145 1164.5
1146.5 1183.5 1145 1164.5
2499.0 2494.0 2482 2444.5
GQ6LSNI6.518106 C0270.N.518041 HZIMMAM6.518095 LRQO9WN6C.518048
2459.5 2272.5 2408.5 2449
1093.5 1110.0 1134.5 1155
1093.5 1110.0 1134.5 1155
1093.5 1110.0 1134.5 1155
2467.0 1110.0 1134.5 1155

abund_ranks <-abund_ranks - 2000
abund_ranks[abund_ranks < 1] <- 1

abund_ranks[1:5,1:8]

##
##
##
##
##
##
##
##
##
##

304309
469478
208196
358030
16076

304309
469478
208196

C0333.N.518126 C0333.T.518046 38U4VAHB.518100 XZ33PN70.518030

4717 452 326 398.5

1 1 1 1.0

1 1 1 1.0

1 1 1 1.0

499 494 482 444.5
GQ6LSNI6.518106 C0270.N.518041 HZIMMAM6.518095 LRQI9WN6C.518048
459.5 272.5 408.5 449

1.0 1.0 1.0 1

1.0 1.0 1.0 1

358030 1.0
16076 467.0

=
o o
[P
o o

Plug the rankings to replace the original abundances in the phyloseq object:

kostica <-kostic
otu_table(kostica) <- otu_table(abund_ranks,taxa_are_rows=TRUE)

Perform a simple Wilcox test on some of the taxa-rows

tab2 <- abund_ranks[c(2008,2315,1886, 733, 816, 1481),]
diagnosis=as.factor(sample_data(kostic)$DIAGNOSIS)

x <- tab2[1,]
wilcox.test(x ~ diagnosis,
alternative ="two.sided")

##

Wilcoxon rank sum test with continuity correction

##

data: x by diagnosis

W = 2625.5, p-value = 0.0001506

alternative hypothesis: true location shift is not equal to 0

wilcox.test(tab2[4,] ~ diagnosis,
alternative ="two.sided")

##

Wilcoxon rank sum test with continuity correction

##

data: tab2[4,] by diagnosis

W = 3956, p-value = 0.3366

alternative hypothesis: true location shift is not equal to O

Multiple testing correction can be done using the multtest Bioconductor package:

if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages ("BiocManager")

BiocManager: :install ("multtest")

Hierarchical multiple testing

Hypothesis testing can identify individual bacteria whose abundance relates to sample
variables of interest.

A standard approach is very similar to the approach we already visited in lecture 7 .

To integrate this information, we proposed a hierarchical testing procedure; where
taxonomic groups are only tested if higher levels are found to be be associated.

In the case where many related species have a slight signal, this pooling of information
can increase power.

We apply this method to test the association between microbial abundance and age.

Start by using the normalization protocols we discussed in lecture 7
following DESeqg2 for RNA-seq data and the Waste Not, Want Not paper for 16S rRNA
generated count data and available in the DESeq2 package:

library("DESeq2")
library("phyloseq")
psl = readRDS("/Users/susan/Books/CUBook/data/psl.rds")
ps_dds = phyloseq_to_deseq2(psl, ~ ageBin + family relationship)
gm_mean = function(x, na.rm = TRUE) {
exp(sum(log(x[x > 0]), na.rm = na.rm) / length(x))

}

geoMeans = apply(counts(ps_dds), 1, gm_mean)

ps_dds = estimateSizeFactors(ps_dds, geoMeans = geoMeans)
ps_dds = estimateDispersions (ps_dds)
abund = getVarianceStabilizedData(ps_dds)

We use the structSSI| package to perform the hierarchical testing (Sankaran and
Holmes 2014).

Hierarchical testing

Procedure needs univariate tests for each higher-level taxonomic group, not just every
taxa.

library("structSSIi")

el = phy tree(psl)$edge

elo el

elo elO[rev(seq_len(nrow(el))), 1]

el _names = c(rownames (abund), seq_ len(phy_ tree(psl)$Nnode))

el[, 1] = el_names[elO[, 1]]
el[, 2] = el_names[as.numeric(elO[, 2])]
unadj_p = treePValues(el, abund, sample_data(psl)$ageBin)

We can now do our FDR calculations using the hierarchical testing procedure. The test
results are guaranteed to control several variants of FDR, but at different levels; we

defer details to (Benjamini and Yekutieli 2003; Benjamini and Bogomolov 2014;
Sankaran and Holmes 2014).

