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Model
Diagnose
Predict
Manipulate
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Towards a dynamic landscape model of the gut microbiome

Prior info from

background cohorts & . .
pooling evidence across Gradients of change on HITChip PCA landscape

individuals . (1006 cross-sectional + 78 longitudinal profiles)

Density

11 -9 -7 4 -2 0  Data Lahti®t al. Nat. Coram. 2014
Comp.1 Fig. Shetty et al. FEMS Microbiol
Rev.. 2017




Challenge for manipulation:
- individual responses !

Responders vs.
non-responders
- personalized treatment ?

The ISME Journal , (24 April 2014) | doi:10.1038/ismej.2014.63

Impact of diet and individual variation on
intestinal microbiota composition and
fermentation products in obese men

Anne Salonen, Leo Lahti, Jarkko Salojarvi, Grietje Holtrop, Katri Korpela,
Sylvia H Duncan, Priya Date, Freda Farquharson, Alexandra M Johnstone,
Gerald E Lobley, Petra Louis, Harry J Flint and Willemm M de Vos

Lahti et al. Nat. Comm. 5:4344, 2014

Korpela et al. PLoS ONE 9(3): e90702, 2014
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Microbial commmunities as dynamical systems

Didier Gonze 1: 2=, Katharine Z Coyte 3: 4, Leo Lahti ®: 8 7, Karoline Faust ° &

a Density landscape

External
perturbations
(push & pulse)

Denaity

-
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PCoA 1

Internal
dynamiCS and C Metacommunity and local selection

multi-stability . )l
-‘g e — Ll
Immigration : el T« [

selection of local community

Stochasticity

community state

community state
£
[
!

b continuous response to environment

I'm
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environment
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o Multi-stability and hysteresis
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Abundance types break Gaussian assumptions

Symmetric Right—skewed Bimodal

. ~50% ~20% ~10%
g
8
L

Abundance (Logqg) Abundance (Logqg) Abundance (Logqg)

Rare Left—skewed Fat—tailed

- ~10% ~10%
o)
L

Abundance (Logig) Abundance (Logqg) Abundance (Logqg)

Lahti et al. Nat. Comm. 5:4344, 2014



Neutral model
Interaction models
Immigration

Stochastic variation



Choose the model, estimate parameters

Visualization Dynamical properties

Experimental time series

et ;“ﬁ’@ 7
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% \ Mathematical modeling /’ = Altarnative slatas
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Long and dense time series
1 inAividnal Q& 2NN Aave

01 qjﬂ ]
£, P
&
3
4 100 200 300 )
Time (days) Data: David et al (2012)

Raes Lab / Flemish Gut Flora project now collecting dense time series for
hundreds of individuals 150+ days!



Typical microbiome time series: short, sparse, noisy
- challenge for fitting parametric models

12

114
%/
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—
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Abundance
w

oo
1

78 individuals;
2-5 time points;
=3

=l
1

6 months

T T T 1

0 10 20 -+
Time (months)

Data:

HITChip Atlas
Lahti et al (2014)



Longitudinal Data Analyses

Tt i
=9t

Source: Susan Holmes | http://web.stanford.edu/class/bios221/Short-Phyloseqg-Resources.html



Neutral variation

T CAN'T BELEVE SCHOOLS
ARE STiL. TEACHING KIDS
ABOUT THE NULL HYRITHESIS.

l
I REMEMRER READING A BIG
STUDY THAT CONCLUSIVELY
DISPROVED IT JEARS AGO.

i




Metagenomics meets time series analysis: unraveling
microbial community dynamics

Karoline Faust'*%>°, Leo Lahti**>°, Didier Gonze®”’,

Willem M de Vos**>® and Jeroen Raes':%3
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Data: Vaginal microbiota time series from 32 women. Gajer et al. 2012



Starting point: no dependence in time?

* For instance, sample data from a distribution that
emphasizes the dominance of certain species

- Communities look similar in all time points even if they
are independent, given the model



Can random chance explain the observed
diversity of the human gut microbiomes ?

