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Multivariate Analysis
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Matrices and their Motivation

It is current practice to measure many variables on the same patients, we may have all
the biometrical characteristics, height, weight, BMI, age as well as clinical variables
such as blood pressure, blood sugar, heart rate for 100 patients, these variables will
not be independent.

What are the data?

¢ To start off, a useful toy example we'll use is from the sports world; performances
of decathlon athletes.

These are measurements of athletes’ performances in the decathlon: the variables
m2100, m400, m1500 are performance times in seconds for the 100 metres, 400
metres and 1500 meters respectively, ‘m110°‘is the time taken to finish the 110



meters hurdles whereas pole is the pole-jump height, weight is the length in
metres the athletes threw the weight.
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Diabetes

¢ Clinical measurements (‘diabetes’ data). This data measures glucose levels in the
blood after fasting (glufast), after a test condition (glutest) as well as steady state
plasma glucose (steady) and steady state (insulin) for diabetes, the sixth variable is
not continuous and is considered a supplementary variable as we will see.

long weight
743 15.48
745 149
744 142
7.38 15.02

highj

m400 m110 disc pole jave m1500
2.27 4890 15.13 49.28 470 61.32 268.95

7 197 4771 1446 4436 510 6176 273.02

0 1.97 4829 1481 43.66 520 64.16 263.20

203 49.06 14.72 4480 4.90 64.04 285.11

diabetes=read.table(url("http://bios221l.stanford.edu/data/diabetes.txt"),header=TRUE, row.nam

es=1)
diabetes[1

:4,]

## relwt glufast glutest steady insulin Group

## 1 0.81
## 3 0.94
## 5 1.00
## 7 0.91
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Microbial Ecology

¢ Operational Taxon Unit read counts in a microbial ecology study; the columns
represent different ‘species’ of bacteria, the rows are labeled for the samples.
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RNA-Seq

e Here are some RNA-seq transcriptomic data showing numbers of mRNA reads
present for different patient samples, the rows are patients and the columns are
the genes.

FBgn0000017 FBgn0000018 FBgn0000022 FBgn0000024 FBgn0000028 FBgn0000032

untreatedl 4664 583 0 10 0 1446
untreated2 8714 761 1 11 1 1713
untreated4 3150 310 0 3 0 672
treatedl 6205 722 0 10 0 1698
treated3 3334 308 0 5 1 757

Mass Spectroscopy

e Mass spectroscopy data where we have samples containing informative labels
(knockout versus wildtype mice) and protein X features designated by their m/z
number.

mz 129.9816 72.08144 151.6255 142.0349 169.0413 186.0355
KOGCHUM1 60515 181495 0 196526 25500 51504.40
WTGCHUM1 252579 54697 412 487800 48775 130491.15
WTGCHUM2 187859 56318 46425 454226 45626 100845.01

Expression Data (microarray)

¢ Here the rows are samples from different subjects and different T cell types and
the columns are a subset of gene expression measurements on the 156 most
differentially expressed genes (Holmes2005memory).

#H#####Melanoma/Tcell Data: Peter Lee, Susan Holmes, PNAS.
load(url("http://bios221.stanford.edu/data/Msig3transp.RData"))
round(Msig3transp,2)[1:5,1:6]

## X3968 X14831 X13492 X5108 X16348 X585
## HEA26_EFFE_1 -2.61 -1.19 -0.06 -0.15 0.52 -0.02
## HEA26 MEM 1 -2.26 -0.47 0.28 0.54 -0.37 0
## HEA26 NAI 1 -0.27 0.82 0.81 0.72 -0.90 0.75
## MEL36 EFFE 1 -2.24 -1.08 -0.24 -0.18 0.64 0
## MEL36 MEM 1 -2.68 -0.15 0.25 0.95 -0.20 O



celltypes=factor (substr(rownames (Msig3transp),7,9))
status=factor(substr(rownames (Msig3transp),1,3))

The voting data

house=read.table("/Users/susan/Dropbox/CaseStudies/votes.txt")
head(house[,1:5])

## Al V2 v3 V4 V5
## 1 -0.5 -0.5 0.5 -0.5 0.0
## 2 -0.5 -0.5 0.5 -0.5 0.0
## 3 0.5 0.5 -0.5 0.5 -0.5
## 4 0.5 0.5 -0.5 0.5 -0.5
## 5 0.5 0.5 -0.5 0.5 -0.5
## 6 -0.5 -0.5 0.5 -0.5 0.0

party=scan("/Users/susan/Dropbox/CaseStudies/party.txt")
#table(party)

Biometrical Measurements
¢ Measurements: turtles

#require (MSBdata)
turtles=read.table(url("http://bios221.stanford.edu/data/PaintedTurtles.txt"),header=TRUE)
turtles[1l:4,]

## sex length width height

## 1 f 98 81 38
## 2 f 103 84 38
## 3 f 103 86 42
## 4 f 105 86 40

e Some biological traits of lizards are available in the ‘ade4‘ package

require(ade4)
data(lizards)
lizards$traits[1l:4,c(1,5,6,7,8)]

## mean.L hatch.m clutch.S age.mat clutch.F
## Sa 69.2 0.572 6.0 13 1.5
## Sh 48.4 0.310 3.2 5 2.0
## T1 168.4 2.235 16.9 19 1.0
## Mc 66.1 0.441 7.2 11 1.5



Data visualization and preparation

It is always beneficial to start a multidimensional analysis by checking the simple one
dimensional and two dimensional summary statistics, we can visualize these using a
graphics package that builds on ‘ggplot2‘ called ‘GGally".

Low dimensional data summaries and
preparation

What do we mean by low dimensional ?
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If we are studying only one variable, just one column of our matrix, we might call it x
or X.;; we call it one dimensional.

A one dimensional summary a histogram that shows that variable’s distribution, or we
could compute its mean X or median, these are zero-th dimensional summaries of one
dimension data.

Two dimensional data

When considering two variables (x and y) measured together on a set of observations,
the correlation coefficient measures how the variables co-vary.

This is a single number summarizes two dimensional data, its formula involves x and y:

Z?:l xi = X)Qi —y)
VY G = X2V Y 0 — 9)*
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cor(turtles[,-11])

## length width height
## length 1.000 0.978 0.965
## width 0.978 1.000 0.961
## height 0.965 0.961 1.000

library("GGally")

## Registered S3 method overwritten by 'GGally':
##  method from
## +.99 ggplot2

ggpairs(turtles[,-1],axisLabels = "none")
length width height
Corr: Corr:
0.978 0.965
®
[

e Corr:
/ 0.961

o [ ]

Pairs plot for turtles data

pairs plot for athletes

YipIm yibus)

ybray



ggpairs(athletes)
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Pairs athletes

pheatmap(cor(athletes),cell.width=10,cell.height=10)
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Heatmap athletes

Preprocessing the data

We usually center the cloud of points around the origin; the most common way of
doing this is to make new variables whose means are all zero.

More robust scaling can be done also (median).

Different variables are measured in different units, and at different scales, and so
would be hard to compare in their original form.

library("ggplot2")
library("factoextra")

## Welcome! Related Books: “Practical Guide To Cluster Analysis in R~ at https://goo.gl/13EF
Cz

apply(turtles[,-1],2,sd)

## length width height
## 20.48 12.68 8.39

apply(turtles[,-1],2,mean)



## length width height
## 124.7 95.4 46.3

Transform the data: standardizing

Making the data have a common standard deviation is the usual transformation. As in
the correlation coefficient.

This rescaling is done using the scale function which makes every column have a
variance of 1.
turtleMatScale=scale(turtles[,-1])

scaledturtles=data.frame(turtleMatScale,sex=turtles[,1])
apply(scaledturtles[,-4],2,mean)

## length width height
## -1.43e-18 1.94e-17 -2.87e-16

apply(scaledturtles[,-41],2,sd)

## length width height
## 1 1 1

ggplot(scaledturtles,aes(x=width,y=height, group =sex)) +
geom _point(aes(color=sex))



sex

height

width

A Little History

Invented in 1901 by Karl Pearson as a way to reduce a two variable scatterplot to a
single coordinate.

Used by statisticians in the 1930s to summarize a battery of psychological tests run on
the same subjects Hotelling:1933, extracting overall scores that could summarize
many variables at once.

It is called Principal Component Analysis (abbreviated PCA).
Not principled

Dimension reduction

PCA is an ‘unsupervised learning technique’ because it treats all variables as having the
same status.



PCA is visualization technique which produces maps of both variables and
observations.

We are going to give you a flavor of what is called multivariate analyses. As a useful
first approximation we formulate many of the methods through manipulations called
linear algebra.

The raison d’étre for multivariate analyses is connections or associations between the
different variables.

If the columns of the matrix are unrelated, we should just study each column
separately and do standard univariate statistics on them one by one.

We use projections:

projectionvector

Low Dimensional Projections
Here we show one way of projecting two dimensional data onto a line.

The olympic data come from the ade4 package, they are the performances of
decathlon athletes in an olympic competition.
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Scatterplot of two variables showing projection on the x coordinate in red.

How do we summarize two dimensional data by
aline?
In general, we lose information about the points when we project down from two

dimensions (a plane) to one (a line).

If we do it just by using the original coordinates, for instance the x coordinate as we
did above, we lose all the information about the second one.

