Key Concepts in Advanced Probability

Peter Glynn (glynn@stanford.edu)

April 8, 2007

1 Expectations

The expectation $E[X]$ of any non-negative random variable X can always be defined uniquely; the expectation may be either finite or infinite. If X is of arbitrary sign, put

$$X^+ = \max(X, 0) \quad X^- = \max(-X, 0)$$

$E[X]$ is said to exist if at least one of $E[X^+]$ and $E[X^-]$ are finite, in which case we put $E[X] \triangleq E[X^+] - E[X^-]$. If $E[|X|] < \infty$ then X is said to be integrable.

If $X = g(Y)$ (for $g : \mathbb{R} \to \mathbb{R}$ and Y a real-valued r.v.), then $E[X]$ can be computed as a Stieljes integral:

$$E[X] = \int_{\mathbb{R}} g(y) F(dy),$$

where F is the distribution function of the r.v. Y given by $F(y) = P\{Y \leq y\}$. Note that if Y has a density f, then

$$E[X] = \int_{-\infty}^{\infty} g(y) f(y) dy,$$

whereas if Y has a probability mass function p then

$$E[X] = \sum_y g(y) p(y).$$

2 Useful Inequalities

For $p \geq 1$, put

$$\|X\|_p \triangleq E[|X|^p]^{1/p}.$$

Then, we have

$$\|X_1 + \ldots + X_n\|_p \leq \|X_1\|_p + \ldots + \|X_n\|_p$$

(Minkowski’s inequality), and

$$\|X_1 X_2\|_1 \leq \|X_1\|_p \|X_2\|_q$$

for $1/p + 1/q = 1$ with $p, q \geq 1$ (Hölder’s inequality). The special case with $p = q = 2$, namely

$$\|X_1 X_2\|_1 \leq \|X_1\|_2 \|X_2\|_2,$$

is called the Cauchy-Schwarz inequality.
If X is nonnegative,
\[P\{X > x\} \leq x^{-1} E[X] \]
for $x > 0$; this is called Markov’s inequality. If $E[W^2] < \infty$, then we can set $X = (W - E[W])^2$ to yield
\[P\{|W - E[W]| > w\} \leq \text{var}(W)/w^2; \]
this special case is called Chebyshev’s inequality. If $E[\exp(\theta W)] < \infty$, then we can set
\[X = (W - E[W])^2 \]
to yield
\[P\{|W - E[W]| > w\} \leq \text{var}(W)/w^2; \]
Hence, we obtain the exponential inequality
\[P\{W \geq w\} \leq \inf_{\theta \geq 0} \exp(-\theta w) E[\exp(\theta W)]. \]

3 Weak Convergence

Let $(X_n : 1 \leq n \leq \infty)$ be a sequence of finite real-valued random variables. Then, X_n converges weakly to X_∞ (also known as convergence in distribution) if
\[P\{X_n \leq x\} \to P\{X_\infty \leq x\} \]
as $n \to \infty$ at each x at which $P\{X_\infty \leq \cdot\}$ is continuous. We use the notation
\[X_n \Rightarrow X_\infty \]
(or, equivalently, $P_n \Rightarrow P_\infty$ where $P_n(\cdot) = P\{X_n \in \cdot\}$) to denote weak convergence.

Weak convergence can be re-formalized in several equivalent ways.

Theorem 1. Let $(X_n : 1 \leq n \leq \infty)$ be a sequence of finite real-valued random variables. Then, the following are equivalent:

i.) $X_n \Rightarrow X_\infty$ as $n \to \infty$;

ii.) For each bounded and continuous $f : \mathbb{R} \to \mathbb{R}$, $E[f(X_n)] \to E[f(X_\infty)]$ as $n \to \infty$;

iii.) For each bounded and continuously differentiable $f : \mathbb{R} \to \mathbb{R}$, $E[f(X_n)] \to E[f(X_\infty)]$ as $n \to \infty$;

iv.) There exists a probability space supporting a sequence of r.v.’s $(X_n^* : 1 \leq n \leq \infty)$ for which $X_n^* \overset{D}{=} X_n$ for $1 \leq n \leq \infty$ (where $\overset{D}{=} \text{ denotes equality in distribution}$) and on which $X_n^* \to X_\infty^*$ a.s. as $n \to \infty$.

A key result in the theory of weak convergence is the fact that weak convergence is preserved under continuous mappings (This result is known as the “continuous mapping principle”.).

Proposition 1: For $g : \mathbb{R} \to \mathbb{R}$, let $D(g) = \{x : g(\cdot) \text{is discontinuous at } x\}$. Suppose that $X_n \Rightarrow X_\infty$ as $n \to \infty$, where $P\{X_\infty \in D(g)\} = 0$. Then,
\[g(X_n) \Rightarrow g(X_\infty) \]
as $n \to \infty$.