Linking statistical and ecological theory: Hubbell’s unified 1
neutral theory of biodiversity as a hierarchical Dirichlet process
Keith Harris', Todd L Parsons?, Umer Z Ijaz®, Leo Lahti*, Ian Holmes®, Christopher Quince®*

1 School of Mathematics and Statistics, University of Sheffield, Sheffield, UK

2 Laboratoire de Probabilités et Modeéeles Aléatoires, CNRS UMR 7599, UPMC Univ
Paris 06, Paris, France

3 Infrastructure and Environment Research Division, School of Engineering, University of
Glasgow, Glasgow, G12 8LT, UK

4 Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland &
Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands

5 Department of Bioengineering, University of California, Berkeley, California, USA

6 Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK

* E-mail: c.quince@warwick.ac.uk

* Unified Neutral Theory of Biodiversity
* Connection to Hierarchical Dirichlet Process
* Validation & Experiments



How to explain the observed variation -classical
niche model:
"When we look at the plants and bushes clothing an
entangled bank, we are tempted to attribute their

proportional numbers and kinds to what we call
chance. But how false a view is this!”

- Charles Darwin, The Origin of Species.




Neutral vs. niche models in ecology ?

After >25 years on the Barro Colorado Island tropical forests,
Hubbell controversially proposed that..

random chance may in fact be the best explanation of the
observerd biodiversity (Hubbell 2001).
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Functional equivalence hypothesis

Differences between individuals are neutral in terms of
fitness, regardless of their species -> Identical per capita
demographic rates (birth, death) - At least within specific
taxonomic guild.

-> No competition but stochastic fluctuations !

How much niche differences affect community assembily,
stability and resilience ?

Hubbell:
Is there a limiting niche similarity for species in functional groups? -> No

evidence in the investigated tree communities

How many coexisting tree species can be classified in the same functional
group? -> Arbitrarily many .



Mainland — Island model

Metacommunity (‘mainland’): diversity affected
by size, speciation and extinction rates

Local community (‘island’) -> immigration rate?
Caswell 1976: single local community + migration
Hubbell 2001: many local communities + neutrality

Etienne 2004: exact likelihood for single-site model
Limitations with the standard models:

Island

ocal community)

Single site not sufficient for reliable model fit

Niche models can generate identical predictions
Complexity of the full model: many islands; varying
immigration rates & population sizes (two-stage
approximations proposed by Etienne 2007-2009)

Fixed metacommunity vs. potentially infinite species pool
Limited scalability

Lack of tractable and accurate algorithms for the full multi-

Mainland
(metacommunity)




Community with J individuals
from tyvo species

Neutral model of local
community dynamics

time
Fic. 4.1. Cartoon of one disturbance cycle in a model community

undergoing zero-sum ecological drift. At the beginning of the cycle
are two species whose individuals occupy all sites or resources (lef?).

Figure: Hubbell (2001)
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Disturbance removes D individuals

Neutral model of local
community dynamics

time

Fic. 4.1. Cartoon of one disturbance cycle in a model community
undergoing zero-sum ecological drift. At the beginning of the cycle
are two species whose individuals occupy all sites or resources (lef?).
Immediately after the disturbance, which killed several individuals of
both species, vacant sites or unutilized resources are opened up (mid-

dle).

Figure: Hubbell (2001) 22



Neutral model: random drift + immigration

Community dynamics:

1. Stochastic birth/death dynamics: random

drift
2. Random immigration from
metacommunity

Assumptions:

* Species ecologically equivalent on per
capita basis

* Zero sum game: fixed community size
(“large landscapes are always saturated
with individuals”)

Figure: Hubbell (2001)

J J-D J

18 @
28 O

time

Fic. 4.1. Cartoon of one disturbance cycle in a model community
undergoing zero-sum ecological drift. At the beginning of the cycle
are two species whose individuals occupy all sites or resources (left).
Immediately after the disturbance, which killed several individuals of
both species, vacant sites or unutilized resources are opened up (mid-
dle). These are occupied by recruits from the two species in the local
community, and by an immigrant individual of a third species from the
metacommunity source area (right).

23



Random drift in community assembly
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EEENNNENNN
HEOOENEEECON

The individual is

replaced at random.

An individual dies.

Population size is
fixed at N individuals.

