Chemical Engineering 160/260

Lecture 12 - Molecular Engineering with Block Copolymers
Molecular Engineering with Block Copolymers

Objective

To illustrate the structural complexity and the possibility for molecular control of organization in block copolymers.
Outline

- Block copolymer architecture
- Phase diagram for melts
- Crystallization
- Micellization
- Experimental methods for study of block copolymers
Motivation

Compositional Contrast
- Hydrophilic/hydrophobic
- Polar/non-polar
- Charged/uncharged
- Linear/branched

Morphological Contrast
- Amorphous/crystalline
- Glassy/rubbery
- Swollen/contracted

Conformational Contrast
- Rigid/flexible
- Oriented/unoriented
- Long/short

Functional Contrast
- Reactive/unreactive
- Photoresponsive/passive
- Electroactive/passive
- Conducting/nonconducting
- Biocompatible/neutral

MOLECULAR DESIGN WITH BLOCK COPOLYMERS
Motivation: Nanoscience and Nanotechnology

Block copolymers may be the optimum nanomaterials for nanotechnology, either for their intrinsic properties as self-organized assemblies or for their ability to template other organic, inorganic, semiconducting, metallic, or biologically relevant materials.
Block Copolymer Architectures

Linear
- AB Diblock
- ABA Triblock

Star
- A₂B 3-miktoarm
- ABC 3-miktoarm
- A₂B₂ 4-miktoarm
- A₃B 4-miktoarm
- (AB)₄ 4-miktoarm
Block Copolymer Melts

High temperature: homogeneous mixing
Low temperature: demixing

The key parameter is χN

$\chi = \text{Flory-Huggins interaction parameter}$
Contains a significant enthalpic component and is governed by incompatibility of the monomers

$N = \text{copolymer degree of polymerization}$
Reflects the N-dependent translational and configurational entropy
Microphase Separation

Macroscopic phase separation is prevented by the covalent bond between the blocks.

Order-Disorder Transition

Creation of an interphase boundary region

Microphase separation takes place on the nanometer scale.
Order-Disorder Transition for a Symmetric Diblock Copolymer

For a symmetric (f = 0.5) diblock copolymer with equal segment sizes, the critical order-disorder transition is predicted by mean field theory to occur at \((\chi N)_{\text{ODT}} = 10.5\).

The ordered phase that is formed will depend upon the copolymer composition, which determines the curvature of the interface between blocks and their packing density.
Phase Separation Regimes

Weak segregation regime

\[\chi N \approx 10 \]
Composition profile is sinusoidal about a mean value.

Intermediate segregation regime

\[\chi N \approx 10 - 100 \]
Profile sharpens with interphase between blocks becoming narrower.

Strong segregation regime

\[\chi N > 100 \]
Domains contain essentially pure components.
Phase Diagram

- **Body Centered Cubic**
- **Hexagonal**
- **Lamellar**
- **Hexagonal**
- **Body Centered Cubic**
- **Gyroid**

Variables:
- χ_N
- f

States:
- Disorder
Block Copolymers in the Solid State

The structure in block copolymer melts is usually trapped upon vitrification (formation of a glassy state). If one block can crystallize, a lamellar structure usually forms, but this may be a nonequilibrium state.

In some cases, parallel folding is observed.
Crystallization of Block Copolymers

Whitmore and Noolandi

- Self-consistent mean field theory applied to diblocks where one block is amorphous and the other one is crystallizable.
- Amorphous regions were modeled as flexible chains, and the crystalline regions as folded chains.
Crystallization of Block Copolymers

Lamellar thicknesses:

Amorphous:

\[l_a \propto N_a^{7/12} \]

Crystalline:

\[l_c \propto N_c N_a^{-5/12} \]
Block Copolymers as Blend Compatibilizers

Phase separation

Compatibilization
Micellization

- Forms upon placement of a block copolymer in a selective solvent.
- Typically spherical with aggregation numbers 30 - 100.
- Critical micelle concentration, temperature, and pressure

Example: Polystyrene-poly(ethylene propylene) in decane
Gels have a finite yield stress; i.e. they are Bingham fluids.
Techniques for Studying Block Copolymers

Transmission Electron Microscopy
Most direct method for study of morphology in the melt and solid state but sample preparation technique is complex and critical. Misidentification of morphology can arise due to inspection of only a projection.

Light Microscopy
Examine spherulitic structures of crystalline blocks in the solid and existence of lamellar and hexagonal-packed cylindrical micellar phases.

Differential Scanning Calorimetry
Follow crystallization and glass transition as well as micellization and gelation in block copolymer solutions
Techniques for Studying Block Copolymers

Small-angle Neutron and X-ray Scattering
Excellent methods because the length scales probed are typical of block copolymer microstructures (1 - 100 nm).

Small-angle Light Scattering
Weight-average molecular weight of block copolymers and of micelles in solution.

Dynamic Light Scattering
Follow diffusion in polymer solutions and relaxation modes in block copolymer melts.

Rheology
Locate the ODT through sharp decreases in storage and loss moduli and sol-gel transitions in concentrated block copolymer solutions.
Techniques for Studying Block Copolymers

X-ray and Neutron Reflectivity
Specular reflectivity measurements, coupled with an appropriate model, yield thicknesses of ultrathin films of block copolymer melts and block copolymers at a liquid-liquid interface.

Atomic Force Microscopy
Chemical force and microscopic friction measurements of block copolymers in ultrathin films.