Individuality and population variation




Costea et al. 2018

Landscape model
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Common study designs

Cross-sectional
population (cohort) studies

Prospective
long-term follow-ups

Longitudinal
ecosystem dynamics

Case-control & Intervention
targeted experimental testing
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Metagenomics meets time series analysis: unraveling

microbial community dynamics
Karoline Faust'*%>°, Leo Lahti**>°, Didier Gonze®”’,
Willem M de Vos**>® and Jeroen Raes':%3

Longitudinal
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15 year prospective view (Finland / FINRISK2002)

2002 ~7000+ stool samples: omics 2017 comprehensive health
and clinical measurements. iInformation from Finnish registers

N=7231

15+ year follow up

400+ Deaths:
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Medical research

Bowel cancer risk may be reduced by Case-control &
rural African diet, study finds Intervention

Tests on subjects who swapped a fatty, meat-heavy diet for foods rich in beans
and vegetables found a drop in biological markers for cancer in just two weeks

naure . —
COMMUNICATIONS
| Home || About the journal || Authors and referees || Browse archive || Search

nature.com » journal home » current menth » abstract
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Fat, fibre and cancer risk in African Americans and
rural Africans
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The importance of research question

* Questions guide experimental design

* Exploratory analysis of earlier data can be
useful for hypothesis generation



Enterotypes in the landscape of gut Intestinal microbiome landscaping: insight in community

. bial it iti assemblage and implications for microbial modulation
micropial community composition strategies @
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Gut microbiota landscape

Comp.1

0.4 4
(0.2
04

HITChip
(N = 1006)



PC2

Kernel density estimates & Parzen windows
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PCoA/compositional/bray/N=1106

Broad community types
(Flemish Gut Flora)
Bacteroides splits in
two subtypes
I
B, subtype associated with -

Comp.2

IBD & low cell count

(Vandeputte et al. Nature 2017)
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Total explained variation: 16.4%
(Flemish Gut Flora Project)

Proposed disease marker genera associated to host covariates and
medication - inclusion in study design is essential !

A Medication
Blood Parameters

Bowel

Dietary Information

Combined effect size
16.4%

Unexplained

Health 83 6%

Anthropometrics

Lifestyle

T T T T T 1
0.00 0.02 0.04 0.06 0.08 0.10

3/ 59 CombInes Ei=tsize Falony et al. Science 352, 2016.



Vaginal microbiota
landscape

Metagenomics meets time series analysis: unraveling
microbial community dynamics

Karoline Faust>>°, Leo Lahti*>°, Didier Gonze®”,

Willem M de Vos**® and Jeroen Raes'??

PC2

Data: Gajer et al. 2012



Towards a dynamic landscape model of the microbiome

Prior info from

background cohorts & . .
pooling evidence across Gradients of change on HITChip PCA landscape

individuals . (1006 cross-sectional + 78 longitudinal profiles)

Density

11 -9 -7 4 -2 0  Data Lahti®t al. Nat. Coram. 2014
Comp.1 Fig. Shetty et al. FEMS Microbiol
Rev.. 2017




Key sources of microbial ecosystem variation

Exte rn a I 8 pensity landscape b Ccontinuous response to environment
perturbations I
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Community types could stratify individuals:

densely populated areas of the community landscape

Enterotypes in the landscape of gut
microbial community composition

Paul I. Costea, Falk Hildebrand, Manimozhiyan Arumugam, Fredrik Béckhed, Martin
J. Blaser, Frederic D. Bushman, Willem M. de Vos, S. Dusko Ehrlich, Claire M. Fraser,
Masabhira Hattori, Curtis Huttenhower, lan B. Jeffery, Dan Knights, James D. Lewis,
Ruth E. Ley, Howard Ochman, Paul W. O'Toole, Christopher Quince, David A. Relman,
Fergus Shanahan, Shinichi Sunagawa, Jun Wang, George M. Weinstock, Gary D. Wu,
Georg Zeller, Liping Zhao, Jeroen Raes &, Rob Knight & & Peer Bork