The Economy of Nature, Sixth Edition
nd Company

Figure 20.26
© 2010 W.H.Freeman a
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DP as Chinese Restaurant Process (CRP)

Future samples derive from new species (table) with prob. proportional to 6 and join
existing species (table) with prob. proportional to their size
Generates conditional samples marginalised over GEM

P(zi = 0
0

1 1 0

2+60 >+ 0 2+0

1 ) o
3+0 3+6 3+0

25
blog.datumbox.com/the-dirichlet-process-the-chinese-restaurant-process-and-other-representations/
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HUBBELL'S UNIFIED NMEUTRAL THEORY OF BIODMVERSITY AND
BIOGEDGRAPHY (UNTB)
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Single-species dominance also from random walk !

100 -

Abundance (%)
0 ~

\"
an

Random drift + No migration + Fixed community size

1000 1500 2000
Generation 27




Random migration as ecological driver ?

Random drift + Small migration / speciation + Fixed community size
Drastic shifts in community dominance by different species !

UNTB (migration probability 0.01)
Species! 123450607

Abundance (%)
u ~

™
a

D .

1000 2000 3000 4000 5000
Generation



Testing the model: rank-abundance curves

Neutral Theory: predicted species
abundance distributions (SAD)
match real observations

Fundamental biodiversity
parameter: 6 = 2Jv
J = metacommunity size
V = gpeciation rate

Problems with single-site model:

- Single site not sufficient for reliable
model fit

= Niche models can generate
identical SADs (Chisholm & Pacala
2010).

Figure: Hubbell 2001

10
Sample size = 64 individuals
q) -
% 101 4 "
g f 6 infinite
3 10° 1
< ]
s 7
D ]
8 10 ‘1—§ 6 =10
g
) a0
-z :
— =
g_‘ 10 E
[ ] e =1
1 6 =0.1 \
10‘4 . ) v T T T ¥ T T T T T T
0 5 10 15 20 25 30 35

Species Rank in Abundance

F1G. 5.2. Expected metacommunity dominance-diversity distributions
for a sample of 64 individuals, for various values of the parameter, 6.
When 6 is small, the expected dominance-diversity curve is geometric-
like. As 0 becomes larger, the expected dominance-diversity curve
becomes lognormal-like. As 6 — oo, the distribution approaches a hor-
izontal line. In the limit, when € is infinite, every individual in the
sample is a new and different species, however large a sample is taken.
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Neutral model of biodiversity suggests no interaction:
could random chance explain microbiome variation?

Niche model "When we look at the plants Neutral model After >25 years on the Barro

and bushes clothlng an ental.wgled ban!<, W€  Colorado Island tropical forests, Hubbell proposed
are tempted to attribute their proportional  {hat  random variation could in fact best explain
numbers and kinds to what we call chance. observed biodiversity (Hubbell 2001).

But how false a view is this!” (Darwin, The
Origin of Species)

30



Microbiomics data

* Microbial community data in a frequency matrix:

n indexes samples s indexes taxa

Xx, . n=1,...,Ns =1,...,§8
I T N

Samplel

Sample2 50 10 0 30
Sample3 0] 45 65 0
Sample4d 0] 100 40 0

* Discrete, sparse, variable sample size

* Up to thousands of sites; millions of individuals

* Tens of thousands of individuals per site

-> Principled approaches needed to fit such models efficiently !



Xi |Ni9pi NMN(NiDPi)

p: L.~ DP,,[5)

B | O ~ Stick(0) ~ DP(6.,1)

Table 2. Fitting the UNTB-HDP model to human gut microbiota.

= T
Taxa N S J 0 I = = PN L
Bacteroidetes 231 569 596 148.6 1.5 5.5 13.7 | 0.0 (0.0) 0.0 (0.0)
Bacteroidaceae 208 224 506 51.4 0.7 33 7.6 0.0 (0.0) 0.03 (0.0)
Bacteroides 208 224 506 51.4 0.7 3.3 76 0.0 (0.0) 0.03 (0.0)
Firmicutes 277 | 4770 1009 1382.3 21.4 44.8 81.0 0.0 (0.0) 0.0 (0.0)
Incertae Sedis XIV 87 176 264 39.2 1.7 9.8 27.5 0.0 (0.0) 0.05 (0.004)
Blautia 87 175 264 38.9 1.6 10.1 2701 0.0 (0.0) 0.06 (0.003)
Lachnospiraceae 164 873 248 262.9 6.5 13.0 21.2 0.0 (0.0) 0.0 (0.0)
Ruminococcaceae 239 | 1471 409 411.0 4.5 16.1 | 38.1 | 0.0 (0.0) 0.0 (0.0)
Faecalibacterium | 141 301 297 T71.7 1.0 7.5 21.4 | 0.0 (0.0) 0.004 (0.0)