There are actually many ways of projecting the point cloud onto a line. One is to use
what are known as regression lines. Let’s look at these lines and how there are
constructed in R:

Regressing one variable on the other



The disc variable on the weight

attach(athletes)

require (ggplot2)

regl <- 1lm(disc~weight,data=athletes)

#abline(regl, col='red')

a <- reglscoefficients[l] # Intercept

b <- regl$coefficients[2] # slope
pline=p+geom_abline(intercept=a,slope=b, col="blue")
proj=pline+geom_segment (aes(x=weight, xend=weight, y=disc,
yend=regl$fitted),linetype=1,colour="red",

arrow = arrow(length = unit(0.15,"cm")))

print(proj)

disc

weight

The blue line minimizes the sum of squares of the vertical residuals (in red),
What is the variance of the points along the blue line?

matproj=cbind(weight,regl$fitted)
sum(apply(matproj,2,var))

## [1] 1.65



Regression of weight on discus
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Variance of the data points

matproj2=cbind(weight,reg2$fitted)
sum(apply(matproj,2,var))

## [1] 1.65

The orange line minimizes the horizontal residuals for the weight variable in orange.

The PCA line: it minimizes in both directions

xy=cbind(athletes$disc,athletes$weight)

svda=svd (xy)

pc = Xy %*% svdas$v[,1l] %*% t(svda$v[,1l])

bp = svdas$v[2,1] /svdas$v[l,1]

ap = mean(pc[,2])-bp*mean(pc[,1])

ptgeom segment (xend=pc[,1],yend=pc[,2])+
geom_abline(intercept=ap,slope=bp, col="purple",lwd=1.5)
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The purple line minimizes both residuals and thus (through Pythagoras) it minimizes
the sum of squared distances from the points to the line.

Minimizing the distance to the line in both directions, the purple line is the principal
component line, the green and blue line are the regression lines.

Variance along the line

The lines created here are sensitive to the choice of units; because we have made the
standard deviations equal to one for both variables, the PCA line is the diagonal that
cuts exactly in the middle of both regression lines.

The data were centered by subtracting their means thus ensuring that the line passes
through the origin (0, 0).

Compute the variance of the points on the purple line.

The coordinates of the points when we made the plot, these are in the pc vector:
apply(pc,2,var)
## [1] 0.903 0.903

sum(apply(pc,2,var))

## 117 1.81

PCA for 2 dimensional data

ppdf = data.frame(PCln=-svda$u[,l]*svda$d[1l],PC2n=svdas$u[,2]*svdas$d[2])
ggplot (ppdf,aes(x=PCln,y=PC2n))+geom point()+ ylab("PC2 ")+
geom_hline(yintercept=0,color="purple",lwd=1.5,alpha=0.5) +
geom_point(aes(x=PCln,y=0),color="red")+ xlab("PCl ")+
xlim(-3.5, 2.7)+ylim(-2,2)+coord_fixed() +
geom_segment (aes (xend=PCln,yend=0), color="red")
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Notes about Lines

The line created here is sensitive to the choice of units, and to the center of the cloud.

Note that Pythagoras’ theorem tells us two interesting things here, if we are
minimizing in both horizontal and vertical directions we are in fact minimizing the
diagonal projections onto the line from each point.

Principal Components are Linear Combinations
of the ‘old’ variables

To understand what that a linear combination really is, we can take an analogy, when
making a healthy juice mix, you can follow a recipe.

M

image

ingredients

+ 2 pounds beets (about & medium), trimmed, peeled, cut into 1" pieces
+ 1 pound carrots (about 4 large), trimmed, peeled, cut into 1" pieces

+ 1 Gala or Empire apple (about 8 ounces), cored, cut into 1" pieces

+ 1 Granny smith apple {(about B ounces), cored, cut into 1" pieces

« 13" piece fresh ginger, peeled, chopped into 1" pieces

+ 3 tablespoons fresh lemon juice

image



1 1
V =2 x Beets + 1 X Carrots + 5 Gala + 5 GrannySmith + 0.02 X Ginger + 0.25 Lemon

This recipe is a linear combination of individual juice types, in our analogy these are
replaced by the original variables. The result is a new variable, the coefficients
2,1, %, %, 0.02, 0.25) are called the loadings.

Optimal lines

A linear combination of variables defines a line in our space in the same way we say
lines in the scatterplot plane for two dimensions. As we saw in that case, there are
many ways to choose lines onto which we project the data, there is however a ‘best’
line for our purposes.

Total variance can de decomposed The total sums of squares of the distances
between the points and any line can be decomposed into the distance to the line and
the variance along the line.

We saw that the principal component minimizes the distance to the line, and it also
maximizes the variance of the projections along the line.

Good Projections



What is this?

Good Projections



Mysterylmage
Which projection do you think is better?

It's the projection that maximizes the area of the shadow and an equivalent
measurement is the sums of squares of the distances between points in the projection,
we want to see as much of the variation as possible, that's what PCA does.

The PCA workflow



Many Choices have to made during PCA processing.

PCA is based on the principle of finding the largest axis of inertia/variability and then
iterating to find the next best axis which is orthogonal to the previous one and so on.

The Inner Workings of PCA: the Singular Value
Decomposition

Eigenvalues of X'X or Singular values of X tell us the rank.

What does rank mean?

X| 2 4 8
S
1|
2 |
3
4|
X | 2 4 8
.
1 | 2
2 | 4
3 | 6
4 | 8
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We say that the matrix

2 4 8
4 8 16
6 12 24
8§ 16 32

is of rank one.

2 4 8
4 8 16 , ! )

==uxt(vV) =ux, =(2) andV =1t(v) =2 423).
6 12 24 uxt(v) =u u <i> ) =( )
8 16 32

Backwards from the matrix to decomposition

X=matrix(c(780, 75, 540, 936, 90, 648, 1300, 125, 900,
728, 70, 504),nrow=3)
X

## (11 0,21 [,3] [,4]
## [1,] 780 936 1300 728
## (2,1 75 90 125 70
## [3,] 540 648 900 504

ul=c(0.8,0.1,0.6)
vl=c(0.4,0.5,0.7,0.4)
sum(ul”2)

## [1] 1.01

sum(v1l~2)



## [1] 1.06

s1=2348.2
sl*ul $*%t(vl)

## [,11 [,2]) [,3]1 [,4]
## [1,]1 751.4 939 1315 751.4
## [2,1 93.9 117 164 93.9
## [3,] 563.6 704 986 563.6

X-sl*ul $*%t(vl)

## 11 0,21 [,3]1 [,4]
## [1,]1 28.6 -3.28 -15.0 -23.4
## [2,] -18.9 -27.41 -39.4 -23.9
## [3,] -23.6 -56.46 -86.2 -59.6

Graphical Decompositions
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Looking at different possible margins
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Forcing the margins to have norm 1

Check with R

## cheCkX——————— e

u1l
o
(o]

u2

u3
o
»

ul=c(0.8196, 0.0788, 0.5674)
vl=c(0.4053, 0.4863, 0.6754, 0.3782)
s1=2348.2

sl*ul %*%t(vl)

## (11 0,21 [,3] [,4]
## [1,]1 780 936 1300 728
## (2,1 75 90 125 70
## [3,] 540 648 900 504

Xsub=matrix(c(12.5 , 35.0 , 25.0 , 25,9,14,26,18,16,21,49,

32,18,28,52,36,18,10.5,64.5,36) ,ncol=4,byrow=T)
Xsub



## [,11 [,2]
## [1,] 12.5 35.0
# [2,] 9.0 14.0
## [3,] 16.0 21.0
## [4,] 18.0 28.0
## [5,] 18.0 10.5

USV=svd (Xsub)
usv

## $d

## [1] 1.35e+02 2.8le+01 3.10e-15 1.85e-15

##
## Su
## [,11

[,3]1 [,4]

25.
26.
49.
52.
64.

[

0

U O O O

2]

## [1,] -0.344 0.7717

## [2,] -0.264 0.0713
## [3,] -0.475 -0.0415
## [4,] -0.528 0.1426

## [5,] -0.554 -0.6143

##
## Sv
## [,1]

## [1,] -0.250 0.0404

[

2]

## [2,] -0.343 0.8798
## [3,] -0.755 -0.4668
## [4,] -0.500 0.0808

## ———=CheckUSV——————— o e e

25
18
32
36
36

[,3] (/4]
0.5193 -0.114
.3086 -0.504
-0.0386 0.803
.6423 -0.103

0.4702 -0.280

[

0.1
0.1

3]

-0.967

33
86

[,4]

.0244
.3010
.4214

0.111 -0.

8551

Xsub-(135*USV$u[,1]%*3t(USVSV[,1]1))

## [,1]
## [1,] 0.8802
## [2,] 0.0849
## [3,] -0.0396
## [4,] 0.1698
## [5,] -0.6877 -

Xsub- (135*USVSu[,1]1%*3t (USVSV[,1]))-(28.1*USVS$u[,2]%*3t(USVSV[,2]))

## [.1]

## [1,] 0.00387 -0.02528
0.00264
0.01192
0.00527
0.03784

## [2,] 0.00398
## [3,] 0.00749
## [4,] 0.00796
## [5,] 0.00983

[
19.
1.
-1.
3.
15.

2] [
05 -10.
76 -0.
01 0.
53 -1.
15 8.