Nature Microbiology 3, 8-16(2018) | Cite this article
3949 Accesses | 100 Citations | 90 Altmetric | Metrics




The ISME Journal , (24 April 2014) | doi:10.1038/ismej.2014.63

Impact of diet and individual variation on
intestinal microbiota composition and
fermentation products in obese men

Anne Salonen, Leo Lahti, Jarkko Salojarvi, Grietje Holtrop, Katri Korpela,
Sylvia H Duncan, Priya Date, Freda Farquharson, Alexandra M Johnstone,
Gerald E Lobley, Petra Louis, Harry ] Flint and Willem M de Vos

Lahti et al. Nat. Comm. 5:4344, 2014

Korpela et al. PLoS ONE 9(3): e90702, 2014
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Microbiome diversity and age:
healthy & normal obese subjects (HITChip Atlas)

N = 2363
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Fig. 2: Stratification of the microbial composition landscape of the
human gut microbiome.

From: Enterotypes in the landscape of gut microbial community composition
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Zooming In: sub-ecosystem variation



Effect on the overall ecosystem

Prevotella states seen at
ecosystem level

High ~10% relative
abundance!

Other bi-stable taxa:
<2% relative abundance,
no ecosystem-level
switches are visible
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Correlation (Spearman)
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Uncultured Clostridiales associated
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6PC1 (16%)é
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Lahti et al. Nat. Comm. 5:4344, .

Lahti et al. Nat. Comm. 5:4344, 2014



Sub-ecosystem variation?




Dialister spp.

Received 23 Jan 2014 | Accepted 9 Jun 2014 | Published 8 Jul 2014 OPEN

Tipping elements in the human intestinal
ecosystem

Leo Lahti"2, Jarkko Salojérvi*, Anne Salonen*, Marten Scheffer® & Willem M. de Vos'23



Bacterial 'abundance types'
in 1000 western adults:

~% indicates proportion among prevalent taxa

Symmetric Right—skewed Bimodal

- |~50% ~20% ~10%
g
8
L

Abundance (Logqg) Abundance (Logqg) Abundance (Logqg)

Rare Left—skewed Fat—tailed

- ~10% ~10%
[ e
S
8
L

Abundance (Logqg) Abundance (Logqg) Abundance (Logqg)

Lahti et al. Nat. Comm. 5:4344, 2014
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Tipping elements

Bistable taxa: Independently varying
Prevotella, Dialister, sub-communities

Clostridiales..
(N=1006)

Ecosystem states are rich combinations

of independent tipping elements ? Lahti et al. Nat. Comm. 2014
Frequency (%) 18 12 8 . 7, 65, 4 2 .5 i — H H
B. fragilis | | 1 TN |
Dialister spp. [l ORI LA | {0 AR O || ||
Prevotrella | | | || | | ‘ } {
OCT[{{REAENIN 60 AR S T A AR R |||||I|||| ! ||||
UCIT | |

Subjects (n=1006)



Bi-stable bacteria are
rather independent, with B g il S
their own lives and & i ~— |
social networks

dococcus

1lii et rel.

Aerococcus

PF&P U GRiQcoeens micros et rel.

Megasphaer: sdenii et rel.

Eubacteriu orme et frel.

Prevotella melaninogenica et rel. Dialister

Bactgroides plebeius et rel.

Prevotella ruminicola & rel.

Tannerella et rel.
splachnicug et rel.

Prevotc]laB[gﬁter%led%§ 2] ar agfleroides vulgatus et rel.

Ir] > 0.33 shown Bactero disetrel, . oo
Only positive @l Bacghoiddk Sero et .
correlations! B R

indens et rel.