Interactive plotting command that will open a browser window:

hfdr _res = hFDR.adjust(unadj_p, el, 0.75)
summary (hfdr_res)
#plot (hfdr_res, height = 5000) # opens in a browser

tax = tax_table(psl)[, c("Family", "Genus")] %>% data.frame()
tax$seq = rownames (abund)
hfdr_res@p.vals$seq = rownames (hfdr_res@p.vals)
tax %>% left_join(hfdr_res@p.vals[,-3]) %>%
arrange (adjp) %>% head(10)

Family Genus seq unadjp
1 Lachnospiraceae <NA> GCAAG.96 1.673295e-82
2 Erysipelotrichaceae <NA> GCGAG.46 1.134371e-79
#H 3 Lachnospiraceae Roseburia GCAAG.71 3.078334e-75
##t 4 Lachnospiraceae Clostridium_XlVa GCAAG.190 8.173451e-59
5 Lachnospiraceae <NA> GCAAG.254 3.227107e-50
6 Lachnospiraceae Clostridium_XlVa GCAAG.150 1.056944e-49
7 Lachnospiraceae <NA> GCAAG.30 9.057568e-49
8 Erysipelotrichaceae Turicibacter GCAAG.4 2.896917e-48
#H# 9 Ruminococcaceae Ruminococcus GCGAG.78 1.978950e-46
10 Lachnospiraceae Clostridium_XlVa GCAAG.170 6.107952e-43
adjp
1 3.346591e-82
2 2.268741le-79
3 6.156668e-75
4 1.634690e-58
5 6.454215e-50
6 2.113888e-49
7 1.811514e-48
8 5.793834e-48
9 3.957900e-46
10 1.221590e-42

It seems that the most strongly associated bacteria all belong to family
Lachnospiraceae.

Graph based testing: the Friedman-Rafsky test

Graph-based two-sample tests were introduced by Friedman and Rafsky (Friedman
and Rafsky 1979) as a generalization of the Wald-Wolfowitz runs test.

Graph vertices associated with covariates.
Test whether the covariate is significantly associated to the graph structure.

The Friedman-Rafsky tests for two/multiple sample segregation on a minimum
spanning tree.

It was conceived as a generalization of the univariate Wald-Wolfowitz runs test. If we
are comparing two samples, say men and women, whose coordinates represent a
measurement of interest.

We color the two groups blue and red as below.

The Wald-Wolfowitz test looks for long runs of the samecolor that would indicate that
the two groups have different means.

group

men

women

Instead of looking for consecutive values of one type ('runs’), we count the number of
connected nodes of the same type.

Once the minimum spanning tree has been constructed, the vertices are assigned
‘colors’ according to the different levels of a categorical variable. We call pure edges
those whose two nodes have the same level of the factor variable. We use Sy, the
number of pure edges as our test statistic. To evaluate whether our observed value
could have occurred by chance when the groups have the same distributions, we

permute the vertix labels (colors) randomly and recount how many pure edges there
are. This label swapping is repeated many times, creating our null distribution for S.

Example: Bacteria sharing between mice

library(phyloseq)

library(igraph)

psl = readRDS("/Users/susan/Books/CUBook/data/psl.rds")
sampledata = data.frame(sample_data(psl))

dl = as.matrix(phyloseq::distance(psl, method="jaccard"))

gr = graph.adjacency(dl, mode = "undirected", weighted = TRUE)
net = igraph::mst(gr)

V(net)$id = sampledata[names(V(net)), "host_subject_id"]
V(net)$litter = sampledata[names(V(net)), "family relationship"]

We make a ggnetwork object from the resulting igraph generated minimum spanning
tree and then plot it.

