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Matrices	and	their	Mo�va�on
It	is	current	prac�ce	to	measure	many	variables	on	the	same	pa�ents,	we	may	have	all
the	biometrical	characteris�cs,	height,	weight,	BMI,	age	as	well	as	clinical	variables
such	as	blood	pressure,	blood	sugar,	heart	rate	for	100	pa�ents,	these	variables	will
not	be	independent.

What	are	the	data?
To	start	off,	a	useful	toy	example	we’ll	use	is	from	the	sports	world;	performances
of	decathlon	athletes.

These	are	measurements	of	athletes’	performances	in	the	decathlon:	the	variables
m100,	m400,	m1500	are	performance	�mes	in	seconds	for	the	100	metres,	400
metres	and	1500	meters	respec�vely,	‘m110‘	is	the	�me	taken	to	finish	the	110



meters	hurdles	whereas	pole	is	the	pole-jump	height,	weight	is	the	length	in
metres	the	athletes	threw	the	weight.

m100 long weight highj m400 m110 disc pole jave m1500

1 11.25 7.43 15.48 2.27 48.90 15.13 49.28 4.70 61.32 268.95

2 10.87 7.45 14.97 1.97 47.71 14.46 44.36 5.10 61.76 273.02

3 11.18 7.44 14.20 1.97 48.29 14.81 43.66 5.20 64.16 263.20

4 10.62 7.38 15.02 2.03 49.06 14.72 44.80 4.90 64.04 285.11

Diabetes
Clinical	measurements	(‘diabetes‘	data).	This	data	measures	glucose	levels	in	the
blood	a�er	fas�ng	(glufast),	a�er	a	test	condi�on	(glutest)	as	well	as	steady	state
plasma	glucose	(steady)	and	steady	state	(insulin)	for	diabetes,	the	sixth	variable	is
not	con�nuous	and	is	considered	a	supplementary	variable	as	we	will	see.

diabetes=read.table(url("http://bios221.stanford.edu/data/diabetes.txt"),header=TRUE,row.nam
es=1) 
diabetes[1:4,]

##   relwt glufast glutest steady insulin Group 
## 1  0.81      80     356    124      55     3 
## 3  0.94     105     319    143     105     3 
## 5  1.00      90     323    240     143     3 
## 7  0.91     100     350    221     119     3

Microbial	Ecology
Opera�onal	Taxon	Unit	read	counts	in	a	microbial	ecology	study;	the	columns
represent	different	‘species’	of	bacteria,	the	rows	are	labeled	for	the	samples.

             469478 208196 378462 265971 570812 
EKCM1.489478      0      0      2      0      0 
EKCM7.489464      0      0      2      0      2 
EKBM2.489466      0      0     12      0      0 
PTCM3.489508      0      0     14      0      0 
EKCF2.489571      0      0      4      0      0



RNA-Seq
Here	are	some	RNA-seq	transcriptomic	data	showing	numbers	of	mRNA	reads
present	for	different	pa�ent	samples,	the	rows	are	pa�ents	and	the	columns	are
the	genes.

           FBgn0000017 FBgn0000018 FBgn0000022 FBgn0000024 FBgn0000028 FBgn0000032 
untreated1        4664         583           0          10           0        1446 
untreated2        8714         761           1          11           1        1713 
untreated4        3150         310           0           3           0         672 
treated1          6205         722           0          10           0        1698 
treated3          3334         308           0           5           1         757

Mass	Spectroscopy
Mass	spectroscopy	data	where	we	have	samples	containing	informa�ve	labels
(knockout	versus	wildtype	mice)	and	protein	 	features	designated	by	their	m/z
number.

mz       129.9816   72.08144  151.6255  142.0349  169.0413    186.0355 
KOGCHUM1  60515      181495          0    196526    25500    51504.40 
WTGCHUM1 252579       54697        412    487800    48775    130491.15 
WTGCHUM2 187859       56318      46425   454226    45626    100845.01

Expression	Data	(microarray)
Here	the	rows	are	samples	from	different	subjects	and	different	T	cell	types	and
the	columns	are	a	subset	of	gene	expression	measurements	on	the	156	most
differen�ally	expressed	genes	(Holmes2005memory).

#######Melanoma/Tcell Data: Peter Lee, Susan Holmes, PNAS. 
load(url("http://bios221.stanford.edu/data/Msig3transp.RData")) 
round(Msig3transp,2)[1:5,1:6]

##              X3968 X14831 X13492 X5108 X16348  X585 
## HEA26_EFFE_1 -2.61  -1.19  -0.06 -0.15   0.52 -0.02 
## HEA26_MEM_1  -2.26  -0.47   0.28  0.54  -0.37  0.11 
## HEA26_NAI_1  -0.27   0.82   0.81  0.72  -0.90  0.75 
## MEL36_EFFE_1 -2.24  -1.08  -0.24 -0.18   0.64  0.01 
## MEL36_MEM_1  -2.68  -0.15   0.25  0.95  -0.20  0.17

×



celltypes=factor(substr(rownames(Msig3transp),7,9)) 
status=factor(substr(rownames(Msig3transp),1,3))

The	vo�ng	data
house=read.table("/Users/susan/Dropbox/CaseStudies/votes.txt") 
head(house[,1:5])

##     V1   V2   V3   V4   V5 
## 1 -0.5 -0.5  0.5 -0.5  0.0 
## 2 -0.5 -0.5  0.5 -0.5  0.0 
## 3  0.5  0.5 -0.5  0.5 -0.5 
## 4  0.5  0.5 -0.5  0.5 -0.5 
## 5  0.5  0.5 -0.5  0.5 -0.5 
## 6 -0.5 -0.5  0.5 -0.5  0.0

party=scan("/Users/susan/Dropbox/CaseStudies/party.txt") 
#table(party)

Biometrical	Measurements
Measurements:	turtles

#require(MSBdata) 
turtles=read.table(url("http://bios221.stanford.edu/data/PaintedTurtles.txt"),header=TRUE) 
turtles[1:4,]

##   sex length width height 
## 1   f     98    81     38 
## 2   f    103    84     38 
## 3   f    103    86     42 
## 4   f    105    86     40

Some	biological	traits	of	lizards	are	available	in	the	‘ade4‘	package

require(ade4) 
data(lizards) 
lizards$traits[1:4,c(1,5,6,7,8)]

##    mean.L hatch.m clutch.S age.mat clutch.F 
## Sa   69.2   0.572      6.0      13      1.5 
## Sh   48.4   0.310      3.2       5      2.0 
## Tl  168.4   2.235     16.9      19      1.0 
## Mc   66.1   0.441      7.2      11      1.5



Data	visualiza�on	and	prepara�on
It	is	always	beneficial	to	start	a	mul�dimensional	analysis	by	checking	the	simple	one
dimensional	and	two	dimensional	summary	sta�s�cs,	we	can	visualize	these	using	a
graphics	package	that	builds	on	‘ggplot2‘	called	‘GGally‘.

Low	dimensional	data	summaries	and
prepara�on
What	do	we	mean	by	low	dimensional	?

flatland

If	we	are	studying	only	one	variable,	just	one	column	of	our	matrix,	we	might	call	it	
or	 ;	we	call	it	one	dimensional.

A	one	dimensional	summary	a	histogram	that	shows	that	variable’s	distribu�on,	or	we
could	compute	its	mean	 	or	median,	these	are	zero-th	dimensional	summaries	of	one
dimension	data.

Two	dimensional	data
When	considering	two	variables	( 	and	 )	measured	together	on	a	set	of	observa�ons,
the	correla�on	coefficient	measures	how	the	variables	co-vary.

This	is	a	single	number	summarizes	two	dimensional	data,	its	formula	involves	 	and	 :
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cor(turtles[,-1])

##        length width height 
## length  1.000 0.978  0.965 
## width   0.978 1.000  0.961 
## height  0.965 0.961  1.000

library("GGally")

## Registered S3 method overwritten by 'GGally': 
##   method from    
##   +.gg   ggplot2

ggpairs(turtles[,-1],axisLabels = "none")

Pairs	plot	for	turtles	data

pairs 	plot	for	athletes



ggpairs(athletes)

Pairs	athletes

library("pheatmap") 
pheatmap(cor(athletes),cell.width=10,cell.height=10)



Heatmap	athletes

Preprocessing	the	data
We	usually	center	the	cloud	of	points	around	the	origin;	the	most	common	way	of
doing	this	is	to	make	new	variables	whose	means	are	all	zero.

More	robust	scaling	can	be	done	also	(median).

Different	variables	are	measured	in	different	units,	and	at	different	scales,	and	so
would	be	hard	to	compare	in	their	original	form.

library("ggplot2") 
library("factoextra")

## Welcome! Related Books: `Practical Guide To Cluster Analysis in R` at https://goo.gl/13EF
CZ

apply(turtles[,-1],2,sd)

## length  width height  
##  20.48  12.68   8.39

apply(turtles[,-1],2,mean)



## length  width height  
##  124.7   95.4   46.3

Transform	the	data:	standardizing
Making	the	data	have	a	common	standard	devia�on	is	the	usual	transforma�on.	As	in
the	correla�on	coefficient.

This	rescaling	is	done	using	the	scale	func�on	which	makes	every	column	have	a
variance	of	1.

turtleMatScale=scale(turtles[,-1]) 
scaledturtles=data.frame(turtleMatScale,sex=turtles[,1]) 
apply(scaledturtles[,-4],2,mean)

##    length     width    height  
## -1.43e-18  1.94e-17 -2.87e-16

apply(scaledturtles[,-4],2,sd)

## length  width height  
##      1      1      1

ggplot(scaledturtles,aes(x=width,y=height, group =sex)) + 
  geom_point(aes(color=sex))



A	Li�le	History
Invented	in	1901	by	Karl	Pearson	as	a	way	to	reduce	a	two	variable	sca�erplot	to	a
single	coordinate.

Used	by	sta�s�cians	in	the	1930s	to	summarize	a	ba�ery	of	psychological	tests	run	on
the	same	subjects	Hotelling:1933,	extrac�ng	overall	scores	that	could	summarize
many	variables	at	once.

It	is	called	Principal	Component	Analysis	(abbreviated	PCA).

Not	principled

Dimension	reduc�on
PCA	is	an	‘unsupervised	learning	technique’	because	it	treats	all	variables	as	having	the
same	status.



PCA	is	visualiza�on	technique	which	produces	maps	of	both	variables	and
observa�ons.

We	are	going	to	give	you	a	flavor	of	what	is	called	mul�variate	analyses.	As	a	useful
first	approxima�on	we	formulate	many	of	the	methods	through	manipula�ons	called
linear	algebra.

The	raison	d’être	for	mul�variate	analyses	is	connec�ons	or	associa�ons	between	the
different	variables.

If	the	columns	of	the	matrix	are	unrelated,	we	should	just	study	each	column
separately	and	do	standard	univariate	sta�s�cs	on	them	one	by	one.

We	use	projec�ons:

projec�onvector

Low	Dimensional	Projec�ons
Here	we	show	one	way	of	projec�ng	two	dimensional	data	onto	a	line.

The	olympic	data	come	from	the	 ade4 	package,	they	are	the	performances	of
decathlon	athletes	in	an	olympic	compe��on.