Gut microbiome (500k seqgs; 278 subjects)
Neutrality depends on taxonomic level

community state

Linking statistical and ecological theory: Hubbell’s unified 1

neutral theory of biodiversity as a hierarchical Dirichlet process
Keith Harris!, Todd L Parsons?, Umer Z Ijaz®, Leo Lahti*, Ian Holmes®, Christopher Quince®:*

C mMetacommunity and local selection

.

-
o/ L,
L
8l —= i
L= I i-l
L ] \
il
metacommunity environment-driven or random

selection of local community

Bacteroidetes have less immigration than spore-forming Firmicutes

32



Applications (Harris et al. PIEEE 2017)

* Classical tropical trees data set (classical example)
* Human gut microbiome (570,851 sequences; 278 subjects)

Gut microbiome neutrality ?

* Depends on taxonomic level
* Bacteroidetes have lower immigration than the spore-forming Firmicutes

Table 2. Fitting the UNTB-HDP model to human gut microbiota.

Taxa N S T 6 i n; = PN L
Bacteroidetes 231 | 569 | 596 | 1486 | 1.5 | 55 | 13.7 | 0.0 (0.0) | 0.0 (0.0)
Bacteroidaceae 208 | 224 506 51.4 0.7 3.3 7.6 | 0.0 (0.0) 0.03 (0.0)
Bacteroides 208 224 506 51.4 0.7 3.3 7.6 0.0 (0.0) 0.03 (0.0)
Firmicutes 277 | 4770 | 1009 | 1382.3 | 21.4 | 44.8 | 81.0 | 0.0 (0.0) 0.0 (0.0)
Incertac Sedis XIV | 87 | 176 | 264 | 39.2 | 1.7 | 9.8 | 27.5 | 0.0 (0.0) | 0.05 (0.004)
Blautia 87 175 264 38.9 1.6 10.1 | 27.1 | 0.0 (0.0) | 0.06 (0.003)
Lachnospiraceae 164 | 873 248 262.9 6.5 | 13.0 | 21.2 | 0.0 (0.0) 0.0 (0.0)
Ruminococcaceae 239 | 1471 409 411.0 4.5 16.1 | 38.1 | 0.0 (0.0) 0.0 (0.0)
Faecalibacterium | 141 301 297 T1.7 1.0 7.5 21.4 | 0.0 (0.0) 0.004 (0.0)




Novel Covariance-Based Neutrality Test of Time-Series Data
Reveals Asymmetries in Ecological and Economic Systems

Alex D. Washburne [&), Joshua W. Burby, Daniel Lacker

Published: September 30, 2016 ® https://doi.org/10.1371/journal.pcbi.1005124 e >> See the preprint

Linking statistical and ecological theory: Hubbell’s unified 1
neutral theory of biodiversity as a hierarchical Dirichlet process
Keith Harris!, Todd L Parsons?, Umer Z Ijaz®, Leo Lahti*, Ian Holmes®, Christopher Quince%*

1 School of Mathematics and Statistics, University of Sheffield, Sheffield, UK

2 Laboratoire de Probabilités et Modeles Aléatoires, CNRS UMR 7599, UPMC Univ
Paris 06, Paris, France

3 Infrastructure and Environment Research Division, School of Engineering, University of
Glasgow, Glasgow, G12 8LT, UK

4 Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland &
Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands

5 Department of Bioengineering, University of California, Berkeley, California, USA

6 Warwick Medical School, University of Warwick, Coventry, CV4 7TAL, UK

* E-mail: c.quince@warwick.ac.uk



Neutral model Edit

Manage topics

D 62 commits ¥ 1 branch © 0 releases 42 2 contributors
L e ———— ]}

Branch: master ~ New pull request Create new file = Upload files = Find File Clone or download ~

Lei ok Latest commit ca5e9b7 on Jun 1, 2016
mC ok 3 years ago
s Matlab ok 3 years ago
s Python ok 3 years ago
R ok 3 years ago
[ .gitignore ok 3 years ago
[£) README.md ok 3 years ago
README.md s

NMGS

Implementation for the paper on Linking statistical and ecological theory: Hubbell's unified neutral theory of biodiversity as a
hierarchical Dirichlet process by Keith Harris et al.