[,2]

o ©O © o o

/3] (/4]
088 1.7604
921 0.1698
565 -0.0792
842 0.3397
069 -1.3754

[,31]

.0335
.0140
.0214
.0281
.0123

o ©O © ©o o

[,4]
.00774
.00796
.01498
.01592
.01965




Xsub- USV$d[1]*USVS$u[,1]%*3t(USVS$V[,1])-USVSd[2]*USVSu[,2]1%*%t(USVSV[,2])

#i# [,1] [,2] [,3] [/4]
## [1,] 7.22e-15 -1.07e-14 8.88e-15 4.88e-15
## [2,] 2.04e-15 -6.00e-15 1.05e-14 3.22e-15
## [3,] 2.87e-15 -9.55e-15 1.55e-15 6.23e-15
## [4,] 4.39e-15 -5.77e-15 1.78e-14 7.05e-15
## [5,] 5.11le-15 -1.78e-15 1.78e-14 1.78e-14

Another Example

Xsub=matrix(c(12.5 , 35.0 , 25.0 , 25,9,14,26,18,16,21,49,32,18,28,52,36,18,10.5,64.5,36),nc
0l=4,byrow=T)

Xsub

## [,11 0,21 [,31 [,4]

## [1,] 12.5 35.0 25.0 25

## [2,] 9.0 14.0 26.0 18

## [3,] 16.0 21.0 49.0 32

## [4,] 18.0 28.0 52.0 36

## [5,] 18.0 10.5 64.5 36

svd (Xsub)

## $d

## [1] 1.35e+02 2.8le+01 3.10e-15 1.85e-15
##

## Su

## [,11 [,2] [,31 [,4]

## [1,] -0.344 0.7717 0.5193 -0.114
## [2,] -0.264 0.0713 -0.3086 -0.504
## [3,] -0.475 -0.0415 -0.0386 0.803
## [4,] -0.528 0.1426 -0.6423 -0.103
## [5,] -0.554 -0.6143 0.4702 -0.280
##

## Sv

## [,1] [,2] [,3] [,4]
## [1,] -0.250 0.0404 -0.967 0.0244
## [2,] -0.343 0.8798 0.133 0.3010
## [3,] -0.755 -0.4668 0.186 0.4214
## [4,] -0.500 0.0808 0.111 -0.8551

USV=svd (Xsub)
XS1=Xsub-USV$d[1]*(USVSu[,1]1%*% t(USVSV[,11))
Xs1



## (11 [,2] (.31  [,4]
## [1,] 0.8748 19.05 -10.104 1.750
## [2,] 0.0808 1.76 -0.933 0.162
## [3,] -0.0470 -1.02 0.543 -0.094
## [4,] 0.1616 3.52 -1.866 0.323
## [5,] -0.6963 -15.16  8.043 -1.393

XS2=XS1-USV$d[2]* (USVSu[,2]%*% t(USVSV[,2]))

Xs2

## [,11] [,2] [,31] [,4]
## [1,] 7.22e-15 -1.07e-14 8.88e-15 4.88e-15
## [2,] 2.04e-15 -6.00e-15 1.05e-14 3.22e-15
## [3,] 2.87e-15 -9.55e-15 1.55e-15 6.23e-15
## [4,] 4.39e-15 -5.77e-15 1.78e-14 7.05e-15
## [5,] 5.11le-15 -1.78e-15 1.78e-14 1.78e-14

Special Example of Rank one matrix:
independence

require(ade4)
HairColor=HairEyeColor[,,2]

HairColor

## Eye

## Hair Brown Blue Hazel Green
## Black 36 9 5 2
## Brown 66 34 29 14
## Red 16 7 7 7
## Blond 4 64 5 8

chisqg.test(HairColor)

## Warning in chisq.test(HairColor): Chi-squared approximation may be incorrect

##

## Pearson's Chi-squared test

##

## data: HairColor

## X-squared = 107, df = 9, p-value <2e-16



prows=sweep(HairColor,1l,apply(HairColor,1,sum),"/")
pcols=sweep(HairColor,2,apply(HairColor,2,sum),"/")
Indep=313*as.matrix(prows)%*%t(as.matrix(pcols))
round (Indep)

## Hair

## Hair Black Brown Red Blond
## Black 72 158 39 44
## Brown 57 154 40 61
## Red 55 155 44 59

## Blond 28 108 27 149
sum( (Indep-HairColor)"2/Indep)

## [1] 799

SVD for real data

diabetes.svd=svd(scale(diabetes[,-5]))
names (diabetes.svd)

## (1] "d" "u" "v"
diabetes.svds$d
## [1] 20.09 13.38 9.89 5.63 1.70

turtles.svd=svd(scale(turtles[,-1]))
turtles.svds$sd

## [1] 11.75 1.42 1.00

SvD



= + + + ...
u u, u,

X = U, * S * Va1 + Uo * 87 % Voo + U3 * 53 %V,
We write our horizontal/vertical decompostion of the matrix X in short hand as:
X =US V,, V, V=I R U ! U=1 R S diagonal matrix of singular values, given by the {\tt
The crossproduct of X with itself verifies

X'X = VSU'USV' = VS*V' = VAV’

where V is called the eigenvector matrix of the symmetric matrix X’ X and A is the
diagonal matrix of eigenvalues of X'X.

Why Eigenvectors are useful?
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Why would eigenvectors come into use in Cinderella?

Khan's Academy (https:/www.khanacademy.org/math/linear-
algebra/alternate_bases/eigen_everything/v/linear-algebra--introduction-to-
eigenvalues-and-eigenvectors)

Principal Components

The singular vectors from the singular value decomposition, svd function above tell
us the coefficients to put in front of the old variables to make our new ones with
better properties. We write this as :

PCy = 1 X + 02X + c3X3 + - ¢, X
Replace X.1,X.2, ... X, by

PCy,PC;, ... PCy

What is the largest k can be ?


https://www.khanacademy.org/math/linear-algebra/alternate_bases/eigen_everything/v/linear-algebra--introduction-to-eigenvalues-and-eigenvectors

Suppose we have 5 samples with 23,000 genes measured on them, what is the
dimensionality of these data?

The number of principal components is less than or equal to the number of original
variables.

K < min(n, p)

The geometr(ies) of data: good trick look at size of vectors.

The Principal Component transformation is defined in such a way that the first
principal component has the largest possible variance (that is, accounts for as much of
the variability in the data as possible), and each successive component in turn has the
highest variance possible under the constraint that it be orthogonal to the preceding
components.

mgt{x var(Proj.x (X))
a.

Suppose the matrix of data X has been made to have column means O and standard
deviations 1.

Matrix Decomposition

We call the principal components the columns of the matrix, C = US.

The columns of U (the matrix given as USV$u in the output from the svd function
above) are rescaled to have norm s2, the variance they are responsable for.

If the matrix X comes from the study of n different samples or specimens, then the
principal components provides new coordinates for these n points these are
sometimes also called the scores in some of the (many) PCA functions available in R

(princomp, prcomp,dudi.pca in ade4).

Transition Formulae

If we only want the first one then it is just c; = sju;.



Variance explained by first principal component: s%:

Notice that ||c; ||* = siuuys) = s%u’lul = s% =1
X'c=vsu'us = vs?

Remarks:

e 1. Each principal component is chosen to maximize the variance it explains, this
variance is measured by the corresponding eigenvalue.

e 2. The new variables are made to be orthogonal, if the data are multivariate
normal the new variables will be independent.

¢ 3. When the variables are rescaled or we choose the correlation matrix as the
one we want to study instead of the covariance matrix then the sum of the
variances of all the variables is the number of variables (=p), this is sometimes
called the trace.

e 4. The principal components are always ordered by " importance”, always look at
what proportion of the variability you are interpreting (and check the screeplot
before deciding how many components).

A few examples of using PCA

We start with the turtles data that has 3 continuous variables and a gender variable
that we leave out for the original PCA analysis.

turtles Data

When computing the variance covariance matrix, many programs use 1/(n-1) as the
denominator, here n=48 so the sum of the variances are off by a small fudge factor of
48/47.

turtles3var=turtles[,-1]
apply(turtles3var,2,mean)

## length width height
## 124.7 95.4 46.3



turtles.pca=princomp (turtles3var)
print(turtles.pca)

## Call:

## princomp(x = turtles3var)

##

## Standard deviations:

## Comp.l Comp.2 Comp.3

## 25.06 2.26 1.94

##

## 3 variables and 48 observations.

(25.06"2+2.26"2+1.94°2)*(48/47)

## [1] 650

apply(turtles3var,2,var)

## length width height
## 419.5 160.7 70.4

apply(turtles[,-1]1,2,sd)

## length width height
## 20.48 12.68 8.39

turtlesc=scale(turtles[,-1])
cor(turtlesc)

## length width height
## length 1.000 0.978 0.965
## width 0.978 1.000 0.961
## height 0.965 0.961 1.000

pcal=princomp(turtlesc)
pcal

## Call:

## princomp(x = turtlesc)

##

## Standard deviations:

## Comp.l Comp.2 Comp.3

## 1.695 0.205 0.145

##

## 3 variables and 48 observations.



Step one: always the screeplot

The screeplot showing the eigenvalues for the standardized data: one very large
component in this case and two very small ones, the data are (almost) one
dimensional.

pca.turtles=dudi.pca(turtles[,-1],scannf=F,nf=2)
scatter(pca.turtles)

Eigenvalues 19Nt d=2

Why ?

Choose k carefully:



Scree plot
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Step Two: Variables



Circle of correlations
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All together “biplot”

scatter(pca.turtles)



Eigenvalues

Lizards Data Analyses

This data set describes 18 lizards as reported by Bauwens and D'iaz-Uriarte (1997). It
also gives life-history traits corresponding to these 18 species.