2
4 Convergence in Probability

Let \((X_n : 1 \leq n \leq \infty)\) be a sequence of finite real-valued random variables. Then, \(X_n\) converges in probability to \(X_\infty\) if for each \(\varepsilon > 0\),

\[
P\{|X_n - X_\infty| > \varepsilon\} \to 0
\]
as \(n \to \infty\). We use the notation

\[
X_n \xrightarrow{p} X_\infty
\]
to denote convergence in probability. Note that convergence in probability involves the joint distribution of \((X_n, X_\infty)\) whereas weak convergence concerns only the (marginal) distribution of \(X_n\).

If \(X_n \xrightarrow{p} X_\infty\) as \(n \to \infty\), then \(X_n \Rightarrow X_\infty\) as \(n \to \infty\). A partial converse also exists. If \(X_n \Rightarrow X_\infty\) as \(n \to \infty\) where \(X_\infty\) is deterministic (i.e. \(P\{X_\infty = c\} = 1\) for some \(c \in \mathbb{R}\)), then \(X_n \xrightarrow{p} X_\infty\) as \(n \to \infty\).

Suppose that \(X_n \Rightarrow X_\infty\) as \(n \to \infty\) and \(Y_n \Rightarrow Y_\infty\) as \(n \to \infty\). Weak convergence and convergence in probability extend in the obvious way to \(\mathbb{R}^d\) valued random variables. One might hope that \((X_n, Y_n) \Rightarrow (X_\infty, Y_\infty)\) as \(n \to \infty\). This generally is false. However:

- If \(X_n \xrightarrow{p} X_\infty\) as \(n \to \infty\) and \(Y_n \xrightarrow{p} Y_\infty\) as \(n \to \infty\) (with the \(X_n\)’s and the \(Y_n\)’s defined on a common probability space) then \((X_n, Y_n) \xrightarrow{p} (X_\infty, Y_\infty)\) as \(n \to \infty\).
- If \(X_n \Rightarrow X_\infty\) as \(n \to \infty\) and \(Y_n \xrightarrow{p} c\) as \(n \to \infty\) (for \(c \in \mathbb{R}\)) then \((X_n, Y_n) \Rightarrow (X_\infty, c)\).

It follows from the continuous mapping principle for \(\mathbb{R}^2\)-valued random variables that if \(X_n \Rightarrow X_\infty\) as \(n \to \infty\) and \(Y_n \Rightarrow c\) as \(n \to \infty\), then

\[
X_n + Y_n \Rightarrow X_\infty + c,
\]
\[
X_n Y_n \Rightarrow cX_\infty,
\]
as \(n \to \infty\).

5 Convergence in \(p\)'th Mean

For \(p > 0\) put

\[
\|X\|_p = E^{1/p}|X|^p.
\]

We say that \(X_n\) converges to \(X_\infty\) in \(p\)'th mean if

\[
\|X_n - X_\infty\|_p \to 0
\]
as \(n \to \infty\). Markov’s inequality implies that if \(X_n\) converges to \(X_\infty\) in \(p\)'th mean, then \(X_n \xrightarrow{p} X_\infty\) as \(n \to \infty\),

For \(p \geq 1\), the vector space \(L^p = \{X : \|X\| < \infty\}\) is a Banach space equipped with norm \(\|\cdot\|_p\). (Minkowski’s inequality is a statement of the “triangle inequality” in \(L^p\).) For \(p = 2\), \(L^2\) is a Hilbert space equipped with inner product \(\langle X, Y \rangle = E[XY]\).

6 Almost Sure Convergence

Let \((X_n : 1 \leq n \leq \infty)\) be a sequence of real-valued random variables defined on a common probability space. We say that \(X_n\) converges almost surely to \(X_\infty\) as \(n \to \infty\) if \(P\{A\} = 1\), where

\[
A = \{\omega : X_n(\omega) \to X_\infty(\omega)\ \text{as} \ n \to \infty\}.
\]
Hence, almost sure convergence is a statement about the “infinite dimensional” event A. Note that A is the collection of sample outcomes ω on which the numerical sequence $X_n(\omega)$ converges to $X_\infty(\omega)$ as $n \to \infty$.

Almost sure convergence has alternative names: Convergence with probability one, Convergence almost everywhere, Convergence almost certainly. Almost sure convergence implies convergence in probability.

7 Relationship between Types of Convergence

<table>
<thead>
<tr>
<th>Almost Sure Convergence</th>
<th>Convergence in p'th mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Convergence in Probability</td>
</tr>
<tr>
<td></td>
<td>Weak Convergence</td>
</tr>
</tbody>
</table>

8 Interchanging Limits and Expectations

If $X_n \to X_\infty$ a.s. (i.e. X_n converges to X_∞ almost surely), it need not follow that $E[X_n] \to E[X_\infty]$ as $n \to \infty$. For example, if U is uniform on $[0,1]$ and

$$X_n = nI(U \leq 1/n),$$

then $X_n \to 0$ a.s. as $n \to \infty$, but $E[X_n] = 1$ for $n \geq 1$.