Sca�erplot	of	two	variables	showing	projec�on	on	the	x	coordinate	in	red.

How	do	we	summarize	two	dimensional	data	by
a	line?
In	general,	we	lose	informa�on	about	the	points	when	we	project	down	from	two
dimensions	(a	plane)	to	one	(a	line).

If	we	do	it	just	by	using	the	original	coordinates,	for	instance	the	x	coordinate	as	we
did	above,	we	lose	all	the	informa�on	about	the	second	one.

There	are	actually	many	ways	of	projec�ng	the	point	cloud	onto	a	line.	One	is	to	use
what	are	known	as	regression	lines.	Let’s	look	at	these	lines	and	how	there	are
constructed	in	R:

Regressing	one	variable	on	the	other



The	disc	variable	on	the	weight
attach(athletes) 
require(ggplot2) 
reg1 <- lm(disc~weight,data=athletes) 
#abline(reg1, col='red') 
a <- reg1$coefficients[1] # Intercept 
b <- reg1$coefficients[2] # slope 
pline=p+geom_abline(intercept=a,slope=b, col="blue") 
proj=pline+geom_segment(aes(x=weight, xend=weight, y=disc,  
yend=reg1$fitted),linetype=1,colour="red", 
arrow = arrow(length = unit(0.15,"cm"))) 
print(proj)

The	blue	line	minimizes	the	sum	of	squares	of	the	ver�cal	residuals	(in	red),

What	is	the	variance	of	the	points	along	the	blue	line?

matproj=cbind(weight,reg1$fitted) 
sum(apply(matproj,2,var))

## [1] 1.65



Regression	of	weight	on	discus

Variance	of	the	data	points
matproj2=cbind(weight,reg2$fitted) 
sum(apply(matproj,2,var))

## [1] 1.65

The	orange	line	minimizes	the	horizontal	residuals	for	the	weight	variable	in	orange.

The	PCA	line:	it	minimizes	in	both	direc�ons
xy=cbind(athletes$disc,athletes$weight) 
svda=svd(xy) 
pc = xy %*% svda$v[,1] %*% t(svda$v[,1]) 
bp = svda$v[2,1] /svda$v[1,1] 
ap = mean(pc[,2])-bp*mean(pc[,1]) 
p+geom_segment(xend=pc[,1],yend=pc[,2])+ 
geom_abline(intercept=ap,slope=bp, col="purple",lwd=1.5)





The	purple	line	minimizes	both	residuals	and	thus	(through	Pythagoras)	it	minimizes
the	sum	of	squared	distances	from	the	points	to	the	line.

Minimizing	the	distance	to	the	line	in	both	direc�ons,	the	purple	line	is	the	principal
component	line,	the	green	and	blue	line	are	the	regression	lines.

Variance	along	the	line
The	lines	created	here	are	sensi�ve	to	the	choice	of	units;	because	we	have	made	the
standard	devia�ons	equal	to	one	for	both	variables,	the	PCA	line	is	the	diagonal	that
cuts	exactly	in	the	middle	of	both	regression	lines.

The	data	were	centered	by	subtrac�ng	their	means	thus	ensuring	that	the	line	passes
through	the	origin	 .

Compute	the	variance	of	the	points	on	the	purple	line.

The	coordinates	of	the	points	when	we	made	the	plot,	these	are	in	the	 pc 	vector:

apply(pc,2,var)

## [1] 0.903 0.903

sum(apply(pc,2,var))

## [1] 1.81

PCA	for	2	dimensional	data
ppdf = data.frame(PC1n=-svda$u[,1]*svda$d[1],PC2n=svda$u[,2]*svda$d[2]) 
ggplot(ppdf,aes(x=PC1n,y=PC2n))+geom_point()+ ylab("PC2 ")+ 
     geom_hline(yintercept=0,color="purple",lwd=1.5,alpha=0.5) + 
      geom_point(aes(x=PC1n,y=0),color="red")+ xlab("PC1 ")+ 
     xlim(-3.5, 2.7)+ylim(-2,2)+coord_fixed() + 
     geom_segment(aes(xend=PC1n,yend=0), color="red")

(0, 0)





Notes	about	Lines
The	line	created	here	is	sensi�ve	to	the	choice	of	units,	and	to	the	center	of	the	cloud.

Note	that	Pythagoras’	theorem	tells	us	two	interes�ng	things	here,	if	we	are
minimizing	in	both	horizontal	and	ver�cal	direc�ons	we	are	in	fact	minimizing	the
diagonal	projec�ons	onto	the	line	from	each	point.

Principal	Components	are	Linear	Combina�ons
of	the	‘old’	variables
To	understand	what	that	a	linear	combina�on	really	is,	we	can	take	an	analogy,	when
making	a	healthy	juice	mix,	you	can	follow	a	recipe.

image

image



This	recipe	is	a	linear	combina�on	of	individual	juice	types,	in	our	analogy	these	are
replaced	by	the	original	variables.	The	result	is	a	new	variable,	the	coefficients	

	are	called	the	loadings.

Op�mal	lines
A	linear	combina�on	of	variables	defines	a	line	in	our	space	in	the	same	way	we	say
lines	in	the	sca�erplot	plane	for	two	dimensions.	As	we	saw	in	that	case,	there	are
many	ways	to	choose	lines	onto	which	we	project	the	data,	there	is	however	a	‘best’
line	for	our	purposes.

Total	variance	can	de	decomposed	The	total	sums	of	squares	of	the	distances
between	the	points	and	any	line	can	be	decomposed	into	the	distance	to	the	line	and
the	variance	along	the	line.

We	saw	that	the	principal	component	minimizes	the	distance	to	the	line,	and	it	also
maximizes	the	variance	of	the	projec�ons	along	the	line.

Good	Projec�ons

V = 2 ×  Beets  + 1 × Carrots  +  Gala +  GrannySmith + 0.02 ×  Ginger + 0.25 Lemon 
1

2

1

2

(2, 1, , , 0.02, 0.25)1
2

1
2



	What	is	this?

Good	Projec�ons



MysteryImage

Which	projec�on	do	you	think	is	be�er?

It’s	the	projec�on	that	maximizes	the	area	of	the	shadow	and	an	equivalent
measurement	is	the	sums	of	squares	of	the	distances	between	points	in	the	projec�on,
we	want	to	see	as	much	of	the	varia�on	as	possible,	that’s	what	PCA	does.

The	PCA	workflow



Many	Choices	have	to	made	during	PCA	processing.

PCA	is	based	on	the	principle	of	finding	the	largest	axis	of	iner�a/variability	and	then
itera�ng	to	find	the	next	best	axis	which	is	orthogonal	to	the	previous	one	and	so	on.

The	Inner	Workings	of	PCA:	the	Singular	Value
Decomposi�on
Eigenvalues	of	X’X	or	Singular	values	of	X	tell	us	the	rank.

What	does	rank	mean?

   X |  2  4  8   
  ---| -------- 
   1 |  
   2 | 
   3 | 
   4 |

  X  |  2  4  8   
  -- | --------- 
  1  |  2 
  2  |  4 
  3  |  6 
  4  |  8



  X  |  2  4  8   
  ---| -------- 
   1 |  2  4  8 
   2 |  4  8 16 
   3 |  6 12 24 
   4 |  8 16 32  

We	say	that	the	matrix

is	of	rank	one.

Backwards	from	the	matrix	to	decomposi�on
X=matrix(c(780, 75, 540, 936, 90, 648, 1300, 125, 900, 
          728, 70, 504),nrow=3) 
X

##      [,1] [,2] [,3] [,4] 
## [1,]  780  936 1300  728 
## [2,]   75   90  125   70 
## [3,]  540  648  900  504

u1=c(0.8,0.1,0.6) 
v1=c(0.4,0.5,0.7,0.4) 
sum(u1^2)

## [1] 1.01

sum(v1^2)
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## [1] 1.06

s1=2348.2 
s1*u1 %*%t(v1)

##       [,1] [,2] [,3]  [,4] 
## [1,] 751.4  939 1315 751.4 
## [2,]  93.9  117  164  93.9 
## [3,] 563.6  704  986 563.6

X-s1*u1 %*%t(v1)

##       [,1]   [,2]  [,3]  [,4] 
## [1,]  28.6  -3.28 -15.0 -23.4 
## [2,] -18.9 -27.41 -39.4 -23.9 
## [3,] -23.6 -56.46 -86.2 -59.6

Graphical	Decomposi�ons

Matrix	 	we	would	like	to	decompose.X



Areas	are	propor�onal	to	the	entries

Looking	at	different	possible	margins



Forcing	the	margins	to	have	norm	

Check	with	R
## ----checkX-------------------------------------------------------------- 
u1=c(0.8196, 0.0788, 0.5674) 
v1=c(0.4053, 0.4863, 0.6754, 0.3782) 
s1=2348.2 
s1*u1 %*%t(v1)

##      [,1] [,2] [,3] [,4] 
## [1,]  780  936 1300  728 
## [2,]   75   90  125   70 
## [3,]  540  648  900  504

Xsub=matrix(c(12.5 , 35.0 , 25.0 , 25,9,14,26,18,16,21,49, 
           32,18,28,52,36,18,10.5,64.5,36),ncol=4,byrow=T) 
Xsub

1



##      [,1] [,2] [,3] [,4] 
## [1,] 12.5 35.0 25.0   25 
## [2,]  9.0 14.0 26.0   18 
## [3,] 16.0 21.0 49.0   32 
## [4,] 18.0 28.0 52.0   36 
## [5,] 18.0 10.5 64.5   36

USV=svd(Xsub) 
USV

## $d 
## [1] 1.35e+02 2.81e+01 3.10e-15 1.85e-15 
##  
## $u 
##        [,1]    [,2]    [,3]   [,4] 
## [1,] -0.344  0.7717  0.5193 -0.114 
## [2,] -0.264  0.0713 -0.3086 -0.504 
## [3,] -0.475 -0.0415 -0.0386  0.803 
## [4,] -0.528  0.1426 -0.6423 -0.103 
## [5,] -0.554 -0.6143  0.4702 -0.280 
##  
## $v 
##        [,1]    [,2]   [,3]    [,4] 
## [1,] -0.250  0.0404 -0.967  0.0244 
## [2,] -0.343  0.8798  0.133  0.3010 
## [3,] -0.755 -0.4668  0.186  0.4214 
## [4,] -0.500  0.0808  0.111 -0.8551

## ----CheckUSV------------------------------------------------------------ 
Xsub-(135*USV$u[,1]%*%t(USV$v[,1]))

##         [,1]   [,2]    [,3]    [,4] 
## [1,]  0.8802  19.05 -10.088  1.7604 
## [2,]  0.0849   1.76  -0.921  0.1698 
## [3,] -0.0396  -1.01   0.565 -0.0792 
## [4,]  0.1698   3.53  -1.842  0.3397 
## [5,] -0.6877 -15.15   8.069 -1.3754

Xsub-(135*USV$u[,1]%*%t(USV$v[,1]))-(28.1*USV$u[,2]%*%t(USV$v[,2]))