¢ mean.L (mean length (mm)), matur.L (length at maturity (mm)),
¢ max.L (maximum length (mm)), hatch.L (hatchling length (mm)),
e hatch.m (hatchling mass (g)), clutch.s (Clutch size),

e age.mat (age at maturity (number of months of activity)),

e clutch.F (clutch frequency).

library(aded)

data(lizards)
names (lizards)

## [1] "traits" "hprA" "hprB"

lizards$traits[1l:4,]



## mean.L matur.L max.L hatch.L hatch.m clutch.S age.mat clutch.F
## Sa 69.2 58 82 27.8 0.572 6.0 13 1.5
## Sh 48.4 42 56 22.9 0.310 3.2 5 2.0
## Tl 168.4 132 190 42.8 2.235 16.9 19 1.0
## Mc 66.1 56 72 25.0 0.441 7.2 11 1.5

It is always a good idea to check the variables one at a time and two at a time to see
what the basic statistics are for the data
tabtraits=lizards$traits

options(digits=2)
colMeans (tabtraits)

## mean.L matur.L max.L hatch.L hatch.m clutch.S age.mat clutch.F
## 71.34 59.39 82.83 26.88 0.56 5.87 10.89 1.56

cor (tabtraits)

## mean.L matur.L max.L hatch.L hatch.m clutch.S age.mat clutch.F
## mean.L 1.00 0.99 0.99 0.89 0.94 0.92 0.77 -0.48
## matur.L 0.99 1.00 0.99 0.90 0.92 0.92 0.79 -0.49
## max.L 0.99 0.99 1.00 0.88 0.92 0.91 0.78 -0.51
## hatch.L 0.89 0.90 0.88 1.00 0.96 0.72 0.58 -0.42
## hatch.m 0.94 0.92 0.92 0.96 1.00 0.78 0.64 -0.45
## clutch.S 0.92 0.92 0.91 0.72 0.78 1.00 0.81 -0.55
## age.mat 0.77 0.79 0.78 0.58 0.64 0.81 1.00 -0.62
## clutch.F -0.48 -0.49 -0.51 -0.42 -0.45 -0.55 -0.62 1.00

Biplot

require(ade4)
res=dudi.pca(tabtraits,scannf=F,nf=2)
barplot (res$eigq)



res

## Duality diagramm

## class: pca dudi

## $call: dudi.pca(df = tabtraits, scannf = F, nf = 2)
##

## $nf: 2 axis-components saved

## Srank: 8

## eigen values: 6.5 0.83 0.42 0.17 0.045

## vector length mode content

## 1 Scw 8 numeric column weights

## 2 Slw 18 numeric row weights

## 3 Seig 8 numeric eigen values

##

## data.frame nrow ncol content

## 1 Stab 18 8 modified array

## 2 S1i 18 2 row coordinates

## 3 S11 18 2 row normed scores
## 4 Sco 8 2 column coordinates
## 5 Scl 8 2 column normed scores
## other elements: cent norm

bip

lot(res)



Eigenvalues d=2

clutch.F

res$eig/(sum(res$eiqg))

## [1] 0.81118 0.10387 0.05219 0.02133 0.00563 0.00488 0.00061 0.00031

The Decathlon Athletes

round(cor (athletes),1)

## ml00 long weight highj m400 ml110 disc pole javel ml500
## m100 1.0 -0.5 -0.2 -0.1 0.6 0.6 0.0 -0.4 -0.1 0.3
## long -0.5 1.0 0.1 0.3 -0.5 -0.5 0.0 0.3 0.2 -0.4
## weight -0.2 0.1 1.0 0.1 0.1 -0.3 0.8 0.5 0.6 0.3
## highj -0.1 0.3 0.1 1.0 -0.1 -0.3 0.1 0.2 0.1 -0.1
## m400 0.6 -0.5 0.1 -0.1 1.0 0.5 0.1 -0.3 0.1 0.6
## mll0 0.6 -0.5 -0.3 -0.3 0.5 1.0 -0.1 -0.5 =-0.1 0.1
## disc 0.0 0.0 0.8 0.1 0.1 -0.1 1.0 0.3 0.4 0.4
## pole -0.4 0.3 0.5 0.2 -0.3 -0.5 0.3 1.0 0.3 0.0
## javel -0.1 0.2 0.6 0.1 0.1 -0.1 0.4 0.3 1.0 0.1
## m1500 0.3 -0.4 0.3 -0.1 0.6 0.1 0.4 0.0 0.1 1.0



pca.ath <- dudi.pca(athletes, scan = F)
pca.athS$eig

## [1] 3.42 2.61 0.94 0.88 0.56 0.49 0.43 0.31 0.27 0.10

barplot(pca.ath$eigqg)

1.0 20 3.0
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The screeplot is the first thing to look at, it tells us that it is satifactory to use a two
dimensional plot.

Correlation Circle

s.corcircle(pca.ath$co,clab=1, grid=FALSE, fullcircle = TRUE,box=FALSE)



The correlation circle made by showing the projection of the old variables onto the
two first new principal axes.

athletes([,c(1,5,6,10)]=-athletes[,c(1,5,6,10)]
round(cor(athletes),1)

## ml00 long weight highj m400 ml110 disc pole javel ml1500
## m100 1.0 0.5 0.2 0.1 0.6 0.6 0.0 0.4 0.1 0.3
## long 0.5 1.0 0.1 0.3 0.5 0.5 0.0 0.3 0.2 0.4
## weight 0.2 0.1 1.0 0.1 -0.1 0.3 0.8 0.5 0.6 -0.3
## highj 0.1 0.3 0.1 1.0 0.1 0.3 0.1 0.2 0.1 0.1
## m400 0.6 0.5 -0.1 0.1 1.0 0.5 -0.1 0.3 =-0.1 0.6
## mll0 0.6 0.5 0.3 0.3 0.5 1.0 0.1 0.5 0.1 0.1
## disc 0.0 0.0 0.8 0.1 -0.1 0.1 1.0 0.3 0.4 -0.4
## pole 0.4 0.3 0.5 0.2 0.3 0.5 0.3 1.0 0.3 0.0
## javel 0.1 0.2 0.6 0.1 -0.1 0.1 0.4 0.3 1.0 -0.1
## m1500 0.3 0.4 -0.3 0.1 0.6 0.1 -0.4 0.0 =-0.1 1.0

pcan.ath=dudi.pca(athletes,nf=2,scannf=F)
pcan.ath$eig

## [1] 3.42 2.61 0.94 0.88 0.56 0.49 0.43 0.31 0.27 0.10



Now all the negative correlations are quite small ones. Doing the screeplot over again
will show no change in the eigenvalues, the only thing that changes is the sign of
loadings for the m variables.

New Data changing signs

s.corcircle(pcan.ath$co,clab=1.2,box=FALSE)

wei disc
javel

m1500

Correlation circle after changing the signs of the running variables.

Observations

## Warning: Removed 1 rows containing missing values (geom text).
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data(olympic)
olympic$score

## [1] 8488 8399 8328 8306 8286 8272 8216 8189 8180 8167 8143 8114 8093 8083 8036
## [16] 8021 7869 7860 7859 7781 7753 7745 7743 7623 7579 7517 7505 7422 7310 7237
## [31] 7231 7016 6907

Link to overall scores



pcal

7000 7500 8000 8500
score

Scatterplot of the scores given as a supplementary variable and the first principal
component, the points are labeled by their order in the data set.

PCA as an exploratory tool: using meta-
information

######center and scale the data
###(they have already had variance normalization applied to them)

res.Msig3=dudi.pca(Msig3transp,center=TRUE, scale=TRUE, scannf=F,nf=4)
screeplot(res.Msig3,main="")
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Plot by cell types

celltypes=factor (substr(rownames (Msig3transp),7,9))
table(celltypes)

## celltypes
## EFF MEM NAI
## 10 9 11

status=factor (substr(rownames (Msig3transp),1,3))

require(ggplot2)

gg <- cbind(res.Msig3$1li,Cluster=celltypes)

gg <- cbind(sample=rownames(gg),gqg)

ggplot(gg, aes(x=Axisl, y=Axis2)) +
geom_point(aes(color=factor(Cluster)),size=5) +
geom_hline(yintercept=0,linetype=2) +
geom_vline(xintercept=0,linetype=2) +
scale_color_discrete(name="Cluster") +
coord fixed()+ ylim(-8,+8)

29
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x1lim(-14,18)

## <ScaleContinuousPosition>
## Range:
## Limits: =14 -- 18

PCA of gene expression for a subset of 156 genes involved in specificities of each of the
three separate T cell types: effector, naive and memory

Mass Spectroscopy Data Analysis

Example from paper: Kashnap et al, PNAS, 2013
(http:/www.pnas.org/content/110/42/17059.full)

###Just for record, this is how the matrix was made
require (xcms)

## Loading required package: xcms
## Loading required package: Biobase

## Loading required package: BiocGenerics


http://www.pnas.org/content/110/42/17059.full

##

##
##

##
##
##
##
##

##
##
##

##
##
##

##
##
##
##
##
##
##
##

##
##
##
##
##

##

##

##

##

##

Loading required package: parallel

Attaching package: 'BiocGenerics’

The

The

The

The

following objects are masked from 'package:parallel':
clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,

clusterExport, clusterMap, parApply, parCapply, parlLapply,
parLapplyLB, parRapply, parSapply, parSapplyLB

following object is masked from 'package:aded':

score

following objects are masked from 'package:stats':

IQR, mad, sd, var, xtabs

following objects are masked from 'package:base’:

anyDuplicated, append, as.data.frame, basename, cbind, colnames,
dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
union, unique, unsplit, which, which.max, which.min

Welcome to Bioconductor

Vignettes contain introductory material; view with
'browseVignettes()'. To cite Bioconductor, see
'citation("Biobase")', and for packages 'citation("pkgname")'.