gnet=ggnetwork (net)

ggplot(gnet, aes(x = x, y = y, xend = xend, yend = yend))+
geom_edges (color = "darkgray") +
geom_nodes (aes(color = id, shape = litter)) + theme_blank()+
theme (legend.position="bottom")

N

=R

- ,.5 —
RN SR
RE T e LS -
v='ﬂ-__-.".,‘
AT

s

% <L
/> [Y

N

* FDO3 * FOO6 * MOD1T = MOD4 litter * Litter1 4 Litter?
id = FOOD4 * FOO7 * MODZ * MOOS
* FOO5 * FOOEB * MOOD3 * MODG

MST plot

Distance based graphs (especially the Jaccard distance)

Distances

Euclidean Distances SQRT(Sums of squares of coordinates).
Mahalanobis distance (unequal weight per direction).
Weighted euclidean distances, y?,...

Manhattan/Hamming/City Block.

Measurements of co-occurrence, ecological/ sociological data for instance
Jaccard. When what really counts is how often certain species are found
together then if the observations are just sequences of O’s and 1’s, presence of
1’s in the same spots does not present the same importance as that of the O’s:
Jaccard distance=1-JC.

Distances between “purified ' observations (we transform the data first).

There are almost a hundred different distances available combining outside
information (distance on a graph, geodesic distance along a path, distance on a tree),
combining categorical data and continuous data (Gower’s distance) and using many
different weighting schemes.

If you know what is the relevant notion of “closeness’ or similarity for your data, you
have (almost) solved the problem.

Distance functions available

phyloseq distances

require(vegan)

data(dune)
dist.dune=vegdist (dune)
symnum(as.matrix(dist.dune))

123456789 10 11 12 13 14 15 16 17 18 19 20
##
##
##
##
##
##
##
« ..
9
10 . o« o e

11

oAU WNR
~

. ;e .
##12*, r o r r I

##13+' r r r r r

141, , ,+++ ., , + , ,

15 1 * , , +++ ., + .

16 * + , , +++ ., + + . , .

17 ++++, , ,++, , * + + + 1
##lsl’ll"‘ll‘ ’I+’+I

19 1+ 4+, , , ., e o+ o+,
20 1 * +++ ., + , , . S

14 14
attr(,"legend")
11 0 ' ' 0.3 '.' 0.6 ',' 0.8 '+' 0.9 '*' 0.95 'B' 1

http://joey711.github.io/phyloseq/distance.html

40

30

Color Key

0 02 04 06 08
Yalue

10

1

12

13

14

15

16

17

How do we measure similarity?

4

ﬁ) <

Equal-distance contour plots according to four different distances: points on any one
curve are all the same distance from the center point.

N

Euclidean The Euclidean distance between two points A = (ay,...,a,) and
B = (b1, ...,by) inap-dimensional space (for the p features) is the square root of the

sum of squares of the differences in all p coordinate directions:

d(A, B) = \/(al — b1 + (a2 — by)*+. .. Hay — by)”.

Manhattan The Manhattan, City Block, Taxicab or L; distance takes the sum of the
absolute differences in all coordinates.

d(A,B) = |la; — by| + |lan — by |+.. .+|Clp — bpl

Maximum The maximum of the absolute differences between coordinates is also
called the L, distance:

doo(A, B) = max |Cli — b,l

Weighted Euclidean distance is a generalization of the ordinary Euclidean distance, by
giving different directions in feature space different weights.

(the)(2 distance)
The Mahalanobis distance is another weighted Euclidean distance.

Minkowski Allowing the exponent to be m instead of 2, as in the Euclidean distance,
gives the Minkowski distance

d(A,B) = <(a1 — b1)m + (ap — bz)m+. .. +(ap — bp)m>1ﬁ

Binary When the two vectors have binary bits as coordinates, we can think of the non-
zero elements as ‘on’ and the zero elements as ‘off’. The binary distance is the
proportion of features having only one bit on amongst those features that have at least
one bit on.

Jaccard Distance Occurrence of traits or features in ecological or mutation data can be
translated into presence and absence and encoded as 1's and O’s.

In such situations, co-occurence is often more informative than co-absence.