##         [,1]     [,2]   [,3]    [,4] 
## [1,] 0.00387 -0.02528 0.0335 0.00774 
## [2,] 0.00398  0.00264 0.0140 0.00796 
## [3,] 0.00749  0.01192 0.0214 0.01498 
## [4,] 0.00796  0.00527 0.0281 0.01592 
## [5,] 0.00983  0.03784 0.0123 0.01965



Xsub- USV$d[1]*USV$u[,1]%*%t(USV$v[,1])-USV$d[2]*USV$u[,2]%*%t(USV$v[,2])

##          [,1]      [,2]     [,3]     [,4] 
## [1,] 7.22e-15 -1.07e-14 8.88e-15 4.88e-15 
## [2,] 2.04e-15 -6.00e-15 1.05e-14 3.22e-15 
## [3,] 2.87e-15 -9.55e-15 1.55e-15 6.23e-15 
## [4,] 4.39e-15 -5.77e-15 1.78e-14 7.05e-15 
## [5,] 5.11e-15 -1.78e-15 1.78e-14 1.78e-14

Another	Example
Xsub=matrix(c(12.5 , 35.0 , 25.0 , 25,9,14,26,18,16,21,49,32,18,28,52,36,18,10.5,64.5,36),nc
ol=4,byrow=T) 
Xsub

##      [,1] [,2] [,3] [,4] 
## [1,] 12.5 35.0 25.0   25 
## [2,]  9.0 14.0 26.0   18 
## [3,] 16.0 21.0 49.0   32 
## [4,] 18.0 28.0 52.0   36 
## [5,] 18.0 10.5 64.5   36

svd(Xsub)

## $d 
## [1] 1.35e+02 2.81e+01 3.10e-15 1.85e-15 
##  
## $u 
##        [,1]    [,2]    [,3]   [,4] 
## [1,] -0.344  0.7717  0.5193 -0.114 
## [2,] -0.264  0.0713 -0.3086 -0.504 
## [3,] -0.475 -0.0415 -0.0386  0.803 
## [4,] -0.528  0.1426 -0.6423 -0.103 
## [5,] -0.554 -0.6143  0.4702 -0.280 
##  
## $v 
##        [,1]    [,2]   [,3]    [,4] 
## [1,] -0.250  0.0404 -0.967  0.0244 
## [2,] -0.343  0.8798  0.133  0.3010 
## [3,] -0.755 -0.4668  0.186  0.4214 
## [4,] -0.500  0.0808  0.111 -0.8551

USV=svd(Xsub) 
XS1=Xsub-USV$d[1]*(USV$u[,1]%*% t(USV$v[,1])) 
XS1



##         [,1]   [,2]    [,3]   [,4] 
## [1,]  0.8748  19.05 -10.104  1.750 
## [2,]  0.0808   1.76  -0.933  0.162 
## [3,] -0.0470  -1.02   0.543 -0.094 
## [4,]  0.1616   3.52  -1.866  0.323 
## [5,] -0.6963 -15.16   8.043 -1.393

XS2=XS1-USV$d[2]*(USV$u[,2]%*% t(USV$v[,2])) 
XS2

##          [,1]      [,2]     [,3]     [,4] 
## [1,] 7.22e-15 -1.07e-14 8.88e-15 4.88e-15 
## [2,] 2.04e-15 -6.00e-15 1.05e-14 3.22e-15 
## [3,] 2.87e-15 -9.55e-15 1.55e-15 6.23e-15 
## [4,] 4.39e-15 -5.77e-15 1.78e-14 7.05e-15 
## [5,] 5.11e-15 -1.78e-15 1.78e-14 1.78e-14

Special	Example	of	Rank	one	matrix:
independence
require(ade4) 
HairColor=HairEyeColor[,,2] 
HairColor

##        Eye 
## Hair    Brown Blue Hazel Green 
##   Black    36    9     5     2 
##   Brown    66   34    29    14 
##   Red      16    7     7     7 
##   Blond     4   64     5     8

chisq.test(HairColor)

## Warning in chisq.test(HairColor): Chi-squared approximation may be incorrect

##  
##  Pearson's Chi-squared test 
##  
## data:  HairColor 
## X-squared = 107, df = 9, p-value <2e-16



prows=sweep(HairColor,1,apply(HairColor,1,sum),"/") 
pcols=sweep(HairColor,2,apply(HairColor,2,sum),"/") 
Indep=313*as.matrix(prows)%*%t(as.matrix(pcols)) 
round(Indep)

##        Hair 
## Hair    Black Brown Red Blond 
##   Black    72   158  39    44 
##   Brown    57   154  40    61 
##   Red      55   155  44    59 
##   Blond    28   108  27   149

sum((Indep-HairColor)^2/Indep)

## [1] 799

SVD	for	real	data
## ------------------------------------------------------------------------ 
diabetes.svd=svd(scale(diabetes[,-5])) 
names(diabetes.svd)

## [1] "d" "u" "v"

diabetes.svd$d

## [1] 20.09 13.38  9.89  5.63  1.70

turtles.svd=svd(scale(turtles[,-1])) 
turtles.svd$d

## [1] 11.75  1.42  1.00

SVD



We	write	our	horizontal/ver�cal	decompos�on	of	the	matrix	 	in	short	hand	as:

The	crossproduct	of	X	with	itself	verifies

where	 	is	called	the	eigenvector	matrix	of	the	symmetric	matrix	 	and	 	is	the
diagonal	matrix	of	eigenvalues	of	 .

Why	Eigenvectors	are	useful?

X = ∗ ∗ + ∗ ∗ + ∗ ∗u∙1 s1 v∙1 u∙2 s2 v∙2 u∙3 s3 v∙

X

X = US , V = I, U = I, S diagonal	matrix	of	singular	values,	given	by	the	{\tt	dV ′ V ′ U ′

X = VS US = V = VΛX ′ U ′ V ′ S2V ′ V ′

V XX ′
Λ

XX ′



Why	would	eigenvectors	come	into	use	in	Cinderella?

Khan’s	Academy	(h�ps://www.khanacademy.org/math/linear-
algebra/alternate_bases/eigen_everything/v/linear-algebra--introduc�on-to-
eigenvalues-and-eigenvectors)

Principal	Components
The	singular	vectors	from	the	singular	value	decomposi�on,	 svd 	func�on	above	tell
us	the	coefficients	to	put	in	front	of	the	old	variables	to	make	our	new	ones	with
be�er	proper�es.	We	write	this	as	:

Replace	 	by

What	is	the	largest	k	can	be	?

P = + + + ⋯C1 c1 X∙1 c2 X∙2 c3 X∙3 cp X∙p

, , …X∙1 X∙2 X∙p

P , P , … PC1 C2 Ck

https://www.khanacademy.org/math/linear-algebra/alternate_bases/eigen_everything/v/linear-algebra--introduction-to-eigenvalues-and-eigenvectors


Suppose	we	have	5	samples	with	23,000	genes	measured	on	them,	what	is	the
dimensionality	of	these	data?

The	number	of	principal	components	is	less	than	or	equal	to	the	number	of	original
variables.

The	geometr(ies)	of	data:	good	trick	look	at	size	of	vectors.

The	Principal	Component	transforma�on	is	defined	in	such	a	way	that	the	first
principal	component	has	the	largest	possible	variance	(that	is,	accounts	for	as	much	of
the	variability	in	the	data	as	possible),	and	each	successive	component	in	turn	has	the
highest	variance	possible	under	the	constraint	that	it	be	orthogonal	to	the	preceding
components.

Suppose	the	matrix	of	data	 	has	been	made	to	have	column	means	0	and	standard
devia�ons	1.

Matrix	Decomposi�on
We	call	the	principal	components	the	columns	of	the	matrix,	 .

The	columns	of	U	(the	matrix	given	as	USV$u	in	the	output	from	the	svd	func�on
above)	are	rescaled	to	have	norm	 ,	the	variance	they	are	responsable	for.

If	the	matrix	 	comes	from	the	study	of	 	different	samples	or	specimens,	then	the
principal	components	provides	new	coordinates	for	these	 	points	these	are
some�mes	also	called	the	scores	in	some	of	the	(many)	PCA	func�ons	available	in	R
( princomp , prcomp , dudi.pca 	in	 ade4 ).

Transi�on	Formulae
If	we	only	want	the	first	one	then	it	is	just	 .

K ≤ min(n, p)

var(Pro (X))max
aX

jaX

X

C = US

s2

X n

n

=c1 s1u1



Variance	explained	by	first	principal	component:	 :

No�ce	that	

Remarks:
1.	Each	principal	component	is	chosen	to	maximize	the	variance	it	explains,	this
variance	is	measured	by	the	corresponding	eigenvalue.

2.	The	new	variables	are	made	to	be	orthogonal,	if	the	data	are	mul�variate
normal	the	new	variables	will	be	independent.

3.	When	the	variables	are	rescaled	or	we	choose	the	correla�on	matrix	as	the
one	we	want	to	study	instead	of	the	covariance	matrix	then	the	sum	of	the
variances	of	all	the	variables	is	the	number	of	variables	(=p),	this	is	some�mes
called	the	trace.

4.	The	principal	components	are	always	ordered	by	``importance’’,	always	look	at
what	propor�on	of	the	variability	you	are	interpre�ng	(and	check	the	screeplot
before	deciding	how	many	components).

A	few	examples	of	using	PCA
We	start	with	the	turtles	data	that	has	3	con�nuous	variables	and	a	gender	variable
that	we	leave	out	for	the	original	PCA	analysis.

turtles	Data
When	compu�ng	the	variance	covariance	matrix,	many	programs	use	1/(n-1)	as	the
denominator,	here	n=48	so	the	sum	of	the	variances	are	off	by	a	small	fudge	factor	of
48/47.

turtles3var=turtles[,-1] 
apply(turtles3var,2,mean)

## length  width height  
##  124.7   95.4   46.3

s2
1

|| | = = = =c1 |2 s′
1u1u′

1s1 s2
1u′

1u1 s2
1 λ1

C = VS US = VX ′ U ′ S2



turtles.pca=princomp(turtles3var) 
print(turtles.pca)

## Call: 
## princomp(x = turtles3var) 
##  
## Standard deviations: 
## Comp.1 Comp.2 Comp.3  
##  25.06   2.26   1.94  
##  
##  3  variables and  48 observations.

(25.06^2+2.26^2+1.94^2)*(48/47)

## [1] 650

apply(turtles3var,2,var)

## length  width height  
##  419.5  160.7   70.4

apply(turtles[,-1],2,sd)

## length  width height  
##  20.48  12.68   8.39

turtlesc=scale(turtles[,-1]) 
cor(turtlesc)

##        length width height 
## length  1.000 0.978  0.965 
## width   0.978 1.000  0.961 
## height  0.965 0.961  1.000

pca1=princomp(turtlesc) 
pca1

## Call: 
## princomp(x = turtlesc) 
##  
## Standard deviations: 
## Comp.1 Comp.2 Comp.3  
##  1.695  0.205  0.145  
##  
##  3  variables and  48 observations.