Look at the C folder for examples. The R and Matlab code is preliminary.

There is also a Python script to simulate samples from the Neutral model



Interaction models

Bistable system . | _f




Growth (G)

av

—=G(WV)—c(V)H

dt

Grass growth
G(V)=gV(L-VIV_)

max

G(V)

Vegetation

Consumption (C)

Noy-Meir 1975
V  :Vegetation
G(V) : Growth per unit time

c(V) : Consumption of vege
H :Sheep

Grass consumption
cV)=c__ (1-e)

max

c(V)H

Vegetation



Equilibrium (Growth ~ Consumption):

Growth (G)
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Frequency

Symmetric Right—skewed

Bimodal
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Alternative (stable) states

State induced by Intrinsic stability:

Diversit

external factors robust to external factors
(a) 4 Allomativesstatesd (b) A Alternative state 1
) E
.gz '§
2 == el
(\ . ] ! Adding/removing 1 )
w community species . >
=~ 1
>\ = Environmehtal change s f Transient
= s change in the
e 7 i environment
£ 227 N
S -, :
) g&
7 \
Alternative state 2 Alternative state 2
. : .
Conditions Conditions
Current Opinion in Microbiology

Environmental or host factor (e.g. body-mass index)
Faust et al. Curr. Op. Microbiol. 2015



Science 14 October 2011: < Prev | Table of Contents | Next >
Vol. 334 no. 6033 pp. 232-235
DOI: 10.1126/science. 1210657

REPORT

Global Resilience of Tropical Forest and Savanna to Critical Transitions

Marina Hirotal. Milena Holmgren;':. Egbert H. Van Nesl. Marten Schef‘ferl
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Fecal transplant induced
ecosystem level state shift -

treatment in C. difficile infected patients.

Efficie

Shift from Bacilli- and Proteobacteria-dominated
state to a healthy state dominated by Bacteroides

Bettenvthygyate producing taxa

d I.IJIU

icst

P<0.001

I
P=0.008
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Metagenomics meets time series analysis: unraveling
microbial community dynamics

Karoline Faust'>°, Leo Lahti*>°, Didier Gonze®”’,

Willem M de Vos**>® and Jeroen Raes':%3
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Data: Vaginal microbiota time series from 32 women. Gajer et al. 2%12



Denaity

e - ™ Multi-stability and the origin of microbial
Interaction models community types

yield more Complex Didier Gonze, Leo Lahti, Jeroen Raes & Karoline Faust B4

dyn am i CS an d p re d i Ct The ISME Journal (2017) 11, 2159-2166 (2017) Received: 06 December 2016
- doi:10.1038/ismej.2017.60 Revised: 28 February 2017
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Inter-group inhibition stronger than intra-
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Stability
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randomness Is essential for the
system dynamics

™

Deterministic vs. stochastic models
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Quantifying resilience & stochasticity
Ornstein-Uhlenbeck Process (OUP) quantifies key | X~ 0 - XDt e
properties of a stable state: e
dX = AN(p — X)dt + odS //*“’””
u=00=02 .
1 4 _‘ A = mean reversion rate
i3 i = long-term mean

=1

O = stochasticity level
S = stochastic process

A

Log abundace

=~ =] [1=]
L L

"Real. pavid et al (2014) | |
0 ! 100 150 -+

Laitinen & Lahti: StanCon 2018 Helsinki & H
Advances in Intelligent Data Analysis XVII, 2018
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Towards a dynamic landscape model of the gut microbiome

Prior info from

background cohorts & . .
pooling evidence across Gradients of change on HITChip PCA landscape

individuals . (1006 cross-sectional + 78 longitudinal profiles)

Density

11 -9 -7 4 -2 0  Data Lahti®t al. Nat. Coram. 2014
Comp.1 Fig. Shetty et al. FEMS Microbiol
Rev.. 2017




High resilience B Low resilience

System state
System state

Time Time

State (t+1)
State (t+1)

State (1) State (1)



Alternative states in specific bacterial groups ?
— Bimodal population distribution Is one indicator

Dialister spp. (N = 1006)
State stability?
Enrichments with diet / health / etc.?