Loading required package: BiocParallel

Loading required package: MSnbase

Loading required package: mzR

Loading required package: Rcpp

Loading required package: S4Vectors



## Loading required package: stats4

##
## Attaching package: 'S4Vectors'

## The following object is masked from 'package:base':
##
## expand.grid

## Loading required package: ProtGenerics

##
## This is MSnbase version 2.10.1
##  Visit https://lgatto.github.io/MSnbase/ to get started.

##
## Attaching package: 'MSnbase'’

## The following object is masked from 'package:stats':
##
## smooth

## The following object is masked from 'package:base':
##
## trimws

##
## This is xcms version 3.6.1

##
## Attaching package: 'xcms'

## The following object is masked from 'package:knitr':
##
## stitch

## The following object is masked from 'package:stats':
##
## sigma

load(url("http://bios221l.stanford.edu/data/xset3.RData"))
matl =groupval(xset3, value="into")

##

head(matl)



##

## 200.1/2927 147888
## 205/2791 1778569
## 206/2791 237994
## 207.1/2719 380873
## 219.1/2524 235545
## 231/2516

##

## 200.1/2927 51943
## 205/2791 1572679
## 206/2791 211718
## 207.1/2719 277991
## 219.1/2524 72029
## 231/2516 165383
dim(matl)

## [1] 399 12

kol5

wtl8

kolé kol8
103548 65290
1567038 1482796
269714 201393
460630 351750
173623 82365

0 70796 222609

wtl9 wt21l
69198 153273
1275313 1356014
186851 188286
220972 252874
75097 238194
240261 201316

kol9
60144
1039130 1
150107
219288
79480
286232
wt22
98144
1231442
172349
236728
173830
179438

ko21 ko22

85156 162012
223132 1072038
176990 156797
286849 235023
185792 174459
435094 100076

## Matrix with with samples in rows and variables as columns
tmat= t(matl)
head(tmat[,1:10])

##
##
##
##
##
##
##
##
##
##
##
##
##
##

logtmat=log(tmat+1)

wtl5
175177
1950287
276542
417170
244584

0

wtl6
82619
1466781
222366
324892
161184
73142

200.1/2927 205/2791 206/2791 207.1/2719 219.1/2524 231/2516 233/3023

kol5 147888
kolé 103548
ko18 65290
kol9 60144
ko21 85156
ko22 162012

1778569
1567038
1482796
1039130
1223132
1072038

234/3024 236.1/2524

kol5 76881
kol6 99480
ko18 97428
kol9 53440
ko21 88228
ko22 81072

252282
206032
71764
67643
186661
198804

237994
269714
201393
150107
176990
156797
240.2/3681
112441
153376
193769
170641
88800
146563

380873
460630
351750
219288
286849
235023

235545
173623
82365
79480
185792
174459

Sample situations in PC map

0
70796
222609
286232
435094
100076

399145
356951
410551
198417
363382
317806



## PCA Example

require(ade4)

require(ggplot2)
load(url("http://bios221l.stanford.edu/data/logtmat.RData"))
pca.result=dudi.pca(logtmat, scannf=F,nf=3)

labs=rownames (pca.result$li)

nos=substr(labs,3,4)

type=as.factor(substr(labs,1,2))

kos=which(type=="ko")

wts=which(type=="wt")
pcs=data.frame(Axisl=pca.result$li[,1],Axis2=pca.result$li[,2],labs,type)

pcsplot=ggplot(pcs,aes(x=Axisl,y=Axis2,label=1labs,group=nos,colour=type)) +
geom_text(size=4,vjust=-0.5) + geom point()

pcsplot + geom hline(yintercept=0,linetype=2) +coord fixed() + ylim(-12,18) +
geom_vline(xintercept=0,linetype=2)
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Extra Connections

pcsplot+geom line(colour="red") + coord_fixed() + ylim(-12,18)
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Checking data by frequent multivariate
projections
Phylochip data allowed us to discover a batch effect (phylochip).



Phylochip data for three different batches and two different arrays, first principal plane
explains 66% of the total variation.

Example from Single Cell experiment

Columns of the DataFrame represent different attributes of the features of interest,
e.g., gene or transcript IDs, etc.

An example of hybrid data container from single cell experiments (see Bioconductor
workflow in Perraudeau, 2017 for more details).

After the pre-processing and normalization steps prescribed in the workflow, we retain
the 1,000 most variable genes measured on 747 cells.

require (SummarizedExperiment)

## Loading required package: SummarizedExperiment
## Loading required package: GenomicRanges

## Loading required package: IRanges

##
## Attaching package: 'IRanges'



## The following object is masked from 'package:xcms':
##
## distance

## Loading required package: GenomeInfoDb
## Loading required package: DelayedArray
## Loading required package: matrixStats

##
## Attaching package: 'matrixStats'

## The following objects are masked from 'package:Biobase':
##
## anyMissing, rowMedians

##
## Attaching package: 'DelayedArray'’

## The following objects are masked from 'package:matrixStats':
##
## colMaxs, colMins, colRanges, rowMaxs, rowMins, rowRanges

## The following objects are masked from 'package:base’:
##
## aperm, apply, rowsum

corese = readRDS(path.expand("~/Books/CUBook/data/normse.rds"))
norm = assays(corese)$normalizedvalues

We can look at a PCA of the normalized values and check graphically that the batch
effect has been removed:

respca = dudi.pca(t(norm), nf = 3, scannf = FALSE)
screeplot(respca, 15)
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Screeplot of the PCA of the normalized data.

PCS = respca$li[, 1:3]

Since the screeplot shows us that we must not dissociate axes 2 and 3, we will make a
three dimensional plot with the rgl (https:/cran.r-project.org/web/packages/rgl/)
package.

library("rgl")

batch = colData(corese)$Batch

plot3d(PCS,aspect=sqrt(c(84,24,20)),col=col_clus[batch])

plot3d(PCS,aspect=sqrt(c(84,24,20)),
col = col_clus[as.character(publishedClusters)])

With plotly:

library(plotly)


https://cran.r-project.org/web/packages/rgl/

##
## Attaching package: 'plotly'

## The following object is masked from 'package:IRanges':
##
## slice

## The following object is masked from 'package:xcms':
##
## groups

## The following object is masked from 'package:S4Vectors':
##
## rename

## The following object is masked from 'package:ggplot2':
##
## last_plot

## The following object is masked from 'package:stats':
##
## filter

## The following object is masked from 'package:graphics':
##
## layout

p <- plot_ly(PCS,x=~Axisl,y=~Axis2,z=~Axis3,color=batch) %>% add_markers()

Summary for PCA, takeaway points so far:

e Multivariate data require conscious preprocessing, to make their variances
comparable and their centers at the origin.

¢ When data are matrices (variables = columns numerical values), we can still make
useful graphical representations by making projections on lower dimensions
(planes and 3D are the most frequently used).

e PCA searches for new more informative variables which are linear
combinations of the old ones.

e PCA is based on finding decompositions of the matrix X called SVD, this is
equivalent to the eigenanalysis of X’X. The squares of the singular values are the



equal to the eigenvalues and to the variances of the new variables.

e Choosing k: You need to plot the variances/eigenvalues before you decide how
many axes are necessary to reproduce the signal in the data.

¢ Interpretation of PCA is facilitated by redundant or contiguous meta-data about
the observations.

See all the details here: Chapter on Multivariate
(http:/bios221.stanford.edu/book/Chap-Multivariate.html)

More examples of supplementary variables

One categorical variable: project the mean points

url <- "https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data"
library(tidyverse)

## — Attaching packages

## ¢ tibble
## ¢ tidyr
## v readr
## ¢ tibble

## — Conflicts

## 8 dplyr
## B dplyr
## 8 dplyr:
mbine()

## R dplyr:
## R dplyr:
## 8 tidyr:
## 8 dplyr:
## 8 dplyr:
## 8 dplyr:
## %R dplyr:
## %R

## R purrr
uce()

BiocGenerics::Position()

tidyverse 1.2.1 —

v purrr 0.3.
v dplyr 0.8.
v stringr 1.4.
v forcats 0.4.