Step	one:	always	the	screeplot
The	screeplot	showing	the	eigenvalues	for	the	standardized	data:	one	very	large
component	in	this	case	and	two	very	small	ones,	the	data	are	(almost)	one
dimensional.

pca.turtles=dudi.pca(turtles[,-1],scannf=F,nf=2) 
scatter(pca.turtles)

Why	?
Choose	k	carefully:



Step	Two:	Variables



All	together	“biplot”
scatter(pca.turtles)



Lizards	Data	Analyses
This	data	set	describes	18	lizards	as	reported	by	Bauwens	and	D'iaz-Uriarte	(1997).	It
also	gives	life-history	traits	corresponding	to	these	18	species.

mean.L 	(mean	length	(mm)),	 matur.L 	(length	at	maturity	(mm)),
max.L 	(maximum	length	(mm)),	 hatch.L 	(hatchling	length	(mm)),
hatch.m 	(hatchling	mass	(g)),	 clutch.S 	(Clutch	size),
age.mat 	(age	at	maturity	(number	of	months	of	ac�vity)),
clutch.F 	(clutch	frequency).

library(ade4) 
data(lizards) 
names(lizards)

## [1] "traits" "hprA"   "hprB"

lizards$traits[1:4,]



##    mean.L matur.L max.L hatch.L hatch.m clutch.S age.mat clutch.F 
## Sa   69.2      58    82    27.8   0.572      6.0      13      1.5 
## Sh   48.4      42    56    22.9   0.310      3.2       5      2.0 
## Tl  168.4     132   190    42.8   2.235     16.9      19      1.0 
## Mc   66.1      56    72    25.0   0.441      7.2      11      1.5

It	is	always	a	good	idea	to	check	the	variables	one	at	a	�me	and	two	at	a	�me	to	see
what	the	basic	sta�s�cs	are	for	the	data

tabtraits=lizards$traits 
options(digits=2) 
colMeans(tabtraits)

##   mean.L  matur.L    max.L  hatch.L  hatch.m clutch.S  age.mat clutch.F  
##    71.34    59.39    82.83    26.88     0.56     5.87    10.89     1.56

cor(tabtraits)

##          mean.L matur.L max.L hatch.L hatch.m clutch.S age.mat clutch.F 
## mean.L     1.00    0.99  0.99    0.89    0.94     0.92    0.77    -0.48 
## matur.L    0.99    1.00  0.99    0.90    0.92     0.92    0.79    -0.49 
## max.L      0.99    0.99  1.00    0.88    0.92     0.91    0.78    -0.51 
## hatch.L    0.89    0.90  0.88    1.00    0.96     0.72    0.58    -0.42 
## hatch.m    0.94    0.92  0.92    0.96    1.00     0.78    0.64    -0.45 
## clutch.S   0.92    0.92  0.91    0.72    0.78     1.00    0.81    -0.55 
## age.mat    0.77    0.79  0.78    0.58    0.64     0.81    1.00    -0.62 
## clutch.F  -0.48   -0.49 -0.51   -0.42   -0.45    -0.55   -0.62     1.00

Biplot
require(ade4) 
res=dudi.pca(tabtraits,scannf=F,nf=2) 
barplot(res$eig)



res

## Duality diagramm 
## class: pca dudi 
## $call: dudi.pca(df = tabtraits, scannf = F, nf = 2) 
##  
## $nf: 2 axis-components saved 
## $rank: 8 
## eigen values: 6.5 0.83 0.42 0.17 0.045 ... 
##   vector length mode    content        
## 1 $cw    8      numeric column weights 
## 2 $lw    18     numeric row weights    
## 3 $eig   8      numeric eigen values   
##  
##   data.frame nrow ncol content              
## 1 $tab       18   8    modified array       
## 2 $li        18   2    row coordinates      
## 3 $l1        18   2    row normed scores    
## 4 $co        8    2    column coordinates   
## 5 $c1        8    2    column normed scores 
## other elements: cent norm

biplot(res)



res$eig/(sum(res$eig))

## [1] 0.81118 0.10387 0.05219 0.02133 0.00563 0.00488 0.00061 0.00031

The	Decathlon	Athletes
round(cor(athletes),1)

##        m100 long weight highj m400 m110 disc pole javel m1500 
## m100    1.0 -0.5   -0.2  -0.1  0.6  0.6  0.0 -0.4  -0.1   0.3 
## long   -0.5  1.0    0.1   0.3 -0.5 -0.5  0.0  0.3   0.2  -0.4 
## weight -0.2  0.1    1.0   0.1  0.1 -0.3  0.8  0.5   0.6   0.3 
## highj  -0.1  0.3    0.1   1.0 -0.1 -0.3  0.1  0.2   0.1  -0.1 
## m400    0.6 -0.5    0.1  -0.1  1.0  0.5  0.1 -0.3   0.1   0.6 
## m110    0.6 -0.5   -0.3  -0.3  0.5  1.0 -0.1 -0.5  -0.1   0.1 
## disc    0.0  0.0    0.8   0.1  0.1 -0.1  1.0  0.3   0.4   0.4 
## pole   -0.4  0.3    0.5   0.2 -0.3 -0.5  0.3  1.0   0.3   0.0 
## javel  -0.1  0.2    0.6   0.1  0.1 -0.1  0.4  0.3   1.0   0.1 
## m1500   0.3 -0.4    0.3  -0.1  0.6  0.1  0.4  0.0   0.1   1.0



pca.ath <- dudi.pca(athletes, scan = F) 
pca.ath$eig

##  [1] 3.42 2.61 0.94 0.88 0.56 0.49 0.43 0.31 0.27 0.10

barplot(pca.ath$eig)

The	screeplot	is	the	first	thing	to	look	at,	it	tells	us	that	it	is	sa�factory	to	use	a	two
dimensional	plot.

Correla�on	Circle
s.corcircle(pca.ath$co,clab=1, grid=FALSE, fullcircle = TRUE,box=FALSE)



The	correla�on	circle	made	by	showing	the	projec�on	of	the	old	variables	onto	the
two	first	new	principal	axes.

athletes[,c(1,5,6,10)]=-athletes[,c(1,5,6,10)] 
round(cor(athletes),1)

##        m100 long weight highj m400 m110 disc pole javel m1500 
## m100    1.0  0.5    0.2   0.1  0.6  0.6  0.0  0.4   0.1   0.3 
## long    0.5  1.0    0.1   0.3  0.5  0.5  0.0  0.3   0.2   0.4 
## weight  0.2  0.1    1.0   0.1 -0.1  0.3  0.8  0.5   0.6  -0.3 
## highj   0.1  0.3    0.1   1.0  0.1  0.3  0.1  0.2   0.1   0.1 
## m400    0.6  0.5   -0.1   0.1  1.0  0.5 -0.1  0.3  -0.1   0.6 
## m110    0.6  0.5    0.3   0.3  0.5  1.0  0.1  0.5   0.1   0.1 
## disc    0.0  0.0    0.8   0.1 -0.1  0.1  1.0  0.3   0.4  -0.4 
## pole    0.4  0.3    0.5   0.2  0.3  0.5  0.3  1.0   0.3   0.0 
## javel   0.1  0.2    0.6   0.1 -0.1  0.1  0.4  0.3   1.0  -0.1 
## m1500   0.3  0.4   -0.3   0.1  0.6  0.1 -0.4  0.0  -0.1   1.0

pcan.ath=dudi.pca(athletes,nf=2,scannf=F) 
pcan.ath$eig

##  [1] 3.42 2.61 0.94 0.88 0.56 0.49 0.43 0.31 0.27 0.10



Now	all	the	nega�ve	correla�ons	are	quite	small	ones.	Doing	the	screeplot	over	again
will	show	no	change	in	the	eigenvalues,	the	only	thing	that	changes	is	the	sign	of
loadings	for	the	m	variables.

New	Data	changing	signs
s.corcircle(pcan.ath$co,clab=1.2,box=FALSE)

Correla�on	circle	a�er	changing	the	signs	of	the	running	variables.

Observa�ons
## Warning: Removed 1 rows containing missing values (geom_text).



data(olympic) 
olympic$score

##  [1] 8488 8399 8328 8306 8286 8272 8216 8189 8180 8167 8143 8114 8093 8083 8036 
## [16] 8021 7869 7860 7859 7781 7753 7745 7743 7623 7579 7517 7505 7422 7310 7237 
## [31] 7231 7016 6907

Link	to	overall	scores



Sca�erplot	of	the	scores	given	as	a	supplementary	variable	and	the	first	principal
component,	the	points	are	labeled	by	their	order	in	the	data	set.

PCA	as	an	exploratory	tool:	using	meta-
informa�on
######center and scale the data 
###(they have already had variance normalization applied to them) 
res.Msig3=dudi.pca(Msig3transp,center=TRUE,scale=TRUE,scannf=F,nf=4) 
screeplot(res.Msig3,main="")



Plot	by	cell	types
celltypes=factor(substr(rownames(Msig3transp),7,9)) 
table(celltypes)

## celltypes 
## EFF MEM NAI  
##  10   9  11

status=factor(substr(rownames(Msig3transp),1,3)) 
require(ggplot2) 
gg <- cbind(res.Msig3$li,Cluster=celltypes) 
gg <- cbind(sample=rownames(gg),gg) 
ggplot(gg, aes(x=Axis1, y=Axis2)) +  
  geom_point(aes(color=factor(Cluster)),size=5) +  
  geom_hline(yintercept=0,linetype=2) +  
  geom_vline(xintercept=0,linetype=2) + 
  scale_color_discrete(name="Cluster") + 
  coord_fixed()+ ylim(-8,+8)



  xlim(-14,18)

## <ScaleContinuousPosition> 
##  Range:   
##  Limits:  -14 --   18

PCA	of	gene	expression	for	a	subset	of	156	genes	involved	in	specifici�es	of	each	of	the
three	separate	T	cell	types:	effector,	naive	and	memory

Mass	Spectroscopy	Data	Analysis
Example	from	paper:	Kashnap	et	al,	PNAS,	2013
(h�p://www.pnas.org/content/110/42/17059.full)

###Just for record, this is how the matrix was made
require(xcms)

## Loading required package: xcms

## Loading required package: Biobase

## Loading required package: BiocGenerics

http://www.pnas.org/content/110/42/17059.full


## Loading required package: parallel

##  
## Attaching package: 'BiocGenerics'

## The following objects are masked from 'package:parallel': 
##  
##     clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, 
##     clusterExport, clusterMap, parApply, parCapply, parLapply, 
##     parLapplyLB, parRapply, parSapply, parSapplyLB

## The following object is masked from 'package:ade4': 
##  
##     score

## The following objects are masked from 'package:stats': 
##  
##     IQR, mad, sd, var, xtabs

## The following objects are masked from 'package:base': 
##  
##     anyDuplicated, append, as.data.frame, basename, cbind, colnames, 
##     dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, 
##     grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, 
##     order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, 
##     rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply, 
##     union, unique, unsplit, which, which.max, which.min

## Welcome to Bioconductor 
##  
##     Vignettes contain introductory material; view with 
##     'browseVignettes()'. To cite Bioconductor, see 
##     'citation("Biobase")', and for packages 'citation("pkgname")'.