Associations with the overall
ecosystem?

Population frequency

Abundance (Log,,) p ;

423 Jan 2014 | Accepied 9 Jun 201 | Published 8 Jul 2014 op
Tipping elements in the human intestinal
ecosystem

1 :



Bi-stability analysis with many short time series
Non-parametric potential analysis & Fokker-Planck dynamics

System state described by

Dialister spp. —
== a stochastic nrocess:

(N'=78) d> — —U(2)dt + o dW

(2 — _%Eogpiz}atlon density:

b

Subjects

State shifts
Indicate instabi"ty Used in climatology and ecology.

at intermediate earlywarnings R package
| abundances

3 4
Abundance (Logqp)

Lahti et al. Nat. Comm 2014

Hirota et al. Science 2011
I nwosrmAa A+t Al Clirma DAacdr DO9N1ND

Dialister spp.
N = 1006)

.
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Bi-stable taxa:

Prevotella groups
(oralis & melaninogenica)

Dialister spp.

Uncultured Clostridiales I-lI

)
o =
B. fragilis group @
 —
i o)
Uncultured Mollicutes [ -
wm o o "
site >3<r o e o o
Clostridium groups = s Tk T
(difficile, colinum, o = s = T
. o
sensu stricto) 3= ® e e
: o o o ©
Lactobacillus plantarum = 25- B P
+ methanogenic archaea | & 1 | |
-04 -0.2 0.0 0.2

Intermediate stability (r); N=78
Lahti et al. Nat. Comm. 5:4344, 2014



Subject stratification into community types
could reduce complexity

Bistable taxa: Independently varying
Prevotella, Dialister, sub-communities

Clostridiales..
(N=1006)

Ecosystem states are rich combinations

of independent tipping elements ? Lahti et al. Nat. Comm. 2014
Frequency (%) 18 12 _|8 7 62 4 Iil E| |—1| L H A
B. fragilis | | 1 T L
Dialister spp. Jii {1001 | {0 AR O || ||
Prevotella @ | | || | | ‘ } {
LSL@8 S |1 | 11111 M 0TI 0000 AL A |||I|| || ! ||||
UCIT | |

Subjects (n=1006)



Early warning signals




Early warning signals to predict state shifts ?

Early warning signals for a critical transition in a time series generated by a
model of a harvested population”” driven slowly across a bifurcation.

Sa 1 _
IR R e e e e e > S ot F, T
- 8 4 1 i g
Autocorrelation § z =me-_________ B i b s i e
Cﬂb — '.W : %
= - 1 g
- "3 0- % 4, Critical transition
Variance 3 ] iy H‘ I ;i‘ Al t l‘ H' Ii “II ”‘ : T
c T T E"\ T L
Skewness 302 |
0.10-___ g \ . - .
adl X ' - Critical Transitions
FliCkering % /J in Nature and Society
§0.65 fo ' i ;
Critical Slowing down Increasing harvest rate over time —3»

M Scheffer et al. Nature 461, 53-59 (2009) doi:10.1038/nature08227

CRAN: earlywarnings R package
V. Dakos & L. Lahti

Marten Scheffer




recovery time after a temporal perturbation

underexploited

overexploited

Biomass (X)
s

'S

o
15

2 2.5
Grazing rate (c)

High ecological resilience

Low ecological resilience

8.5 6
',-’"‘\ . . e,
5.8“ ‘h‘i / '&__#--—;-7'
8 | . .‘ - { w®
? “.M ’_’.‘"ﬁ;\; _.y._‘.ﬂ-e: "I’ - H
5 . il
e | j 5.6 | ¥, /‘
E? 5 W i | Pl
S | 5.4 ,’/
o | &‘
7 1
5.2
6.5 * 5 +
10 20 30 40 50 60 0 10 20 30 a0 50 60
Time Time

