
Time 



Tasks

  Model
  Diagnose
 Predict
 Manipulate



S X NTaxonomic 
units S x N x T

Cross-sectional cohort Longitudinal cohort
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Towards a dynamic landscape model of the gut microbiome

Gradients of change on HITChip PCA landscape
(1006 cross-sectional + 78 longitudinal profiles)

Falony et al. (2016) 
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Data: Lahti et al. Nat. Comm. 2014 
Fig. Shetty et al. FEMS Microbiol 
Rev.. 2017

Prior info from 
background cohorts & 
pooling evidence across 
individuals





6

External 
perturbations
(push & pulse)

Internal 
dynamics and 
multi-stability

Immigration

Stochasticity

Memory
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Abundance types break Gaussian assumptions



Neutral model

Interaction models

Immigration

Stochastic variation
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Choose the model, estimate parameters



Long and dense time series
1 individual & 300+ days

Raes Lab / Flemish Gut Flora project now collecting dense time series for 
hundreds of individuals 150+ days!

Data: David et al (2012) 



Typical microbiome time series: short, sparse, noisy
 → challenge for fitting parametric models

Data: 
HITChip Atlas
Lahti et al (2014) 

78 individuals; 
2-5 time points; 
1-36 months



Source: Susan Holmes | http://web.stanford.edu/class/bios221/Short-Phyloseq-Resources.html



Neutral variation
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Data: Vaginal microbiota time series from 32 women. Gajer et al. 2012 



Starting point: no dependence in time?

● For instance, sample data from a distribution that 
emphasizes the dominance of certain species

→ Communities look similar in all time points even if they 
are independent, given the model



● Unified Neutral Theory of Biodiversity
● Connection to Hierarchical Dirichlet Process
● Validation & Experiments 16

Can random chance explain the observed 
diversity of the human gut microbiomes ?
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How to explain the observed variation –classical 
niche model:

”When we look at the plants and bushes clothing an 
entangled bank, we are tempted to attribute their 
proportional numbers and kinds to what we call 
chance. But how false a view is this!”

– Charles Darwin, The Origin of Species. 

17
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After >25 years on the Barro Colorado Island tropical forests, 
Hubbell controversially proposed that.. 
random chance may in fact be the best explanation of the 
observerd biodiversity (Hubbell 2001).

Neutral vs. niche models in ecology ?



Functional equivalence hypothesis

Differences between individuals are neutral in terms of 
fitness, regardless of their species -> Identical per capita 
demographic rates (birth, death) - At least within specific 
taxonomic guild.

-> No competition but stochastic fluctuations !

How much niche differences affect community assembly, 
stability and resilience ?

19

Hubbell:
Is there a limiting niche similarity for species in functional groups? –> No 
evidence in the investigated tree communities

How many coexisting tree species can be classified in the same functional 
group? -> Arbitrarily many
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Metacommunity (‘mainland’): diversity affected 
by size, speciation and extinction rates

Local community (‘island’) -> immigration rate?

Caswell 1976: single local community + migration

Hubbell 2001: many local communities + neutrality

Etienne 2004: exact likelihood for single-site model

Mainland – Island model

                       

            Mainland   

  (metacommunity)

                       

            Mainland   

  (metacommunity)

Island
(local community)

Island
(local community)

Limitations with the standard models:
- Single site not sufficient for reliable model fit
- Niche models can generate identical predictions
- Complexity of the full model: many islands; varying 

immigration rates & population sizes (two-stage 
approximations proposed by Etienne 2007-2009)

- Fixed metacommunity vs. potentially infinite species pool
- Limited scalability
- Lack of tractable and accurate algorithms for the full multi-

site model



Neutral model of local
community dynamics

Figure: Hubbell (2001)

Community with J individuals 
from two species

21



Neutral model of local
community dynamics

Figure: Hubbell (2001)

Disturbance removes D individuals

22



Figure: Hubbell (2001)

Neutral model: random drift + immigration

Community dynamics:

1. Stochastic birth/death dynamics: random 
drift

2. Random immigration from 
metacommunity

Assumptions:

• Species ecologically equivalent on per 
capita basis

• Zero sum game: fixed community size 
(“large landscapes are always saturated 
with individuals”)

23



Random drift in community assembly

24



DP as Chinese Restaurant Process (CRP)

blog.datumbox.com/the-dirichlet-process-the-chinese-restaurant-process-and-other-representations/

Generates conditional samples marginalised over GEM 

Future samples derive from new species (table) with prob. proportional to θ and join 
existing species (table) with prob. proportional to their size

0

25

2
1

3
1

  

1
1+q 


1

2
1

3
2



3



2





Single-species dominance also from random walk !
Random drift + No migration + Fixed community size 

27



Random migration as ecological driver ?
Random drift + Small migration / speciation + Fixed community size 

Drastic shifts in community dominance by different species !

28



Fundamental biodiversity 
parameter:  = 2J
J = metacommunity size
n = speciation rate

Neutral Theory: predicted species 
abundance distributions (SAD) 
match real observations

Figure: Hubbell 2001

Testing the model: rank-abundance curves

29

Problems with single-site model:
- Single site not sufficient for reliable 

model fit
- Niche models can generate 

identical SADs  (Chisholm & Pacala 
2010). 
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Niche model ”When we look at the plants 
and bushes clothing an entangled bank, we 
are tempted to attribute their proportional 
numbers and kinds to what we call chance. 
But how false a view is this!” (Darwin, The 
Origin of Species) 

Neutral model After >25 years on the Barro 
Colorado Island tropical forests, Hubbell proposed 
that.. random variation could in fact best explain 
observed biodiversity (Hubbell 2001).

Neutral model of biodiversity suggests no interaction: 
could random chance explain microbiome variation?
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Microbiomics data

• Microbial community data in a frequency matrix:

 

 

• Discrete, sparse, variable sample size

• Up to thousands of sites; millions of individuals

• Tens of thousands of individuals per site

-> Principled approaches needed to fit such models efficiently !

Taxa1 Taxa2 Taxa3 Taxa4

Sample1 111 52 22 98

Sample2 50 10 0 30

Sample3 0 45 65 0

Sample4 0 100 40 0

n indexes samples s indexes taxa

31
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Gut microbiome (500k seqs; 278 subjects)

Neutrality depends on taxonomic level

Bacteroidetes have less immigration than spore-forming Firmicutes

)1,(~)(~|  DPStick

),(~,|  iii IDPIp
),(~,| iiiii pNMNpNX



Applications (Harris et al. PIEEE 2017)

● Classical tropical trees  data set  (classical example)
● Human gut microbiome (570,851 sequences; 278 subjects)

Gut microbiome neutrality ?
• Depends on taxonomic level
• Bacteroidetes have lower immigration than the spore-forming Firmicutes







Interaction models

Bistable system



V      : Vegetation
G(V) : Growth per unit time

c(V) : Consumption of vege
H     : Sheep

G(V) c(V)H

Grass growth Grass consumption

Noy-Meir 1975

G(V) = gV(1 – V/V
max

) c(V) = c
max

(1 - ekV)

Vegetation Vegetation

C
on

su
m

pt
io

n 
(C

)

G
ro

w
th

 (
G

)



Equilibrium (Growth ~ Consumption):

Vegetation (V)

G
ro

w
th

 (
G

) 
a

nd
 

C
on

su
m

pt
io

n
 (

C
)

= 0



F
1

F
2

Environmental variation



Faust et al. Curr. Op. Microbiol. 2015 

Intrinsic stability:
robust to external factors

State induced by 
external factors

Environmental or host  factor (e.g. body-mass index)

D
iv

er
si

t
y 

?
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Alternative (stable) states
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Fecal transplant induced 
ecosystem level state shift

Better than 
antibiotics ! Patient gets donor 

microbiota -> Donor farms!?