## Loading required package: BiocParallel

## Loading required package: MSnbase

## Loading required package: mzR

## Loading required package: Rcpp

## Loading required package: S4Vectors



## Loading required package: stats4

##  
## Attaching package: 'S4Vectors'

## The following object is masked from 'package:base': 
##  
##     expand.grid

## Loading required package: ProtGenerics

##  
## This is MSnbase version 2.10.1  
##   Visit https://lgatto.github.io/MSnbase/ to get started.

##  
## Attaching package: 'MSnbase'

## The following object is masked from 'package:stats': 
##  
##     smooth

## The following object is masked from 'package:base': 
##  
##     trimws

##  
## This is xcms version 3.6.1

##  
## Attaching package: 'xcms'

## The following object is masked from 'package:knitr': 
##  
##     stitch

## The following object is masked from 'package:stats': 
##  
##     sigma

load(url("http://bios221.stanford.edu/data/xset3.RData")) 
mat1 =groupval(xset3, value="into") 
## 
head(mat1)



##               ko15    ko16    ko18    ko19    ko21    ko22    wt15    wt16 
## 200.1/2927  147888  103548   65290   60144   85156  162012  175177   82619 
## 205/2791   1778569 1567038 1482796 1039130 1223132 1072038 1950287 1466781 
## 206/2791    237994  269714  201393  150107  176990  156797  276542  222366 
## 207.1/2719  380873  460630  351750  219288  286849  235023  417170  324892 
## 219.1/2524  235545  173623   82365   79480  185792  174459  244584  161184 
## 231/2516         0   70796  222609  286232  435094  100076       0   73142 
##               wt18    wt19    wt21    wt22 
## 200.1/2927   51943   69198  153273   98144 
## 205/2791   1572679 1275313 1356014 1231442 
## 206/2791    211718  186851  188286  172349 
## 207.1/2719  277991  220972  252874  236728 
## 219.1/2524   72029   75097  238194  173830 
## 231/2516    165383  240261  201316  179438

dim(mat1)

## [1] 399  12

## Matrix with with samples in rows and variables as columns 
tmat= t(mat1) 
head(tmat[,1:10])

##      200.1/2927 205/2791 206/2791 207.1/2719 219.1/2524 231/2516 233/3023 
## ko15     147888  1778569   237994     380873     235545        0   399145 
## ko16     103548  1567038   269714     460630     173623    70796   356951 
## ko18      65290  1482796   201393     351750      82365   222609   410551 
## ko19      60144  1039130   150107     219288      79480   286232   198417 
## ko21      85156  1223132   176990     286849     185792   435094   363382 
## ko22     162012  1072038   156797     235023     174459   100076   317806 
##      234/3024 236.1/2524 240.2/3681 
## ko15    76881     252282     112441 
## ko16    99480     206032     153376 
## ko18    97428      71764     193769 
## ko19    53440      67643     170641 
## ko21    88228     186661      88800 
## ko22    81072     198804     146563

logtmat=log(tmat+1)

Sample	situa�ons	in	PC	map



##  PCA Example
require(ade4) 
require(ggplot2) 
load(url("http://bios221.stanford.edu/data/logtmat.RData")) 
pca.result=dudi.pca(logtmat, scannf=F,nf=3) 
labs=rownames(pca.result$li) 
nos=substr(labs,3,4) 
type=as.factor(substr(labs,1,2)) 
kos=which(type=="ko") 
wts=which(type=="wt") 
pcs=data.frame(Axis1=pca.result$li[,1],Axis2=pca.result$li[,2],labs,type) 
 
pcsplot=ggplot(pcs,aes(x=Axis1,y=Axis2,label=labs,group=nos,colour=type)) +  
  geom_text(size=4,vjust=-0.5) + geom_point()  
 pcsplot +  geom_hline(yintercept=0,linetype=2)  +coord_fixed() + ylim(-12,18) + 
  geom_vline(xintercept=0,linetype=2)



Extra	Connec�ons
pcsplot+geom_line(colour="red")  + coord_fixed()  + ylim(-12,18)



Checking	data	by	frequent	mul�variate
projec�ons
Phylochip	data	allowed	us	to	discover	a	batch	effect	(phylochip).



Phylochip	data	for	three	different	batches	and	two	different	arrays,	first	principal	plane
explains	66%	of	the	total	varia�on.

Example	from	Single	Cell	experiment
Columns	of	the	DataFrame	represent	different	a�ributes	of	the	features	of	interest,
e.g.,	gene	or	transcript	IDs,	etc.

An	example	of	hybrid	data	container	from	single	cell	experiments	(see	Bioconductor
workflow	in	Perraudeau,	2017	for	more	details).

A�er	the	pre-processing	and	normaliza�on	steps	prescribed	in	the	workflow,	we	retain
the	1,000	most	variable	genes	measured	on	747	cells.

require(SummarizedExperiment)

## Loading required package: SummarizedExperiment

## Loading required package: GenomicRanges

## Loading required package: IRanges

##  
## Attaching package: 'IRanges'



## The following object is masked from 'package:xcms': 
##  
##     distance

## Loading required package: GenomeInfoDb

## Loading required package: DelayedArray

## Loading required package: matrixStats

##  
## Attaching package: 'matrixStats'

## The following objects are masked from 'package:Biobase': 
##  
##     anyMissing, rowMedians

##  
## Attaching package: 'DelayedArray'

## The following objects are masked from 'package:matrixStats': 
##  
##     colMaxs, colMins, colRanges, rowMaxs, rowMins, rowRanges

## The following objects are masked from 'package:base': 
##  
##     aperm, apply, rowsum

corese = readRDS(path.expand("~/Books/CUBook/data/normse.rds")) 
norm = assays(corese)$normalizedValues

We	can	look	at	a	PCA	of	the	normalized	values	and	check	graphically	that	the	batch
effect	has	been	removed:

respca = dudi.pca(t(norm), nf = 3, scannf = FALSE) 
screeplot(respca, 15)



Screeplot	of	the	PCA	of	the	normalized	data.

PCS = respca$li[, 1:3]

Since	the	screeplot	shows	us	that	we	must	not	dissociate	axes	2	and	3,	we	will	make	a
three	dimensional	plot	with	the	rgl	(h�ps://cran.r-project.org/web/packages/rgl/)
package.

library("rgl") 
batch = colData(corese)$Batch 
plot3d(PCS,aspect=sqrt(c(84,24,20)),col=col_clus[batch]) 
plot3d(PCS,aspect=sqrt(c(84,24,20)), 
col = col_clus[as.character(publishedClusters)])

With	plotly:

library(plotly)

https://cran.r-project.org/web/packages/rgl/


##  
## Attaching package: 'plotly'

## The following object is masked from 'package:IRanges': 
##  
##     slice

## The following object is masked from 'package:xcms': 
##  
##     groups

## The following object is masked from 'package:S4Vectors': 
##  
##     rename

## The following object is masked from 'package:ggplot2': 
##  
##     last_plot

## The following object is masked from 'package:stats': 
##  
##     filter

## The following object is masked from 'package:graphics': 
##  
##     layout

p <- plot_ly(PCS,x=~Axis1,y=~Axis2,z=~Axis3,color=batch) %>% add_markers()

Summary	for	PCA,	takeaway	points	so	far:
Mul�variate	data	require	 conscious 	preprocessing,	to	make	their	variances
comparable	and	their	centers	at	the	origin.
When	data	are	matrices	(variables	=	columns	numerical	values),	we	can	s�ll	make
useful	graphical	representa�ons	by	making	projec�ons	on	lower	dimensions
(planes	and	3D	are	the	most	frequently	used).
PCA	searches	for	new	 more informative 	variables	which	are	linear
combina�ons	of	the	old	ones.
PCA	is	based	on	finding	decomposi�ons	of	the	matrix	 	called	SVD,	this	is
equivalent	to	the	eigenanalysis	of	 .	The	squares	of	the	singular	values	are	the

X

XX ′



equal	to	the	eigenvalues	and	to	the	variances	of	the	new	variables.
Choosing	k:	You	need	to	plot	the	variances/eigenvalues	before	you	decide	how
many	axes	are	necessary	to	reproduce	the	signal	in	the	data.
Interpreta�on	of	PCA	is	facilitated	by	redundant	or	con�guous	meta-data	about
the	observa�ons.

See	all	the	details	here:	Chapter	on	Mul�variate
(h�p://bios221.stanford.edu/book/Chap-Mul�variate.html)

More	examples	of	supplementary	variables
One	categorical	variable:	project	the	mean	points
url <- "https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data"
library(tidyverse)

## ── Attaching packages ────────────────────── tidyverse 1.2.1 ──

## ✔ tibble  2.1.3     ✔ purrr   0.3.2 
## ✔ tidyr   0.8.3     ✔ dplyr   0.8.3 
## ✔ readr   1.3.1     ✔ stringr 1.4.0 
## ✔ tibble  2.1.3     ✔ forcats 0.4.0

## ── Conflicts ───────────────────────── tidyverse_conflicts() ── 
## ✖ dplyr::collapse()        masks IRanges::collapse() 
## ✖ dplyr::collect()         masks xcms::collect() 
## ✖ dplyr::combine()         masks MSnbase::combine(), Biobase::combine(), BiocGenerics::co
mbine() 
## ✖ dplyr::count()           masks matrixStats::count() 
## ✖ dplyr::desc()            masks IRanges::desc() 
## ✖ tidyr::expand()          masks S4Vectors::expand() 
## ✖ dplyr::filter()          masks plotly::filter(), stats::filter() 
## ✖ dplyr::first()           masks S4Vectors::first() 
## ✖ dplyr::groups()          masks plotly::groups(), xcms::groups() 
## ✖ dplyr::lag()             masks stats::lag() 
## ✖ BiocGenerics::Position() masks ggplot2::Position(), base::Position() 
## ✖ purrr::reduce()          masks GenomicRanges::reduce(), IRanges::reduce(), MSnbase::red
uce() 
## ✖ dplyr::rename()          masks plotly::rename(), S4Vectors::rename() 
## ✖ purrr::simplify()        masks DelayedArray::simplify() 
## ✖ dplyr::slice()           masks plotly::slice(), IRanges::slice()

http://bios221.stanford.edu/book/Chap-Multivariate.html


wine <- read_csv(url, col_names = FALSE)

## Parsed with column specification: 
## cols( 
##   X1 = col_double(), 
##   X2 = col_double(), 
##   X3 = col_double(), 
##   X4 = col_double(), 
##   X5 = col_double(), 
##   X6 = col_double(), 
##   X7 = col_double(), 
##   X8 = col_double(), 
##   X9 = col_double(), 
##   X10 = col_double(), 
##   X11 = col_double(), 
##   X12 = col_double(), 
##   X13 = col_double(), 
##   X14 = col_double() 
## )

colnames(wine) <- c("class", "Alcohol", "MalicAcid", "Ash", "AlcAsh", "Mg",  
                    "Phenols", "Flav", "NonFlavPhenols", "Proa", "Color", 
                    "Hue", "OD", "Proline")           
head(wine)