Health associations of bi-stable tipping elements

Health status

Severe obesity (n=136)

Severe obesity

IBS (n=106)
MetS (n=66)
MetS
MetS

Bimodal group

UCl

UClli

UClli

B.fragilis group
Prevotella group

Dialister

Enriched state

Low abundance
Low abundance
Low abundance

High abundance

Low abundance

High abundance

Compromised (%)

29
38
50
89

11
36

Controls (%)

55
61
61
78

22
28

FDR (%)
<0.1

<0.1
1
<0.1

11
13

Received 23 Jan 2014 | Accepted 9 Jun 2014 | Published 8 Jul 2014

Tipping elements in the human intestinal

ecosystem

Leo Lahti'2, Jarkko Salojérvi'*, Anne Salonen®*, Marten Scheffer® & Willem M. de Vos"23



Tipping elements of the human gut microbiota: Uncultured Clostridiales |

Lahti et al. Nat. Comm. 5:4344, 2014
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Bias Is everywhere

 Absolute abundances cannot be determined
 Relative abundances are biased

* Each step from experiments to analysis adds
noise

— EXxperimental design & validation!




Dealing with confounding effects

* Any observation may be confounded

* Are there technical explanations for observed patterns? Uneven sequencing /
Batch effects / Edge effects..

* Excluding alternative explanations is critical

- Example: negative correlation between two ASVs. Biological or technical explanation?
ASV1:010011001
ASV2:100100101



External covariates can induce distinct clusters
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Rethinking “Enterotypes”

Dan Knights « Tonya L. Ward « Christopher E. McKinlay « ...

Show all authors

Antonio Gonzalez « Daniel McDonald

« DOI: https://doi.org/10.1016/j.chom.2014.09.013 =
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Ways to handle covariates
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Why (nonlinear) PCoA and not (linear) PCA?

PcoA Principal Coordinates Analysis

PCA Principal Component Analysis

(a.k.a MDS)
Transformation: compositional Transformation: CLR
Dissimilarity: Bray-Curtis Dissimilarity: Euclidean

Method: P i iati
ethod: Preserves distances Method: Captures largest variation
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PiCA — first twao components PCA — first two -:nmfnnenw

Lt o

https://ai-pool.com/a/s/dimensionality-reduction--pca-intro



Fundamental considerations in beta diversity analysis

Feature selection
(all/core taxa; genus/strain level..?)

Transformation
(absolute, compositional, CLR, Hellinger..?)

Dissimilarity measure
(Euclidean/L2, Bray-Curtis, Unifrac..?)

Analysis method
(PCA, PCoA, NMDS, t-SNE, UMAP..)

p.2




Software ‘ Open Access ‘ Published: 22 January 2010
NeatMap - non-clustering heat map alternatives in R

Satwik Rajaram 7 & Yoshi Oono

BMC Bioinformatics 11, Article number: 45 (2010) ‘ Cite this article

26k Accesses |47 Citations | 2 Altmetric | Metrics
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Distinct clusters or extremes on a continuum?
Common Visualizations Can Support Different Conclusions

Soil
samples
with varying
pH

Simulated
data with
no cluster
structure
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Dirichlet multinomial mixture (DMM)

Probabilistic cluster analysis

/ How many \

Clusters?

Which samples e
In which clusters?

How the clusters

\ are shaped? /




Model

Observations
(Data)

41






From learning the model parameters
to learning the model structure
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(b) Infinite Gaussian Mixture Model (IGMNMND)



Balancing model complexity & fit:
Bayesian Information Criterion ﬁ
BIC = In(n)k — 21In(L).

Model Model
complexity fit

Cluster 2

Cluster 1

—i 0| i i 02 - = 03 e
" n 1 ¥ L] -
11 f42 H3



Dirichlet Multinomial Mixtures: Generative Models for
Microbial Metagenomics

lan Holmes, Keith Harris, Christopher Quince
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The power and pitfalls of Dirichlet-multinomial mixture models
for ecological count data

John D. O'Brien, Nicholas R. Record, Peter Countway
doi: https://doi.org/10.1101/045468



Finite Mixture Models

» A finite mixture model assumes that the data come from a
mixture of a finite number of distributions.

m ~ Dirichlet(a/K, ..., a/K)

c, ~ Multinomial(rr)

Nk ~ Go
Yn | Chr MNis--- N ~ F( 8 |’7¢n)

=
Il
)




Infinite Mixture Models

» An infinite mixture model assumes that the data come
from a mixture of an infinite number of distributions

m ~ Dirichlet(a/K, ..., a/K)

o c, ~ Multinomial(rr)
e

A [ K] Yo |l Cns Mysee- N~ F(- | N)

Take limit as K goes to <

Note: the N data points still come from at most N
different components

26 [Rasmussen 2000]



Non-parametric models bring flexibility In
the model structure

D
g - p 2 ¥
o Q) o] 2
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(a) Finite Gaussian Mixture Model (FGMMND (b) Infinite Gaussian Mixture Model (IGMMN)
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Multivariate Gaussian mixture model:
how many clusters?
— Infinite Gaussian mixtures!