B 00 W
o O W N

t:collapse()
t:collect()
:combine ()

scount ()
tdesc()

texpand()
:filter()
:first()
tgroups ()
:lag()

::reduce()

## 8 dplyr::rename()
## B purrr::simplify()
## B dplyr::slice()

masks
masks
masks

masks
masks
masks
masks
masks
masks
masks
masks
masks

masks
masks
masks

tidyverse_conflicts() —

IRanges::collapse()

xcms: :collect()

MSnbase: :combine(), Biobase::combine(), BiocGenerics::co

matrixStats::count()

IRanges: :desc()

S4Vectors::expand()

plotly::filter(), stats::filter()

S4Vectors::first()

plotly::groups(), xXcms::groups()

stats::lag()

ggplot2::Position(), base::Position()

GenomicRanges: :reduce(), IRanges::reduce(), MSnbase::red

plotly::rename(), S4Vectors::rename()
DelayedArray: :simplify()
plotly::slice(), IRanges::slice()


http://bios221.stanford.edu/book/Chap-Multivariate.html

wine <- read_csv(url, col_names

## Parsed with column specification:

## cols(
## X1l =
## X2 =
## X3 =
## X4 =
## X5 =
## X6 =
## X7 =
## X8 =
## X9 =
## X10
## X111 =
##  X12
##  X13
## X14
## )

col_double(),
col_double(),
col_double(),
col_double(),
col_double(),
col _double(),
col _double(),
col_double(),
col_double(),
col_double(),
col_double(),
col_double(),
col _double(),
col _double()

colnames(wine) <- c("class",
"Phenols",

head (wine)

## # A tibble: 6 x 14

## class Alcohol MalicAcid
## <dbl> <dbl> <dbl>
## 1 1 14.2 1.71
## 2 1 13.2 1.78
## 3 1 13.2 2.36
## 4 1 14.4 1.95
## 5 1 13.2 2.59
## 6 1 14.2 1.76
## # .. with 4 more variables:
data(wine)

## Warning in data(wine): data set 'wine'

"Hue",

wine[1l:3,1:7]

FALSE)

"Alcohol", "MalicAcid", "Ash", "AlcAsh", "Mg",
"Flav", "NonFlavPhenols", "Proa", "Color",
"OD", "Proline")

Ash AlcAsh Mg Phenols Flav NonFlavPhenols
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
2.43 15.6 127 2.8 3.06 0.28
2.14 11.2 100 2.65 2.76 0.26
2.67 18.6 101 2.8 3.24 0.3
2.5 16.8 113 3.85 3.49 0.24
2.87 21 118 2.8 2.69 0.39
2.45 15.2 112 3.27 3.39 0.34

Color <dbl>, Hue <dbl>, OD <dbl>, Proline <dbl>

not found

Proa
<dbl>

2

o= NN

.29
.28
.81
.18
.82
.97



## # A tibble: 3 x 7
## class Alcohol MalicAcid Ash AlcAsh Mg Phenols

## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 14.2 1.71 2.43 15.6 127 2.8
## 2 1 13.2 1.78 2.14 11.2 100 2.65
## 3 1 13.2 2.36 2.67 18.6 101 2.8

heatmap(l-cor(wine))

Phenols
Proa
Alcohol
Mg
Ash
AlcAsh
class
w £ ©c O 3F © 0
w w Bw S £ O o
& € < =
c O 8 & §
= c
< < ol
wine.pca <- prcomp(wine, scale. = TRUE)
table(wine.class)
## Error in eval(quote(list(...)), env): object 'wine.class' not found

fviz_pca_biplot(wine.pca,
habillage = wine.class, addEllipses = TRUE, circle = TRUE)

## Error in .is_grouping var(habillage): object 'wine.class' not found

Projecting Ellipses



WEe'll see later when we look at Microbiome data that sometimes, this projection can
be problematic.

Percentage of Inertia

require(ade4)
res.ath=dudi.pca(athletes,nf=2,scannf=F)
inertia.dudi(res.ath,col.inertia=TRUE)



##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Inertia information:

Call: inertia.dudi(x

Decomposition of

inertia
Ax1l 3.4182
Ax2 2.6064
Ax3 0.9433
Ax4 0.8780
Ax5 0.5566
Ax6 0.4912
Ax7 0.4306
Ax8 0.3068
Ax9 0.2669
Ax10 0.1019

Jay
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res.ath,

total inertia:

cum cum(%)
.418 34.18
.025 60.25
.968 69.68
.846 78.46
.403 84.03
.894 88.94
.324 93.24
.631 96.31
.898 98.98
.000 100.00

Column contributions (%):

ml00

10 1

Column absolute contributions (%):

Axisl
ml00 17.296
long 15.528
weight 7.242
highj 4.506
m400 12.663
mll0 18.791
disc 3.090
pole 14.752
javel 3.238
ml500 2.895
Signed

Axisl
ml00 -59.121
long -53.077
weight -24.754
highj -15.404
m400 -43.284
mll0 -64.231
disc -10.563
pole -50.426
javel -11.068
ml500 -9.895

Cumulative sum
Axisl
59.121
53.077

ml100
long

0

long weight

2

1
1

highj

10 10

Axis2
.21439
2.31288
.38084
.07783
.40165
.48397
5.33458
2.23748
3.83520
7.72118

column relative contributions:

Axis2
-5.7716
-6.0283
60.9397

0.2029
32.3236
-1.2614
66.0319

5.8317
36.0600
46.1884

of column relative contributions (%):
Axisl:2 Axis3:10

64.89
59.11

35.11
40.89

col.inertia



## weight 24.754 85.69 14.31
## highj 15.404 15.61 84.39
## m400 43.284 75.61 24.39
## ml110 64.231 65.49 34.51
## disc 10.563 76.60 23.40
## pole 50.426 56.26 43.74
## javel 11.068 47.13 52.87
## ml1500 9.895 56.08 43.92

Contributions are printed in 1/10000 and the sign is the sign of the coordinate.

Principal Coordinate Analysis (PCoA) and MDS

¢ Different starting point: distances instead of measurements/columns.
¢ Resulting “'map’ projections, same as PCA.
¢ Interpretation is different.

Important Distances and Dissimilarities

Most of these are available through the dist function, the vegdist function in the
vegan package:

library(vegan)
## Loading required package: permute
## Loading required package: lattice

##
## Attaching package: 'lattice'

## The following object is masked from 'package:xcms':
##
## levelplot

## This is vegan 2.5-5

##
## Attaching package: 'vegan'

## The following object is masked from 'package:xcms':
##
## calibrate



## The following object is masked from 'package:mzR':
##
## tolerance

help(vegdist)

Reminder: Distances using continuous variables

¢ Euclidean and weighted Euclidean (sums of squares of differences in coordinates)
e L1 distances (manhattan )

¢ Minkowski

e Chisquare:

(exp; — obsj)2

exp;

Chisquare(exp, obs) = Z

Distances using discrete or binary variables

Hamming distance

DNA distances (dist.dna in ape)

Bray Curtis (absolute difference of proportions)
Built from Confusion matrices (not a true distance)
Matching coefficient: Matching coefficient

nb of matching attrs J11 + foo
nb of attrs ~ fi1 +foo +fio + for
e Jaccard distance
nb of match.attrs S

nb of attrs with at least 1 fi1 + fio + for

Example of Distances}



SMC = function(p,q) {
# Compute F01,F10,F11,F00
FO1 sum((p == 0) & (g == 1))
F10 sum((p == 1) & (g == 0))
FO00 = sum((p == 0) & (g == 0))
Fll = sum((p == 1) & (g == 1))
return((F11+F00)/(FO1+F10+F00+F11))

# function for computing Jaccard coefficient
JC = function(p,q) {
# Compute F01,F10,F11,F00
FO1l sum((p == 0) & (g == 1))
F10 sum((p == 1) & (g == 0))
F1l = sum((p == 1) & (g == 1))
return(F11/(F01+F10+F11))

cos.sim = function(p,q) {
return(sum(p*q) / sqrt(sum(p”2)*sum(g”2)))

}
dl = ¢(3,2,0,5,0,0,0,2,0,0)
d2 = ¢(1,0,0,0,0,0,0,1,0,2)

print(cos.sim(d1l,d2))

## [1] 0.31

p=c(rep(0,6),rep(1l,4))
p

## [11 0000001111

g=c(rep(0,6),1,0,0,1)
q

## (110000001001

print(JC(p,q))

## [1] 0.5

print(SMC(p,q))

## [1] 0.8



Distances between variables

Pearsons correlation coefficient: d(X, Y) = 1 — r(X, Y) where

1w XO-X_ Y-V
"X ¥) = — 3 (’)6 (el S
i=1 *

Oy

Special Distances

Gower’s distance for mixed type data.
Unifrac and Weighted Unifrac (Wasserstein) that incorporates trees
Distances on a graph

Distance function in R

require(ade4)

data(olympic)

disto=dist(scale(olympics$tab))

str(disto)

## 'dist' num [1:528] 4.36 4.11 4.18 5.19 4.28 ...

## - attr(*, "Size")= int 33

## - attr(*, "Labels")= chr [1:33] "1" "2" "3" "4" ...
## - attr(*, "Diag")= logi FALSE

## - attr(*, "Upper")= logi FALSE

## - attr(*, "method")= chr "euclidean"

## - attr(*, "call")= language dist(x = scale(olympic$tab))
length(disto)

## [1] 528

as

##
##
##
##
##
##

.matrix(disto)[1:5,1:5]
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33%32/2

## [1] 528

Multidimensional Scaling- Principal Coordinate
Analyses

Suppose we are given a matrix of dissimilarities or distances and we want to build a
useful map of the observations.

require(graphics)
data(eurodist)

# look at raw distances
as.matrix(eurodist)[1:7,1:7]

## Athens Barcelona Brussels Calais Cherbourg Cologne Copenhagen
## Athens 0 3313 2963 3175 3339 2762 3276
## Barcelona 3313 0 1318 1326 1294 1498 2218
## Brussels 2963 1318 0 204 583 206 966
## Calais 3175 1326 204 0 460 409 1136
## Cherbourg 3339 1294 583 460 0 785 1545
## Cologne 2762 1498 206 409 785 0 760
## Copenhagen 3276 2218 966 1136 1545 760 0

# graphical representation
heatmap(as.matrix(eurodist))
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Madrid
Gibraltar
Hamburg
Rome
Munich
Marseilles
Geneva
Paris
Calais

>k of Holland

These were computed as actualy distances across land so we actually know that we
could find a 2-3 dimensional map that would represent the data well.
eck=read.table("http://bios221l.stanford.edu/data/eckman.txt",header=TRUE)

nc=nrow(eck)
eck[1:9,1:9]