For instance, when comparing mutation patterns in HIV, the co-existence in two
different strains of a mutation tends to be a more important observation than its co-
absence. For this reason, biologists use the Jaccard index.

Let’s call our two observation vectors S and T, f11 the number of times a feature co-
occursin S and 7, fio (and fp1) the number of times a feature occurs in S but not in T’
(and vice versa), and foo the number of times a feature is co-absent. The Jaccard index

IS

S
for +fio +/fi1’

(i.e., it ignores fop), and the Jaccard dissimilarity is

JS, T) =

for + fio

d TY=1- T) =)
/(5. 1) (S for +fio + /1

Red

Correlation based distance

d(A,B) = \/2(1 — cor(A, B)).

Orange

An example for the use of Mahalanobis distances to measure the distance of a new
data point (red) from two cluster centers.

Which of the two cluster centers in the Figure is the red point closest to?

Computations related to distances in R

The dist function in R is optimized to use less space than the full n? positions a
complete n X n distance matrix between n objects would require. The function
computes one of six choices of distance (euclidean, maximum, manhattan, canberra,
binary, minkowski) and outputs a vector of values sufficient to reconstruct the
complete distance matrix. The function returns a special object of class dist that
encodes the relevant vector of size n X (n — 1)/2. Here is the output for a 3 by 3
matrix:

mx

my
mz

c(0, 0, 0, 1, 1, 1)
c(1, 0, 1, 1, 0, 1)
c(l, 1, 1, 0, 1, 1)
mat rbind (mx, my, mz)
dist (mat)

mx my
my 1.732051
mz 2.000000 1.732051

dist(mat, method = "binary")

mx my
my 0.6000000
mz 0.6666667 0.5000000

In order to access a particular distance (for example the distance between
observations 1 and 2), one has to turn the dist class object back into a matrix.

load(url("http://bios221.stanford.edu/data/Morder.RData"))
sqrt (sum((Morder[1l,] - Morder[2,])"2))

[1] 5.593667
as.matrix(dist(Morder))[2, 1]

[1] 5.593667

Let’s look at how we would compute the Jaccard distance we defined above between
HIV strains.

mut = read.csv("http://bios221.stanford.edu/data/HIVmutations.csv")
mut[l:3, 10:16]

P32I p33F p34Q p35G p43T p46I p46L
1 0 1 0 0 o o (0}
2 (0] 1 0 0 o 1 0
3 (0} 1 0 0 o o 0

Compare the Jaccard distance (available as the function vegdist in the R package
vegan) between mutations in the HIV data mut to the correlation based distance.

library("vegan")

mutJ = vegdist(mut, "jaccard")
mutC = sqrt(2 * (1 - cor(t(mut))))
mutJd

1 2 3 4

2 0.800

3 0.750 0.889

4 0.900 0.778 0.846

5 1.000 0.800 0.889 0.900

as.dist (mutcC)

1 2 3 4
2 1.19

3 1.10 1.30

4 1.32 1.13 1.30

5 1.45 1.19 1.30 1.32

https://cran.r-project.org/web/packages/vegan/

The Jaccard index between graphs can be computed by looking at two graphs built on
the same nodes and counting the number of co-occurring edges.

This is implemented in the function similarity in the igraph package.

Distances and dissimilarities are also used to compare images, sounds, maps and
documents.

Asking yourself what is the relevant notion of “closeness” or similarity for your data can
provide useful ways of representing them.

https://cran.r-project.org/web/packages/igraph/

Testing relation between graph and factors

Compute the null distribution and p-value for the test, this is implemented in the
phyloseqGraphTest package:

library("phyloseqGraphTest")
gt = graph_perm_test(psl, "host_subject_id", distance="jaccard",
type="mst", nperm=1000)

gt$pval

[1] 0.000999001

Histogram of the null distribution generatedby permutation using:

plot_permutations(gt)

400 -

300 -

NULL

100 -

40 80 120
Mumber of pure edges

Different choices for the skeleton graph

It is not necessary to use an MST for the skeleton graph that defines the edges.