## # A tibble: 6 x 14 
##   class Alcohol MalicAcid   Ash AlcAsh    Mg Phenols  Flav NonFlavPhenols  Proa 
##   <dbl>   <dbl>     <dbl> <dbl>  <dbl> <dbl>   <dbl> <dbl>          <dbl> <dbl> 
## 1     1    14.2      1.71  2.43   15.6   127    2.8   3.06           0.28  2.29 
## 2     1    13.2      1.78  2.14   11.2   100    2.65  2.76           0.26  1.28 
## 3     1    13.2      2.36  2.67   18.6   101    2.8   3.24           0.3   2.81 
## 4     1    14.4      1.95  2.5    16.8   113    3.85  3.49           0.24  2.18 
## 5     1    13.2      2.59  2.87   21     118    2.8   2.69           0.39  1.82 
## 6     1    14.2      1.76  2.45   15.2   112    3.27  3.39           0.34  1.97 
## # … with 4 more variables: Color <dbl>, Hue <dbl>, OD <dbl>, Proline <dbl>

data(wine)

## Warning in data(wine): data set 'wine' not found

wine[1:3,1:7]



## # A tibble: 3 x 7 
##   class Alcohol MalicAcid   Ash AlcAsh    Mg Phenols 
##   <dbl>   <dbl>     <dbl> <dbl>  <dbl> <dbl>   <dbl> 
## 1     1    14.2      1.71  2.43   15.6   127    2.8  
## 2     1    13.2      1.78  2.14   11.2   100    2.65 
## 3     1    13.2      2.36  2.67   18.6   101    2.8

heatmap(1-cor(wine))

wine.pca <- prcomp(wine, scale. = TRUE) 
table(wine.class)

## Error in eval(quote(list(...)), env): object 'wine.class' not found

fviz_pca_biplot(wine.pca,  
                habillage = wine.class, addEllipses = TRUE, circle = TRUE)

## Error in .is_grouping_var(habillage): object 'wine.class' not found

Projec�ng	Ellipses



We’ll	see	later	when	we	look	at	Microbiome	data	that	some�mes,	this	projec�on	can
be	problema�c.

Percentage	of	Iner�a
require(ade4) 
res.ath=dudi.pca(athletes,nf=2,scannf=F) 
inertia.dudi(res.ath,col.inertia=TRUE)



## Inertia information: 
## Call: inertia.dudi(x = res.ath, col.inertia = TRUE) 
##  
## Decomposition of total inertia: 
##      inertia     cum  cum(%) 
## Ax1   3.4182   3.418   34.18 
## Ax2   2.6064   6.025   60.25 
## Ax3   0.9433   6.968   69.68 
## Ax4   0.8780   7.846   78.46 
## Ax5   0.5566   8.403   84.03 
## Ax6   0.4912   8.894   88.94 
## Ax7   0.4306   9.324   93.24 
## Ax8   0.3068   9.631   96.31 
## Ax9   0.2669   9.898   98.98 
## Ax10  0.1019  10.000  100.00 
##  
## Column contributions (%): 
##    m100    long  weight   highj    m400    m110    disc    pole   javel   m1500  
##      10      10      10      10      10      10      10      10      10      10  
##  
## Column absolute contributions (%): 
##          Axis1    Axis2 
## m100    17.296  2.21439 
## long    15.528  2.31288 
## weight   7.242 23.38084 
## highj    4.506  0.07783 
## m400    12.663 12.40165 
## m110    18.791  0.48397 
## disc     3.090 25.33458 
## pole    14.752  2.23748 
## javel    3.238 13.83520 
## m1500    2.895 17.72118 
##  
## Signed column relative contributions: 
##          Axis1    Axis2 
## m100   -59.121  -5.7716 
## long   -53.077  -6.0283 
## weight -24.754  60.9397 
## highj  -15.404   0.2029 
## m400   -43.284 -32.3236 
## m110   -64.231  -1.2614 
## disc   -10.563  66.0319 
## pole   -50.426   5.8317 
## javel  -11.068  36.0600 
## m1500   -9.895 -46.1884 
##  
## Cumulative sum of column relative contributions (%): 
##          Axis1 Axis1:2 Axis3:10 
## m100    59.121   64.89    35.11 
## long    53.077   59.11    40.89 



## weight  24.754   85.69    14.31 
## highj   15.404   15.61    84.39 
## m400    43.284   75.61    24.39 
## m110    64.231   65.49    34.51 
## disc    10.563   76.60    23.40 
## pole    50.426   56.26    43.74 
## javel   11.068   47.13    52.87 
## m1500    9.895   56.08    43.92

Contribu�ons	are	printed	in	1/10000	and	the	sign	is	the	sign	of	the	coordinate.

Principal	Coordinate	Analysis	(PCoA)	and	MDS
Different	star�ng	point:	distances	instead	of	measurements/columns.
Resul�ng	`map’	projec�ons,	same	as	PCA.
Interpreta�on	is	different.

Important	Distances	and	Dissimilari�es
Most	of	these	are	available	through	the	 dist 	func�on,	the	 vegdist 	func�on	in	the
vegan 	package:

library(vegan)

## Loading required package: permute

## Loading required package: lattice

##  
## Attaching package: 'lattice'

## The following object is masked from 'package:xcms': 
##  
##     levelplot

## This is vegan 2.5-5

##  
## Attaching package: 'vegan'

## The following object is masked from 'package:xcms': 
##  
##     calibrate



## The following object is masked from 'package:mzR': 
##  
##     tolerance

help(vegdist)

Reminder:	Distances	using	con�nuous	variables
Euclidean	and	weighted	Euclidean	(sums	of	squares	of	differences	in	coordinates)
L1	distances	( manhattan 	)
Minkowski
Chisquare:

Distances	using	discrete	or	binary	variables
Hamming	distance
DNA	distances	( dist.dna 	in	 ape )
Bray	Cur�s	(absolute	difference	of	propor�ons)
Built	from	Confusion	matrices	(not	a	true	distance)
Matching	coefficient:	Matching	coefficient

Jaccard	distance

Example	of	Distances}

Chisquare(exp, obs) = ∑
j

(ex − obpj sj)
2

expj

=
nb	of	matching	attrs

nb	of	attrs

+f11 f00

+ + +f11 f00 f10 f01

=
nb	of	match.attrs

nb	of	attrs	with	at	least	1

f11

+ +f11 f10 f01



SMC = function(p,q) { 
   # Compute F01,F10,F11,F00 
   F01 = sum((p == 0) & (q == 1)) 
   F10 = sum((p == 1) & (q == 0)) 
   F00 = sum((p == 0) & (q == 0)) 
   F11 = sum((p == 1) & (q == 1)) 
   return((F11+F00)/(F01+F10+F00+F11)) 
} 
 
# function for computing Jaccard coefficient 
JC = function(p,q) { 
   # Compute F01,F10,F11,F00 
   F01 = sum((p == 0) & (q == 1)) 
   F10 = sum((p == 1) & (q == 0)) 
   F11 = sum((p == 1) & (q == 1)) 
   return(F11/(F01+F10+F11)) 
}

cos.sim = function(p,q) { 
   return(sum(p*q) / sqrt(sum(p^2)*sum(q^2))) 
} 
d1 = c(3,2,0,5,0,0,0,2,0,0) 
d2 = c(1,0,0,0,0,0,0,1,0,2) 
print(cos.sim(d1,d2))

## [1] 0.31

 p=c(rep(0,6),rep(1,4)) 
 p

##  [1] 0 0 0 0 0 0 1 1 1 1

 q=c(rep(0,6),1,0,0,1) 
 q

##  [1] 0 0 0 0 0 0 1 0 0 1

print(JC(p,q))

## [1] 0.5

print(SMC(p,q))

## [1] 0.8



Distances	between	variables
Pearsons	correla�on	coefficient:	 	where

Special	Distances
Gower’s	distance	for	mixed	type	data.
Unifrac	and	Weighted	Unifrac	(Wasserstein)	that	incorporates	trees
Distances	on	a	graph

Distance	func�on	in	R
require(ade4) 
data(olympic) 
disto=dist(scale(olympic$tab)) 
str(disto)

##  'dist' num [1:528] 4.36 4.11 4.18 5.19 4.28 ... 
##  - attr(*, "Size")= int 33 
##  - attr(*, "Labels")= chr [1:33] "1" "2" "3" "4" ... 
##  - attr(*, "Diag")= logi FALSE 
##  - attr(*, "Upper")= logi FALSE 
##  - attr(*, "method")= chr "euclidean" 
##  - attr(*, "call")= language dist(x = scale(olympic$tab))

length(disto)

## [1] 528

as.matrix(disto)[1:5,1:5]

##     1   2   3   4   5 
## 1 0.0 4.4 4.1 4.2 5.2 
## 2 4.4 0.0 1.9 2.2 2.4 
## 3 4.1 1.9 0.0 3.2 2.2 
## 4 4.2 2.2 3.2 0.0 4.0 
## 5 5.2 2.4 2.2 4.0 0.0

d(X, Y) = 1 − r(X, Y)

r(X, Y) = ( )( )
1

n ∑
i=1

n
X(i) − X̄

σx

Y(j) − Ȳ

σy



33*32/2

## [1] 528

Mul�dimensional	Scaling-	Principal	Coordinate
Analyses
Suppose	we	are	given	a	matrix	of	dissimilari�es	or	distances	and	we	want	to	build	a
useful	map	of	the	observa�ons.

require(graphics) 
data(eurodist) 
# look at raw distances 
as.matrix(eurodist)[1:7,1:7]

##            Athens Barcelona Brussels Calais Cherbourg Cologne Copenhagen 
## Athens          0      3313     2963   3175      3339    2762       3276 
## Barcelona    3313         0     1318   1326      1294    1498       2218 
## Brussels     2963      1318        0    204       583     206        966 
## Calais       3175      1326      204      0       460     409       1136 
## Cherbourg    3339      1294      583    460         0     785       1545 
## Cologne      2762      1498      206    409       785       0        760 
## Copenhagen   3276      2218      966   1136      1545     760          0

# graphical representation 
heatmap(as.matrix(eurodist))



These	were	computed	as	actualy	distances	across	land	so	we	actually	know	that	we
could	find	a	2-3	dimensional	map	that	would	represent	the	data	well.

eck=read.table("http://bios221.stanford.edu/data/eckman.txt",header=TRUE) 
nc=nrow(eck) 
   eck[1:9,1:9]

##   w434 w445 w465 w472 w490 w504 w537 w555 w584 
## 1 0.00 0.86 0.42 0.42 0.18 0.06 0.07 0.04 0.02 
## 2 0.86 0.00 0.50 0.44 0.22 0.09 0.07 0.07 0.02 
## 3 0.42 0.50 0.00 0.81 0.47 0.17 0.10 0.08 0.02 
## 4 0.42 0.44 0.81 0.00 0.54 0.25 0.10 0.09 0.02 
## 5 0.18 0.22 0.47 0.54 0.00 0.61 0.31 0.26 0.07 
## 6 0.06 0.09 0.17 0.25 0.61 0.00 0.62 0.45 0.14 
## 7 0.07 0.07 0.10 0.10 0.31 0.62 0.00 0.73 0.22 
## 8 0.04 0.07 0.08 0.09 0.26 0.45 0.73 0.00 0.33 
## 9 0.02 0.02 0.02 0.02 0.07 0.14 0.22 0.33 0.00

   require(ade4) 
   queck=quasieuclid(as.dist(1-eck)) 
   eck.pco=dudi.pco(queck,scannf=F,nf=2) 
   names(eck.pco)