## w434 wdad5 wia6e5 wia72 wa90 w504 w537 w555 w584

## 1 0.00 0.86 0.42 0.42 0.18 0.06 0.07 0.04 0.02
## 2 0.86 0.00 0.50 0.44 0.22 0.09 0.07 0.07 0.02
## 3 0.42 0.50 0.00 0.81 0.47 0.17 0.10 0.08 0.02
## 4 0.42 0.44 0.81 0.00 0.54 0.25 0.10 0.09 0.02
## 5 0.18 0.22 0.47 0.54 0.00 0.61 0.31 0.26 0.07
## 6 0.06 0.09 0.17 0.25 0.61 0.00 0.62 0.45 0.14
## 7 0.07 0.07 0.10 0.10 0.31 0.62 0.00 0.73 0.22
## 8 0.04 0.07 0.08 0.09 0.26 0.45 0.73 0.00 0.33
## 9 0.02 0.02 0.02 0.02 0.07 0.14 0.22 0.33 0.00

require(ade4)
queck=quasieuclid(as.dist(1l-eck))
eck.pco=dudi.pco(queck,scannf=F,nf=2)
names (eck.pco)



## [1] "eig" ‘"rank" "nf" p— "eab"  "1i" R nel "eo" "l
## [11] "call"

scatter(eck.pco,posi="bottomright")

o
1
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W W555]

L@ Eigenvalues
o}
w445 :I

Other available analysis and plotting options

require(vegan)
require(ggplot2)
ggscree=function(out) {
n=length(out)
Xs=1:n
df=data.frame(eig=out,xs)
ggplot(data=df, aes(x=xs, y=eig)) +
geom bar(stat="identity",width=0.3,color="red",fill="orange")
}
res=cmdscale(as.dist(1l-eck))
res



## [,1] [,2]
## wi34 -0.21 -0.419
## widd5 -0.26 -0.411
## w465 -0.41 -0.309
## w472 -0.44 -0.273
## w490 -0.44 0.075
## w504 -0.34 0.373
## w537 -0.24 0.477
## w555 -0.19 0.488
## w584 0.24 0.297
## w600 0.40 0.153
## w610 0.50 -0.029
## w628 0.50 -0.105
## w651 0.46 -0.148
## w674 0.43 -0.171

res=cmdscale(as.dist(l-eck),eig=TRUE)
names (res)

## [1] "points" "eig" et "ac" "GOF"

res$eig

## [1] 2.0e+t00 1.3e+00 4.4e-01 3.7e-01 1.6e-01 1.0e-01 4.2e-02 3.2e-02
## [9] 1.8e-02 4.2e-03 1.3e-03 2.2e-16 -2.7e-02 -4.7e-02

out=res$eig
coll4=rainbow(14)
ggscree(out)
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MDS = data.frame(PCol = res$points[,1], PCo2 = res$points[,2])
ggplot(data = MDS, aes(PCol, PCo2)) +
geom_point(size=4,color = coll4)
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How does the method work?

From X to Distances D

Given a Euclidean distance D between the observation-rows.\ Call B = XX, if D@ is
the matrix of squared distances between rows of X in the euclidean coordinates, we
can show that

1
—_HD®YH =B
2
1
H=1I1-~-11
n

is the centering matrix.

1
diJ — \/(xil _le)2 + e+ (xlp —ij)z. and — EHD(Z)H =B



Backward from D to X

We can go backwards from a matrix D to X by taking the eigendecomposition of B in
much the same way that PCA provides the best rank r approximation for data by
taking the singular value decomposition of X, or the eigendecomposition of XX".

S1
0
X" = usYv’ with S =1 0
0

0

$2
0
0

0
0

0
0

Sy

0

0

This provides the best approximate representation in an Euclidean space of dimension
r. The algorithm provides points in a Euclidean space that have approximately the same

distances as those provided by D?.

Classical MDS ALgorithm

In summary, given an n X n matrix of interpoint distances D, one can solve for points
achieving these distances by: 1. Double centering the interpoint distance squared
matrix: B = —%HDzH. 2. Diagonalizing B: B = UAUT . 3. Extracting X: X = UA>.

Examples of output

Screeplot for the Europe Data

res=cmdscale(eurodist,eig=TRUE)
n=length(res$eiq)
out=data.frame(k=1:n,eig=ress$eiq)
ggplot(data=out, aes(x=k, y=eig)) +

geom bar(stat="identity",width=0.5,color="orange",fill="pink")
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MDS = data.frame(PCol = res$points[,1], PCo2 = res$points[,2],labs=rownames(res$points))
ggplot(data = MDS, aes(x=PCol, y=PCo2,label=labs) ) + geom_text()
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Notice the orientation. We also do not have “variables’ to interpret.

Robust MDS: Non metric Multidimensional Scaling
Respects the order of the distances, does not try to approximate their actual values.
require(vegan)

require(ggplot2)
res=metaMDS (as.dist(1l-eck))



##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Run
Run

Run

0 stress 0.023

1 stress 0.023
Procrustes: rmse 2.2e-06
Similar to previous best
2 stress 0.023
Procrustes: rmse 2.5e-06
Similar to previous best
3 stress 0.023
Procrustes: rmse 5e-07
Similar to previous best
4 stress 0.023

New best solution
Procrustes: rmse 4.3e-07
Similar to previous best
5 stress 0.023
Procrustes: rmse 1.8e-06
Similar to previous best
6 stress 0.023

New best solution
Procrustes: rmse 1.3e-06
Similar to previous best
7 stress 0.023
Procrustes: rmse 1l.2e-06
Similar to previous best
8 stress 0.023
Procrustes: rmse 1.1le-06
Similar to previous best
9 stress 0.023
Procrustes: rmse 1.7e-06
Similar to previous best
10 stress 0.023
Procrustes: rmse 2.1le-06
Similar to previous best
11 stress 0.023
Procrustes: rmse 1.le-06
Similar to previous best
12 stress 0.023
Procrustes: rmse 1l.le-06
Similar to previous best
13 stress 0.023
Procrustes: rmse 4.7e-06
Similar to previous best
14 stress 0.023
Procrustes: rmse 3.4e-06
Similar to previous best
15 stress 0.023

New best solution
Procrustes: rmse 1.4e-06
Similar to previous best
16 stress 0.023

max

max

max

max

max

max

max

max

max

max

max

max

max

max

resid

resid

max resid 1.

resid

resid

resid

resid

resid

resid

resid

resid

resid

resid

resid

resid

3.6e-06

4e-06

le-06

8.2e-07

2.8e-06

2.1le-06

2.4e-06

1.8e-06

2.7e-06

4e-06

1.9e-06

2.1le-06

8e-06

5.6e-06

2.1le-06



#H ...
#H ...
## Run
##H ...
##H ..
## Run
## ...
#H ...
## Run
#H ..
#H ..
##H ...
## Run
## ...
## ...
H#H# Kxk

Procrustes: rmse 1l.2e-06
Similar to previous best
17 stress 0.023
Procrustes: rmse 3.9e-06
Similar to previous best
18 stress 0.023
Procrustes: rmse 2.4e-06
Similar to previous best
19 stress 0.023

New best solution
Procrustes: rmse 8.9e-07
Similar to previous best
20 stress 0.023
Procrustes: rmse 6.le-07
Similar to previous best
Solution reached

coll4=rainbow(14)

NMDS =

data.frame(PCol = res$points[,1], PCo2

max resid

max resid

max resid

max resid

max resid

ggplot(data = NMDS, aes(PCol, PCo2)) +
geom point(size=4,color = colld)
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Correspondence Analysis:A weighted PCA for Contingency

Tables

¢ Variance in replaced by the Chisquare (Inertia)
¢ Centering is both by rows and columns (symmetry of dimensions)
e Standard to represent both the rows and the columns on the same (bi)plot

¢ Good method for finding hidden gradients

What is a contingency table?

black blue  green grey orange purple  white

quiet 27700 21500 21400 8750 12200 8210 25100
angry 29700 15300 17400 7520 10400 7100 17300
clever 16500 12700 13200 4950 6930 4160 14200
depressed 14800 9570 9830 1470 3300 1020 12700
happy 193000 83100 87300 19200 42200 26100 91500
lively 18400 12500 13500 6590 6210 4880 14800
perplexed 1100 713 801 189 233 152 1090
virtuous 1790 802 1020 200 247 173 1650

Categorical Data Representations

(the long version representation)

Indicator variables:

Patient Mutationl
AHY789 0
AHXT717 1

are transformed into a Mutation X Mutation matrix.

Hair Color, Eye Color

Mutation2 $ ...
0
0



require(ade4)
HairColor=HairEyeColor[,,2]

HairColor

## Eye

## Hair Brown Blue Hazel Green
## Black 36 9 5 2
## Brown 66 34 29 14
## Red 16 7 7 7
## Blond 4 64 5 8

chisqg.test(HairColor)
## Warning in chisq.test(HairColor): Chi-squared approximation may be incorrect

##

## Pearson's Chi-squared test

##

## data: HairColor

## X-squared = 107, df = 9, p-value <2e-16

Conclusion The data are not independent, the categories show a pattern of
dependency, what can we say about them?