REVIEW

Anticipating Critical Transitions

Marten Scheffer'2”, Stephen R. Carpenter’, Timothy M. Lenton’, Jordi Bascompte?, William BrockS, ...
+ See all authors and affiliations
Science 19 Oct 2012:

Vol. 338, Issue 6105, pp. 344-348
DOI: 10.1126/science.1225244
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AR(1) coeff residuals
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Slowing down as an early warning signal
for abrupt climate change

Vasilis Dakos, Marten Scheffer, Egbert H. van Nes, Victor Brovkin, Vladimir Petoukhov,
and Hermann Held

PNAS September 23, 2008 105 (38) 14308-14312; https://doi.org/10.1073/pnas.0802430105
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Time points are dependent

b

Fig. 2: Bayesian graph representation of the hierarchical OU process. Hyperpa-
rameters are denoted with ¢.
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Model with independent time points
Dirichlet-Multinomial: no memory, no dependence
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Time points depend (only) on the previous state
Neutral model, Lotka-Volterra & many interaction models

® ® ® ®

1000 2000 3000 4000 5000 ,\\, //

Generation

Abundance (%)
o ~

N
a

o

228 = Xl X)) — keX)



Memory: past trajectories influencing future choices?



Periodicity
Hurst exponent quantifies periodicity and persisting trends

Alphaproteobacteria (316468) Gammaproteobacteria (8407 Sinobacteraceae (311213)
2 -~
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<C << <C
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Faust et al. 2015
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Chaos

Lyapunov exponent quantifies chaos

Sinobacteraceae (311213)
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How we choose which model to apply?

_:_____j__:j_.-_-——-——:——'_'_":_-_'

R%=0.06 REXTHOR, THE DOG-BEARER

T DONT TRUST LINEAR REGRESSIONS WHEN ITS HARDER
o GUESS THE DIRECTION OF THE CORRELATION FROM THE
SCATTER PLOT THAN TO FIND NELJ CONSTELLATIONS ON 1T

68



Species Interactions S
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“Colors of noise” hint at ecological mechanisms

Signatures of ecological processes in () et

microbial community time series

Karoline Faust' '®, Franziska Bauchingerz, Bé&atrice Larcn:hes, Sophie de Buyl“'S, Leo Lahti "‘5'?_ Alex D. Washburnea'g,
Didier Gonze™'? and Stefanie Widder! 123"

Longitudinal sampling - =
N /WhKﬂOBETUﬁW

Noise types Pink nOiSe . Time dependence

Fourier transform
of abundance changes

1. Temporal
data structure

white noise

Temporally Brown nOiSE—> NEUtraIity

= unstructured
2. Interaction [ Neutrality test processes

i Community-wide
potential SENn J
l ! - Bl-aelen-e-l-s-e—_)—l-n-te-met-l-e- 1 H [«
positive negative S

Neutral processes
Niche dynamics

colored noise

-

3. Ecological

s
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Interaction prediction
System parameterization 0 50 s 0 150

Quantitative simulation



“Colors of noise” characterize time series,
prodiving an alternative testing scheme

. | L [No time structure ]
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o | | | | | 1
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http://www.scholarpedia.org/article/1/f _noise



Noise type percentages o

8 &5 g &8 8

sadA) asioN

Distinct noise profiles of
ecological processes
confirmed in simulations

Pink noise - Time dependence

Brown noise -~ Neutrality

\Blaek—neisetrmwmeﬁens /




Microbial communities as dynamical systems
Didiel

r Gonze !

Key sources of microbial ecosystem variation

External
perturbations
(push & pulse)

Internal dynamics
and multi-stability

Immigration
Stochasticity

Memory

2=, Katharine Z Coyte > 4, Leo Lahti 5 © 7, Karoline Faust

5=

Denaity

a Density landscape

PCoA 1

C metacommunity and local selection

*
= I
| | - |
@ " /
£ ®
= L
é 1l
1
metacommunity environment-driven or random

selection of local community

b continuous response to environment

community state

-

I'm

O\l

environment

o Multi-stability and hysteresis

community state

enviranment
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