##  [1] "eig"  "rank" "nf"   "cw"   "tab"  "li"   "l1"   "c1"   "co"   "lw"   
## [11] "call"

   scatter(eck.pco,posi="bottomright")

Other	available	analysis	and	plo�ng	op�ons

require(vegan) 
require(ggplot2) 
ggscree=function(out){ 
  n=length(out) 
  xs=1:n 
  df=data.frame(eig=out,xs) 
    ggplot(data=df, aes(x=xs, y=eig)) +  
    geom_bar(stat="identity",width=0.3,color="red",fill="orange") 
 } 
res=cmdscale(as.dist(1-eck)) 
res



##       [,1]   [,2] 
## w434 -0.21 -0.419 
## w445 -0.26 -0.411 
## w465 -0.41 -0.309 
## w472 -0.44 -0.273 
## w490 -0.44  0.075 
## w504 -0.34  0.373 
## w537 -0.24  0.477 
## w555 -0.19  0.488 
## w584  0.24  0.297 
## w600  0.40  0.153 
## w610  0.50 -0.029 
## w628  0.50 -0.105 
## w651  0.46 -0.148 
## w674  0.43 -0.171

res=cmdscale(as.dist(1-eck),eig=TRUE) 
names(res)

## [1] "points" "eig"    "x"      "ac"     "GOF"

res$eig

##  [1]  2.0e+00  1.3e+00  4.4e-01  3.7e-01  1.6e-01  1.0e-01  4.2e-02  3.2e-02 
##  [9]  1.8e-02  4.2e-03  1.3e-03  2.2e-16 -2.7e-02 -4.7e-02

out=res$eig 
col14=rainbow(14) 
ggscree(out)



MDS = data.frame(PCo1 = res$points[,1], PCo2 = res$points[,2]) 
ggplot(data = MDS, aes(PCo1, PCo2)) + 
  geom_point(size=4,color = col14)



How	does	the	method	work?
From	X	to	Distances	D
Given	a	Euclidean	distance	 	between	the	observa�on-rows.\	Call	 ,	if	 	is
the	matrix	of	squared	distances	between	rows	of	 	in	the	euclidean	coordinates,	we
can	show	that

is	the	centering	matrix.

D B = XX ′ D(2)
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Backward	from	D	to	X
We	can	go	backwards	from	a	matrix	 	to	 	by	taking	the	eigendecomposi�on	of	 	in
much	the	same	way	that	PCA	provides	the	best	rank	 	approxima�on	for	data	by
taking	the	singular	value	decomposi�on	of	 ,	or	the	eigendecomposi�on	of	 .

This	provides	the	best	approximate	representa�on	in	an	Euclidean	space	of	dimension
r.	The	algorithm	provides	points	in	a	Euclidean	space	that	have	approximately	the	same
distances	as	those	provided	by	 .

Classical	MDS	ALgorithm
In	summary,	given	an	 	matrix	of	interpoint	distances	 ,	one	can	solve	for	points
achieving	these	distances	by:	1.	Double	centering	the	interpoint	distance	squared
matrix:	 .	2.	Diagonalizing	 :	 .	3.	Extrac�ng	 :	 .

Examples	of	output
Screeplot	for	the	Europe	Data
res=cmdscale(eurodist,eig=TRUE) 
n=length(res$eig) 
out=data.frame(k=1:n,eig=res$eig) 
ggplot(data=out, aes(x=k, y=eig)) +  
  geom_bar(stat="identity",width=0.5,color="orange",fill="pink")
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Posi�on	of	Ci�es
MDS = data.frame(PCo1 = res$points[,1], PCo2 = res$points[,2],labs=rownames(res$points)) 
ggplot(data = MDS, aes(x=PCo1, y=PCo2,label=labs) ) + geom_text()



No�ce	the	orienta�on.	We	also	do	not	have	`variables’	to	interpret.

Robust	MDS:	Non	metric	Mul�dimensional	Scaling
Respects	the	order	of	the	distances,	does	not	try	to	approximate	their	actual	values.

require(vegan) 
require(ggplot2) 
res=metaMDS(as.dist(1-eck))



## Run 0 stress 0.023  
## Run 1 stress 0.023  
## ... Procrustes: rmse 2.2e-06  max resid 3.6e-06  
## ... Similar to previous best 
## Run 2 stress 0.023  
## ... Procrustes: rmse 2.5e-06  max resid 4e-06  
## ... Similar to previous best 
## Run 3 stress 0.023  
## ... Procrustes: rmse 5e-07  max resid 1.1e-06  
## ... Similar to previous best 
## Run 4 stress 0.023  
## ... New best solution 
## ... Procrustes: rmse 4.3e-07  max resid 8.2e-07  
## ... Similar to previous best 
## Run 5 stress 0.023  
## ... Procrustes: rmse 1.8e-06  max resid 2.8e-06  
## ... Similar to previous best 
## Run 6 stress 0.023  
## ... New best solution 
## ... Procrustes: rmse 1.3e-06  max resid 2.1e-06  
## ... Similar to previous best 
## Run 7 stress 0.023  
## ... Procrustes: rmse 1.2e-06  max resid 2.4e-06  
## ... Similar to previous best 
## Run 8 stress 0.023  
## ... Procrustes: rmse 1.1e-06  max resid 1.8e-06  
## ... Similar to previous best 
## Run 9 stress 0.023  
## ... Procrustes: rmse 1.7e-06  max resid 2.7e-06  
## ... Similar to previous best 
## Run 10 stress 0.023  
## ... Procrustes: rmse 2.1e-06  max resid 4e-06  
## ... Similar to previous best 
## Run 11 stress 0.023  
## ... Procrustes: rmse 1.1e-06  max resid 1.9e-06  
## ... Similar to previous best 
## Run 12 stress 0.023  
## ... Procrustes: rmse 1.1e-06  max resid 2.1e-06  
## ... Similar to previous best 
## Run 13 stress 0.023  
## ... Procrustes: rmse 4.7e-06  max resid 8e-06  
## ... Similar to previous best 
## Run 14 stress 0.023  
## ... Procrustes: rmse 3.4e-06  max resid 5.6e-06  
## ... Similar to previous best 
## Run 15 stress 0.023  
## ... New best solution 
## ... Procrustes: rmse 1.4e-06  max resid 2.1e-06  
## ... Similar to previous best 
## Run 16 stress 0.023  



## ... Procrustes: rmse 1.2e-06  max resid 2.3e-06  
## ... Similar to previous best 
## Run 17 stress 0.023  
## ... Procrustes: rmse 3.9e-06  max resid 6.8e-06  
## ... Similar to previous best 
## Run 18 stress 0.023  
## ... Procrustes: rmse 2.4e-06  max resid 3.6e-06  
## ... Similar to previous best 
## Run 19 stress 0.023  
## ... New best solution 
## ... Procrustes: rmse 8.9e-07  max resid 1.6e-06  
## ... Similar to previous best 
## Run 20 stress 0.023  
## ... Procrustes: rmse 6.1e-07  max resid 1.1e-06  
## ... Similar to previous best 
## *** Solution reached

col14=rainbow(14) 
NMDS = data.frame(PCo1 = res$points[,1], PCo2 = res$points[,2]) 
ggplot(data = NMDS, aes(PCo1, PCo2)) + 
  geom_point(size=4,color = col14)



Correspondence	Analysis:A	weighted	PCA	for	Con�ngency
Tables

Variance	in	replaced	by	the	Chisquare	(Iner�a)
Centering	is	both	by	rows	and	columns	(symmetry	of	dimensions)
Standard	to	represent	both	the	rows	and	the	columns	on	the	same	(bi)plot
Good	method	for	finding	hidden	gradients

What	is	a	con�ngency	table?

Categorical	Data	Representa�ons
(the	long	version	representa�on)

Indicator	variables:

are	transformed	into	a	Muta�on	 	Muta�on	matrix.

Hair	Color,	Eye	Color

quiet

angry

clever

depressed

happy

lively

perplexed

virtuous

black

27700

29700

16500

14800

193000

18400

1100

1790

blue

21500

15300

12700

9570

83100

12500

713

802

green

21400

17400

13200

9830

87300

13500

801

1020

grey

8750

7520

4950

1470

19200

6590

189

200

orange

12200

10400

6930

3300

42200

6210

233

247

purple

8210

7100

4160

1020

26100

4880

152

173

white

25100

17300

14200

12700

91500

14800

1090

1650

Patient

AHY789

AHX717

Mutation1

0

1

Mutation2

0

0

$ …

×



require(ade4) 
HairColor=HairEyeColor[,,2] 
HairColor

##        Eye 
## Hair    Brown Blue Hazel Green 
##   Black    36    9     5     2 
##   Brown    66   34    29    14 
##   Red      16    7     7     7 
##   Blond     4   64     5     8

chisq.test(HairColor)

## Warning in chisq.test(HairColor): Chi-squared approximation may be incorrect

##  
##  Pearson's Chi-squared test 
##  
## data:  HairColor 
## X-squared = 107, df = 9, p-value <2e-16

Conclusion	The	data	are	not	independent,	the	categories	show	a	pa�ern	of
dependency,	what	can	we	say	about	them?

Independence:	computa�onally
rowsums=as.matrix(apply(HairColor,1,sum)) 
rowsums

##       [,1] 
## Black   52 
## Brown  143 
## Red     37 
## Blond   81

colsums=as.matrix(apply(HairColor,2,sum)) 
colsums

##       [,1] 
## Brown  122 
## Blue   114 
## Hazel   46 
## Green   31



HCexp=round(rowsums%*%t(colsums)/sum(colsums)) 
Exp = outer(apply(HairColor, 1, sum), apply(HairColor, 2, sum)) 
#Here is actually how the chisquare is computed 
sum((HairColor - Exp)^2/Exp)

## [1] 97344

HairColor-HCexp

##        Eye 
## Hair    Brown Blue Hazel Green 
##   Black    16  -10    -3    -3 
##   Brown    10  -18     8     0 
##   Red       2   -6     2     3 
##   Blond   -28   34    -7     0

require(vcd)

## Loading required package: vcd

##  
## Attaching package: 'vcd'

## The following object is masked from 'package:GenomicRanges': 
##  
##     tile

## The following object is masked from 'package:IRanges': 
##  
##     tile

mosaic(HairColor,shade=TRUE)



What	special	property	does	the	HCexp/Exp	matrix	have?