Independence: computationally

rowsums=as.matrix(apply(HairColor,1,sum))
rowsums

## [,11]
## Black 52
## Brown 143
## Red 37
## Blond 81

colsums=as.matrix(apply(HairColor,2,sum))
colsums

## [,1]
## Brown 122
## Blue 114
## Hazel 46
## Green 31



HCexp=round(rowsums$*%t (colsums)/sum(colsums))

Exp = outer(apply(HairColor, 1, sum), apply(HairColor, 2, sum))
#Here is actually how the chisquare is computed

sum( (HairColor - Exp)"2/Exp)

## [1] 97344

HairColor-HCexp

## Eye

## Hair Brown Blue Hazel Green
## Black 16 -10 -3 -3
## Brown 10 -18 8 0
## Red 2 -6 2 3
## Blond -28 34 -7 0
require(vcd)

## Loading required package: vcd

##
## Attaching package: 'vecd'

## The following object is masked from 'package:GenomicRanges':
##
## tile

## The following object is masked from 'package:IRanges':
##
## tile

mosaic(HairColor,shade=TRUE)



Eye
Brown BluklaZseten Pearson

5 residuals:
(8]
s I 0 6.4
c 4.0
2
= D% [ 2.0
T - L 0.0
K2 I N I 2.0
x —
s | [ |
@ — p-value =
<2e-16

What special property does the HCexp/Exp matrix have?

Independence: mathematically

If we are comparing two categorical variables, (hair color, eye color), (color, emotion),
Counts in the table approximately the margin products: for a I X J contingency table
with a total sample sizeof n = Y0_, Y n; = n...

. Ni. N,
Nj=——n
n n

can also be written: N = cr’n, where

1 1
c=-N1, and ¥ = -N'1,
n n

The departure from independence is measured by the)(2 statistic



n;. )2

Z[ _ )

v n

Correspondence Analysis is like PCA using)(2
distances

Many implemetations: - dudi.coa in ade4 - cCA in vegan - ordination in phyloseq

library("ade4")
HairColor = HairEyeColor[,,2]
chisqg.test(HairColor)

##

## Pearson's Chi-squared test

##

## data: HairColor

## X-squared = 107, df = 9, p-value <2e-16

CCA in vegan

library(vegan)

HairColor = HairEyeColor[,,2]
res.ca=vegan::cca(HairColor)
plot(res.ca,scaling=3)
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Table from Brandwood and Cox

The dates Plato wrote these various “books’ is not known. Sentence endings and use
those pattern frequencies as the data.

The first (earliest) is known to be Republica. The last (latest) is known to be Laws.

platof=read.table("~/Books/CUBook/data/platof.txt",header=T)
platof[1l:8,]

## Rep Laws Crit Phil Pol Soph Tim
## uuuuu 42 91 5 24 13 26 18
## -uuuu 60 144 3 27 19 33 30

## u-uuu 64 72 3 20 24 31 46
## uu-uu 72 98 2 25 20 24 14
## uuu-u 79 113 10 38 25 22 26
## uuuu- 76 144 6 46 22 23 27
## —--uuu 79 102 5 41 25 30 26
## -u-uu 83 68 3 14 18 37 26

res.plato=dudi.coa(platof,scannf=FALSE,nf=2)
scatter(res.plato)



Eigenvalues

s.label(res.plato$co)
s.label(res.plato$li,add.plot=T)



names (res.plato)

## [1] "tab” "cw” "lw"  "eig” ‘"rank” "nf"  "cl”  "1i"  "co"  "11"
## [11] "call" "N"

sum(res.plato$eiq)
## [1] 0.13
round(res.plato$eig,2)

## [1] 0.09 0.02 0.01 0.01 0.00 0.00

More About Gradients

The Boomer Lake example: Arch Effect for Ecologists
(http://ordination.okstate.edu/PCA.htm)

Two species count matrices


http://ordination.okstate.edu/PCA.htm

lakelike

## plantl plant2 plant3 plant4 plant5 plant6é plant7 plant8 plant9 plantl0
## locl 5 5 2 1 1 1 2 0 0
## loc2
## loc3
## loc4d
## loch
## locé
## loc7
## loc8
## loc9
## loclO0 0 0 1 0

## plantll plantl2 plantl3 plantl4 plantl5
## locl 0 1 0 2
## loc2
## loc3
## loc4d
## locb
## locé
## loc7
## loc8
## loc9
## loclO0
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lakelikeh



## plantl plant2 plant3 plant4 plant5 plant6 plant7 plant8 plant9 plantl0
## locl 5 5 2 1 1 1 2 0 0
## loc2 6 7 4 2

## loc3 5 5 3

## loc4d 2 50 60 50 4
## loch
## locé
## loc7
## loc8
## loc9
## loclO0 0 0 1 0

## plantll plantl2 plantl3 plantl4 plantl5
## locl 0 1 0 2
## loc2

## loc3

## loc4d 1
## loch

## locé

## loc7

## loc8

## loc9

## loclO0
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reslake=dudi.coa(lakelike,scannf=FALSE,nf=2)
reslake2=dudi.pca(lakelike,scannf=FALSE,nf=2)
reslakeh=dudi.coa(lakelikeh,scannf=FALSE,nf=2)
reslakeh2=dudi.pca(lakelikeh, scannf=FALSE,nf=2)

Compare output from PCA and Correspondence
Analysis

First Data Set

Principal Components

scatter(reslake2)
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Correspondence Analysis

scatter(reslake)
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Second Data set
Principal Components

s.label(reslakeh2$co)
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Correspondence Analysis

s.label(reslakeh$1li)
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Other methods for gradients

We will follow an analysis of Moignard et al., 2015.

This paper describes the dynamics of blood cell development. The data are single cell
gene expression measurements of 3,934 cells with blood and endothelial potential
from five populations from between embryonic day (E)7.0 and E8.25.



Cell dynamics

The four cell populations studied here are representative of three sequential states
(PS,NP,HF) and two possible final branches (4SG and 4SFG™).

## [1] 3934 46

## typesort sortA sortB
##
## 3175 759

The classical multidimensional scaling on two distances matrices can be carried out
using:

dist2n.euclid=dist (Norm)

distln.ll=dist(Norm, "manhattan")

cellsn.cmds=cmdscale(distln.11,k=20,eig=TRUE)

cellsn2.cmds=cmdscale(dist2n.euclid, k=20,eig=TRUE)

percl=round(100*sum(cellsn.cmds$eig[1l:2])/sum(cellsn.cmds$eig))
perc2=round(100*sum(cellsn2.cmds$eig[1l:2])/sum(cellsn2.cmdsS$Seiqg))

We look at the underlying dimension and see below that two dimensions can provide
a substantial percentage of the variance.

barplot(100*cellsn.cmds$eig[1:20]/sum(cellsn.cmds$eiqg))
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barplot(100*cellsn2.cmds$Seig[1l:20]/sum(cellsn.cmds$eiqg))



0.5

—Il_lﬂl—“_”_”_"—ll || | e

0.0

cellsmds=data.frame(Axisl=cellsn.cmds$points[,1],Axis2=cellsn.cmds$points[,2])

cells2mds=data.frame(Axisl=cellsn2.cmds$points[,1],Axis2=cellsn2.cmds$points[,2])

ggplot(cellsmds,aes(x=Axisl,y=Axis2))+
geom_point(aes(color=celltypes),color=cellcol) +xlab("Axisl-CMDS") +ylab("Axis2")
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ggplot(cells2mds,aes(x=Axisl,y=Axis2))+

geom_point(aes(color=celltypes),color=cellcol) +xlab("Axisl-CMDS2") +ylab("Axis2")
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Nonlinear methods

The cells are not distributed uniformly in the lower dimensions we have been looking
at, they form a horseshoe.

Finding Time
Horseshoes: A la recherche
(http:/www.huber.embl.de/users/whuber/pub/horseshoe.html)

Multidimensional scaling and non metric multidimensional scaling aims to represent all
distances as precisely as possible and the large distances between far away points
skew the representations.

It can be beneficial when looking for gradients or low dimensional manifolds to restrict
ourselves to approximations of points that are close together.

These methods try to represent local (small) distances well and do not try to
approximate distances between faraway points with too much accuracy.


http://www.huber.embl.de/users/whuber/pub/horseshoe.html

The use of Kernels computed using the calculated interpoint distances allows us to
decrease the importance of points that are far apart. A radial basis kernel can be of the
form

d(x,y)?
1 - exp{—Lzy) }, where o2 is fixed.
c
or the |11 version:
d(x, :
1 —exp{— ) }, where o is fixed.
o

t-SNE
Change the distance: allow the 62 parameter to vary locally.

Thus we obtain a probability distribution that serves as the probability that pairs of
points in the high dimensional space are neighbors.

The t-SNE method then constructs Y; points in low dimensions so their distances are
proportional to (1 + ||y; — yj||2)_1 minimizing the (non-symmetric) Kullback-Leibler
divergence of the distribution Q from P.

This method is not robust and has the property of separating clusters of points
artificially; this can clarify a complex situation. One can think it as a method akin to the
network layout algorithms.

They stretch the data to clarify relations, but the distances between point cannot be
interpreted as on the same scales in different points in the plane.

See examples in chapter 9 (http:/web.stanford.edu/class/bios221/book/Chap-
MultivaHetero.html)

Ten quick tips (TenQuickTips.html)

Confidence Regions


http://web.stanford.edu/class/bios221/book/Chap-MultivaHetero.html
file:///Users/Susan/Dropbox/summer19/stamps19/ExploratoryMultivariate/TenQuickTips.html
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Paper: Boyu Ren, Sergio Bacallado, Stefano Favro, Susan Holmes, Lorenzo Trippa JASA:
open access preprint (https:/arxiv.org/abs/1601.05156)

Whole talk with model for uncertainty
(https:/www.dropbox.com/s/9axbdéfljwckxe4/MSR_Microbiome_Oct.pdf?dI=0)

Uses a Bayesian statistical model.


https://arxiv.org/abs/1601.05156
https://www.dropbox.com/s/9axbd6fljwckxe4/MSR_Microbiome_Oct.pdf?dl=0