Els van Nood et al., NEJM 368(5) 2013
Fuentes et al. ISME J, 8:1621-33, 2014

Efficient treatment in C. difficile infected patients. 
Shift from Bacilli- and Proteobacteria-dominated 
state to a healthy state dominated by Bacteroides 
and many butyrate producing taxa
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Data: Vaginal microbiota time series from 32 women. Gajer et al. 2012 

Variation: 
- cross-sectional
- spatial
- temporal



Inter-group inhibition stronger than intra-
group inhibition (the smaller the stronger)

Species j

Sp
e

ci
e

s 
i

Interaction models 
yield more complex
dynamics and predict
alternative stable states
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Stability



46

Deterministic vs. stochastic models

randomness is essential for the 
system dynamics



Ornstein-Uhlenbeck Process (OUP) quantifies key 
properties of a stable state: 

Quantifying resilience & stochasticity

Real: David et al (2014) 

Simulated stochasticity level

Laitinen & Lahti: StanCon 2018 Helsinki & 
Advances in Intelligent Data Analysis XVII, 2018 47 / 73



Resilience



Towards a dynamic landscape model of the gut microbiome

Gradients of change on HITChip PCA landscape
(1006 cross-sectional + 78 longitudinal profiles)

Falony et al. (2016) 
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Data: Lahti et al. Nat. Comm. 2014 
Fig. Shetty et al. FEMS Microbiol 
Rev.. 2017

Prior info from 
background cohorts & 
pooling evidence across 
individuals
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Dialister spp. (N = 1006)
State stability?
Enrichments with diet / health / etc.?
Associations with the overall 
ecosystem? 

Alternative states in specific bacterial groups ?
 → Bimodal population distribution is one indicator
 

P
op

ul
at

io
n 

fr
eq

ue
nc

y

Abundance (Log
10

)
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State shifts 
indicate instability 
at intermediate 
abundances

Bi-stability analysis with many short time series

Dialister spp.
(N = 1006)

Non-parametric potential analysis & Fokker-Planck dynamics

Dialister spp.
(N = 78)

Lahti et al. Nat. Comm 2014
Hirota et al. Science 2011
Livina et al. Clim Past. 2010

System state described by 
a stochastic process:

Coupled with observation density:

Used in climatology and ecology.
earlywarnings R package



Tipping point
K

as
vi
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 (

V
)
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vi
lli
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V

)
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Subject stratification into community types
could reduce complexity

Bistable taxa: 
Prevotella, Dialister, 
Clostridiales..
(N=1006)

Independently varying 
sub-communities

Ecosystem states are rich combinations 

of  independent tipping elements ? Lahti et al. Nat. Comm. 2014



Early warning signals





58



59



60



Memory



Time points are dependent



Model with independent time points
Dirichlet-Multinomial: no memory, no dependence



Time points depend (only) on the previous state
Neutral model, Lotka-Volterra & many interaction models



?

Memory: past trajectories influencing future choices?



Faust et al. 2015

Periodicity
Hurst exponent quantifies periodicity and persisting trends



Faust et al. 2015

Chaos
Lyapunov exponent quantifies chaos 
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How we choose which model to apply?
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DM

Neutral model

gLV SOI

StochasticDeterministic

Species Interactions

No interactions

Ricker
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“Colors of noise” hint at ecological mechanisms

White noise → Unstructured

Pink noise   → Time dependence

Brown noise→ Neutrality

Black noise →Interactions

70 / 73



http://www.scholarpedia.org/article/1/f_noise

No time structure

“Colors of noise” characterize time series, 
prodiving an alternative testing scheme

Memory in time

Neutral variation 
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White noise → Unstructured

Pink noise   → Time dependence

Brown noise→ Neutrality

Black noise →Interactions

Distinct noise profiles of 
ecological processes 
confirmed in simulations
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External 
perturbations
(push & pulse)

Internal dynamics 
and multi-stability

Immigration

Stochasticity

Memory
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Key sources of microbial ecosystem variation
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