Independence:	mathema�cally
If	we	are	comparing	two	categorical	variables,	(hair	color,	eye	color),	(color,	emo�on),
Counts	in	the	table	approximately	the	margin	products:	for	a	 	con�ngency	table
with	a	total	sample	size	of	 .

can	also	be	wri�en:	 ,	where

The	departure	from	independence	is	measured	by	the	 	sta�s�c

I × J

n = =∑I
i=1 ∑J

j=1 nij n⋅⋅

≐ nnij

ni⋅

n

n⋅j

n

N ≐ c nr
′

c = N  and  =
1

n
1m r

′ 1

n
N

′
1p

χ 2



Correspondence	Analysis	is	like	PCA	using	
distances
Many	implemeta�ons:	-	 dudi.coa 	in	 ade4 	-	 CCA 	in	 vegan 	-	ordina�on	in	 phyloseq

library("ade4") 
HairColor = HairEyeColor[,,2] 
chisq.test(HairColor)

##  
##  Pearson's Chi-squared test 
##  
## data:  HairColor 
## X-squared = 107, df = 9, p-value <2e-16

CCA 	in	 vegan

library(vegan) 
HairColor = HairEyeColor[,,2] 
res.ca=vegan::cca(HairColor) 
plot(res.ca,scaling=3)
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Example:	Plato’s	Sentence	Endings



Table	from	Brandwood	and	Cox

The	dates	Plato	wrote	these	various	`books’	is	not	known.	Sentence	endings	and	use
those	pa�ern	frequencies	as	the	data.

The	first	(earliest)	is	known	to	be	Republica.	The	last	(latest)	is	known	to	be	Laws.

platof=read.table("~/Books/CUBook/data/platof.txt",header=T) 
platof[1:8,]

##       Rep Laws Crit Phil Pol Soph Tim 
## uuuuu  42   91    5   24  13   26  18 
## -uuuu  60  144    3   27  19   33  30 
## u-uuu  64   72    3   20  24   31  46 
## uu-uu  72   98    2   25  20   24  14 
## uuu-u  79  113   10   38  25   22  26 
## uuuu-  76  144    6   46  22   23  27 
## --uuu  79  102    5   41  25   30  26 
## -u-uu  83   68    3   14  18   37  26

res.plato=dudi.coa(platof,scannf=FALSE,nf=2) 
scatter(res.plato)



s.label(res.plato$co) 
s.label(res.plato$li,add.plot=T)



names(res.plato)

##  [1] "tab"  "cw"   "lw"   "eig"  "rank" "nf"   "c1"   "li"   "co"   "l1"   
## [11] "call" "N"

sum(res.plato$eig)

## [1] 0.13

round(res.plato$eig,2)

## [1] 0.09 0.02 0.01 0.01 0.00 0.00

More	About	Gradients
The	Boomer	Lake	example:	Arch	Effect	for	Ecologists
(h�p://ordina�on.okstate.edu/PCA.htm)

Two	species	count	matrices

http://ordination.okstate.edu/PCA.htm


lakelike

##       plant1 plant2 plant3 plant4 plant5 plant6 plant7 plant8 plant9 plant10 
## loc1       5      5      2      1      1      1      2      0      0       0 
## loc2       5      6      7      4      2      1      0      1      0       0 
## loc3       4      5      5      5      3      2      2      0      1       1 
## loc4       2      4      5      6      5      4      3      1      0       0 
## loc5       2      2      3      5      5      4      4      5      2       0 
## loc6       0      1      2      5      4      5      4      3      2       1 
## loc7       0      1      1      4      4      5      6      4      3       3 
## loc8       0      0      2      2      3      3      4      6      4       3 
## loc9       1      0      1      0      1      3      3      5      6       4 
## loc10      0      0      0      1      0      1      3      4      4       5 
##       plant11 plant12 plant13 plant14 plant15 
## loc1        0       1       0       2       2 
## loc2        1       0       2       0       0 
## loc3        1       0       1       1       1 
## loc4        1       1       1       0       0 
## loc5        0       0       1       0       0 
## loc6        1       0       1       1       0 
## loc7        1       0       0       0       0 
## loc8        3       2       3       1       1 
## loc9        5       3       1       0       1 
## loc10       4       3       2       2       1

lakelikeh



##       plant1 plant2 plant3 plant4 plant5 plant6 plant7 plant8 plant9 plant10 
## loc1       5      5      2      1      1      1      2      0      0       0 
## loc2       5      6      7      4      2      1      0      1      0       0 
## loc3       4      5      5      5      3      2      2      0      1       1 
## loc4      20     40     50     60     50     40     30     10      0       0 
## loc5       2      2      3      5      5      4      4      5      2       0 
## loc6       0      1      2      5      4      5      4      3      2       1 
## loc7       0      1      1      4      4      5      6      4      3       3 
## loc8       0      0      2      2      3      3      4      6      4       3 
## loc9       1      0      1      0      1      3      3      5      6       4 
## loc10      0      0      0      1      0      1      3      4      4       5 
##       plant11 plant12 plant13 plant14 plant15 
## loc1        0       1       0       2       2 
## loc2        1       0       2       0       0 
## loc3        1       0       1       1       1 
## loc4       10      10      10       0       0 
## loc5        0       0       1       0       0 
## loc6        1       0       1       1       0 
## loc7        1       0       0       0       0 
## loc8        3       2       3       1       1 
## loc9        5       3       1       0       1 
## loc10       4       3       2       2       1

reslake=dudi.coa(lakelike,scannf=FALSE,nf=2) 
reslake2=dudi.pca(lakelike,scannf=FALSE,nf=2) 
reslakeh=dudi.coa(lakelikeh,scannf=FALSE,nf=2) 
reslakeh2=dudi.pca(lakelikeh,scannf=FALSE,nf=2)

Compare	output	from	PCA	and	Correspondence
Analysis
First	Data	Set
Principal	Components

scatter(reslake2)



s.label(reslake2$li)



Correspondence	Analysis

scatter(reslake)



s.label(reslake$li)



Second	Data	set
Principal	Components

s.label(reslakeh2$co)



s.label(reslakeh2$li)



Correspondence	Analysis

s.label(reslakeh$li)



s.label(reslakeh$co)



s.label(reslakeh$li)



s.label(reslakeh2$li)



Other	methods	for	gradients
We	will	follow	an	analysis	of	Moignard	et	al.,	2015.

This	paper	describes	the	dynamics	of	blood	cell	development.	The	data	are	single	cell
gene	expression	measurements	of	3,934	cells	with	blood	and	endothelial	poten�al
from	five	popula�ons	from	between	embryonic	day	(E)7.0	and	E8.25.



Cell	dynamics

The	four	cell	popula�ons	studied	here	are	representa�ve	of	three	sequen�al	states
(PS,NP,HF)	and	two	possible	final	branches	(4SG	and	4SFG ).

## [1] 3934   46

## typesort sortA sortB 
##                      
##           3175   759

The	classical	mul�dimensional	scaling	on	two	distances	matrices	can	be	carried	out
using:

dist2n.euclid=dist(Norm) 
dist1n.l1=dist(Norm,"manhattan") 
cellsn.cmds=cmdscale(dist1n.l1,k=20,eig=TRUE) 
cellsn2.cmds=cmdscale(dist2n.euclid,k=20,eig=TRUE) 
perc1=round(100*sum(cellsn.cmds$eig[1:2])/sum(cellsn.cmds$eig)) 
perc2=round(100*sum(cellsn2.cmds$eig[1:2])/sum(cellsn2.cmds$eig))

We	look	at	the	underlying	dimension	and	see	below	that	two	dimensions	can	provide
a	substan�al	percentage	of	the	variance.

barplot(100*cellsn.cmds$eig[1:20]/sum(cellsn.cmds$eig))

−



barplot(100*cellsn2.cmds$eig[1:20]/sum(cellsn.cmds$eig))



cellsmds=data.frame(Axis1=cellsn.cmds$points[,1],Axis2=cellsn.cmds$points[,2]) 
cells2mds=data.frame(Axis1=cellsn2.cmds$points[,1],Axis2=cellsn2.cmds$points[,2]) 
ggplot(cellsmds,aes(x=Axis1,y=Axis2))+ 
  geom_point(aes(color=celltypes),color=cellcol) +xlab("Axis1-CMDS") +ylab("Axis2")



ggplot(cells2mds,aes(x=Axis1,y=Axis2))+ 
  geom_point(aes(color=celltypes),color=cellcol) +xlab("Axis1-CMDS2") +ylab("Axis2")



Nonlinear	methods
The	cells	are	not	distributed	uniformly	in	the	lower	dimensions	we	have	been	looking
at,	they	form	a	horseshoe.

Finding	Time
Horseshoes:	A	la	recherche
(h�p://www.huber.embl.de/users/whuber/pub/horseshoe.html)

Mul�dimensional	scaling	and	non	metric	mul�dimensional	scaling	aims	to	represent	all
distances	as	precisely	as	possible	and	the	large	distances	between	far	away	points
skew	the	representa�ons.

It	can	be	beneficial	when	looking	for	gradients	or	low	dimensional	manifolds	to	restrict
ourselves	to	approxima�ons	of	points	that	are	close	together.

These	methods	try	to	represent	local	(small)	distances	well	and	do	not	try	to
approximate	distances	between	faraway	points	with	too	much	accuracy.

http://www.huber.embl.de/users/whuber/pub/horseshoe.html


The	use	of	Kernels	computed	using	the	calculated	interpoint	distances	allows	us	to
decrease	the	importance	of	points	that	are	far	apart.	A	radial	basis	kernel	can	be	of	the
form

or	the	l1	version:

t-SNE
Change	the	distance:	allow	the	 	parameter	to	vary	locally.

Thus	we	obtain	a	probability	distribu�on	that	serves	as	the	probability	that	pairs	of
points	in	the	high	dimensional	space	are	neighbors.

The	t-SNE	method	then	constructs	 	points	in	low	dimensions	so	their	distances	are
propor�onal	to	 	minimizing	the	(non-symmetric)	Kullback–Leibler
divergence	of	the	distribu�on	Q	from	P.

This	method	is	not	robust	and	has	the	property	of	separa�ng	clusters	of	points
ar�ficially;	this	can	clarify	a	complex	situa�on.	One	can	think	it	as	a	method	akin	to	the
network	layout	algorithms.

They	stretch	the	data	to	clarify	rela�ons,	but	the	distances	between	point	cannot	be
interpreted	as	on	the	same	scales	in	different	points	in	the	plane.

See	examples	in	chapter	9	(h�p://web.stanford.edu/class/bios221/book/Chap-
Mul�vaHetero.html)

Ten	quick	�ps	(TenQuickTips.html)

Confidence	Regions

1 − exp{− },  where   is	fixed.
d(x, y)2

σ 2
σ 2

1 − exp{− },  where σ is	fixed.
d(x, y)

σ

σ 2

Yi

(1 + || − |yi yj |2)−1

http://web.stanford.edu/class/bios221/book/Chap-MultivaHetero.html
file:///Users/Susan/Dropbox/summer19/stamps19/ExploratoryMultivariate/TenQuickTips.html


Paper:	Boyu	Ren,	Sergio	Bacallado,	Stefano	Favro,	Susan	Holmes,	Lorenzo	Trippa	JASA:
open	access	preprint	(h�ps://arxiv.org/abs/1601.05156)

Whole	talk	with	model	for	uncertainty
(h�ps://www.dropbox.com/s/9axbd6fljwckxe4/MSR_Microbiome_Oct.pdf?dl=0)

Uses	a	Bayesian	sta�s�cal	model.

https://arxiv.org/abs/1601.05156
https://www.dropbox.com/s/9axbd6fljwckxe4/MSR_Microbiome_Oct.pdf?dl=0