Graphs made by linking nearest neighbors (Schilling 1986)
Distance thresholding work also works well (sometimes called geometric graphs).

phyloseq has functionality for creating graphs based on thresholding a distance
matrix through the function make network.

Create a network by creating a edge between samples whose Jaccard dissimilarity is
less than a threshold, which we set below via the parameter max.dist .

This is a co-occurrence network.

net = make_network(psl, max.dist = 0.35)

sampledata = data.frame(sample_data(psl))

V(net)$id = sampledata[names(V(net)), "host_subject_id"]
V(net)$litter = sampledata[names(V(net)), "family relationship"]
netg = ggnetwork(net)

ggplot (netg, aes(x = x, y = y, xend = xend, yend = yend)) +
geom_edges (color = "darkgray") +
geom_nodes (aes(color = id, shape = litter)) + theme_blank()+
theme (legend.position="bottom")

* FOD3 * FOOE * MOD1 * MOD4 litter * Litter1 4 Litter?
id * FOO4 * FOO7T * MOD2 * MOOS
* FDD5 * FOD8 * MOD3 * MOOB

Sometimes it will preferable to adjust the permutation distribution to account for
known structure between the covariates.

Friedman-Rafsy test with nested covariates

individual mice (the host_subject_id variable).

a litter (the family_relationship variable) effect ?

plot_test_network(gtnnl)

] ey
I‘\'ﬂ '{% % :' I ;‘ edgetype
e R A N
S L o>="

,?{ % L, \\ ! DLT)_‘ . sampionpe
. - o S
{—\é j A P IRENG e

We permute the family relationship labels but keep the host subject id
structure intact.

grouping = "host_subject_id",

gt = graph_perm_test(psl, "family relationship”,
distance = "jaccard", type = "mst", nperm= 1000)

gt$Spval

[1] 0.001998002

plot_permutations(gt)

100 -

NULL

a0 =

] L]
220 240 260 280 30C
Number of pure edges

gtnnl = graph_perm_test(psl, "family relationship"”,
grouping "host_subject_id",
distance = "jaccard", type = "knn", knn = 1)

gtnnl$pval

[1] 0.004

The dual graph
= Between samples through their shared taxa.
m Between taxa: do some of the taxa co-occur more often than one would expect ?
Microbial ‘communities’ as they assemble in the microbiome.
Transpose the data.

Note: always prefer Jaccard to correlation networks.

Useful Packages for Incorporating Graphs into an
Analysis

Important examples of graphs and useful R packages

ggnetwork and igraph

Combining graphs with statistical data

structSSI and phyloseq. bioNet

A full list packages that deal with graphs and networks is available here:
http:/www.bioconductor.org/packages/release/BiocViews.html#___GraphAndNetwork

https://cran.r-project.org/web/packages/ggnetwork/
https://cran.r-project.org/web/packages/igraph/
https://cran.r-project.org/web/packages/structSSI/
https://bioconductor.org/packages/phyloseq/
https://bioconductor.org/packages/release/bioc/html/BioNet.html
http://www.bioconductor.org/packages/release/BiocViews.html#___GraphAndNetwork

References

Benjamini, Yoav, and Marina Bogomolov. 2014. “Selective Inference on Multiple
Families of Hypotheses.” Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 76 (1). Wiley Online Library: 297-318.

Benjamini, Yoav, and Daniel Yekutieli. 2003. “Hierarchical Fdr Testing of Trees of
Hypotheses.” Technical report, Department of Statistics; Operations Research, Tel Aviv
University.

Friedman, Jerome H, and Lawrence C Rafsky. 1979. “Multivariate Generalizations of
the Wald-Wolfowitz and Smirnov Two-Sample Tests.” The Annals of Statistics. JSTOR,
697-717.

Sankaran, Kris, and Susan Holmes. 2014. “StructSSI: Simultaneous and Selective
Inference for Grouped or Hierarchically Structured Data.” Journal of Statistical Software
59 (1): 1-21.

Schilling, Mark F. 1986. “Multivariate Two-Sample Tests Based on Nearest Neighbors.”
Journal of the American Statistical Association 81 (395). Taylor & Francis: 799-806.