DP as Chinese Restaurant Process (CRP)

Future samples derive from new species (table) with prob. proportional to 6 and join
existing species (table) with prob. proportional to their size
Generates conditional samples marginalised over GEM

P(zi = 0
0

1 1 0

2+60 >+ 0 2+0

1 ) o
3+0 3+6 3+0

51
blog.datumbox.com/the-dirichlet-process-the-chinese-restaurant-process-and-other-representations/



Clustering vs. Factorization
binary / continuous weights

| Prevotella
O ___ Bacteroides
| Ruminococcus
Individual has Individual is associated with

one community type multiple community types




Effect on the overall ecosystem

Prevotella states seen at
ecosystem level

High ~10% relative
abundance!

Other bi-stable taxa:
<2% relative abundance,
no ecosystem-level
switches are visible

ucCll

PCA +
Correlation (Spearman)
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Uncultured Clostridiales associated
with overall metagenomic richness

6

L
2 4 6

6PC1 (16%)é
N = 401 western adults

Lahti et al. Nat. Comm. 5:4344, .

Lahti et al. Nat. Comm. 5:4344, 2014



Mixture models bring flexibility in modeling

Bistable taxa: Independently varying
Prevotella, Dialister, sub-communities

Clostridiales..
(N=1006)

Ecosystem states are rich combinations

of independent tipping elements ? Lahti et al. Nat. Comm. 2014
Frequency (%) 18 12 _|8 7 62 4 Iil E| |—1| L H A
B. fragilis | | 1 TN |
Dialister spp. || (R L | (1 T O AR || ||

Prevorella

UcCl
UCII ¢

Subjects (n=1006)



Clustering vs. Factorization

statistical formulation
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Dishes
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Indian Buffet Process

- Bayesian nonparametric model

: e : . Buffet dishes
- A prior on an infinite binary matrix.

Plates

112134
Customers

Michael Jordan



How to choose
a correct model or
test for my data?

Parametric assumptions:
(1) Independent samples
(2) Data normally distributed

(3) Equal variances

Type of data?

ContinuousJ

r

Type of question?

RelationshipSJ

lDifferences

Discrete,

categorical

Any counts <57

rNoJ

Chi-square tests, one
and two sample

Yes
\ 4
Fisher's
exact test

+ v J—) One-sample t-test
Do you have dependent & Differences  |——Means
; ; > :
independent variables? between what? Yaanoes e
Yes o Bartlett's test
Multiple means
Single variable
Regression Correlation ,
analysis analysis
How many groups?
P N | Parametric assumptions
—Parametric. onparametric T fafind 9
¢ More than two—>] Salisfens
Y I_
Spearman's rank Yes_l | Lo
Pearson's r i Rt Two r No \ 4
Transform
?
ds One-way ANOVA da‘f"
Parametric assumptions ¢N°
Transform data? |€«~No—| satisfied?
L : | Kruskall-Wallis test
oo No-----1 ==t

Y_
vy

No

v

¢

Student's t-test

Mann-Whitney U or
Wilcoxon test

If significant, do post hoc test:
Bonferroni's, Dunn's, Tukey's, etc.




OUR FIELD HAS BEEN
STRUGGLING WITH THIS
PROBLEM FOR YEARS.

iR

STRUGGLE NO MORE!
I™ HERE TO SOLVE
IT UITH ALGORITHIMS!
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M SIX MONTHS LATER:

WOW, THIS PROBLEM
15 REHLLY HARD,
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