The interchange of limit and expectation can be verified under certain conditions:

Dominated Convergence Theorem (DCT)

Suppose that $X_n \to X_\infty$ a.s. as $n \to \infty$. If there exists an integrable r.v. Y for which

$$|X_n(\omega)| \leq Y(\omega)$$

for $n \geq 1$, then $E[X_n] \to E[X_\infty]$ as $n \to \infty$ (where $E[X_\infty]$ is necessarily finite).

The special case where $Y = c$ a.s. (for some constant $c \in \mathbb{R}$) is known as the **Bounded Convergence Theorem**.

Monotone Convergence Theorem (MCT)

Suppose that $(X_n : 1 \leq n \leq \infty)$ is a sequence of non-negative r.v.’s for which $X_n \to X_\infty$ a.s. as $n \to \infty$. If the sequence $(X_n : 1 \leq n \leq \infty)$ is monotone in the sense that

$$X_n(\omega) \leq X_{n+1}(\omega)$$

for $n \geq 0$ and $\omega \in \Omega$, then $E[X_n] \to E[X_\infty]$ as $n \to \infty$ (where $E[X_\infty]$ may be finite or infinite).

Another useful result is the following: **Fatou’s Lemma**

Suppose that $(X_n : 1 \leq n \leq \infty)$ is a sequence of non-negative r.v.’s. Then

$$E\left[\liminf_{n \to \infty} X_n\right] \leq \liminf_{n \to \infty} E[X_n].$$
The following extension to the Dominated Convergence Theorem is also sometimes useful. We say that a collection \((X_\lambda : \lambda \in \Lambda) \) of random variables is uniformly integrable if for each \(\varepsilon > 0 \), there exists \(x = x(\varepsilon) \) such that

\[
\sup_{\lambda \in \Lambda} E[|X_\lambda|I(|X_\lambda| > x)] < \varepsilon
\]

If \(X_n \Rightarrow X_\infty \) as \(n \to \infty \) where \((X_n : 1 \leq n < \infty) \) is uniformly integrable, then \(E[X_n] \to E[X_\infty] \) as \(n \to \infty \).

Finally, one key property of expectations is its linearity. In particular, if \(X_1, \ldots, X_m \) are integrable r.v.’s, then

\[
E \left[\sum_{i=1}^{m} X_i \right] = \sum_{i=1}^{m} E[X_i].
\]

Extending this linearity to the case where \(m = \infty \) involves taking a limit. As for the case of interchanging a limit and an expectation, the extension to \(m = \infty \) is not always valid. Fubini’s theorem provides a sufficient condition.

Theorem 2. Fubini’s Theorem Let \((X_\lambda : \lambda \in \Lambda) \) be a collection of r.v.’s and let \(\mu(\cdot) \) be a non-negative measure on \(\Lambda \).

i.) If \(X(\lambda) \) is non-negative for \(\lambda \in \Lambda \), then

\[
E \int_{\Lambda} X(\lambda)\mu(d\lambda) = \int_{\Lambda} EX(\lambda)\mu(d\lambda).
\]

ii.) If \(X(\lambda) \) is of mixed sign and

\[
\int_{\Lambda} E[|X(\lambda)|]\mu(d\lambda) < \infty,
\]

then

\[
E \left[\int_{\Lambda} X(\lambda)\mu(d\lambda) \right] = \int_{\Lambda} E[X(\lambda)]\mu(d\lambda).
\]

Putting \(\mu = \) counting measure on the integers yields the conclusion that

\[
E \left[\sum_{i=1}^{\infty} X_i \right] = \sum_{i=1}^{\infty} E[X_i]
\]

if the \(X_i \)’s are either non-negative or satisfy

\[
\sum_{i=1}^{\infty} E[|X_i|] < \infty.
\]

9 Transforms

Transform methods can be a useful approach for establishing weak convergence of real-valued random variables, as well as for dealing with sums of independent random variables (i.e. convolutions).

The characteristic function of a random variable \(X \) is the function defined by

\[
c(t) = E[\exp(itX)] = \int_{\mathbb{R}} e^{itx} P\{X \in dx\}
\]

The characteristic function exists and is finite-valued for every r.v. \(X \). When \(X \) has a density \(f \), the characteristic function is just the Fourier transform of \(f \) (up to a constant multiple).
Inversion Theorem Let $c(\cdot)$ be the characteristic function of a r.v. X. Then, for $a < b$,

$$P \{ X \in (a, b) \} + \frac{1}{2} P \{ X = a \} + \frac{1}{2} P \{ X = b \} = \lim_{u \to \infty} \frac{1}{2\pi} \int_{-u}^{u} e^{-ita} - e^{-itb} it c(t) dt.$$

If $c(\cdot)$ is integrable over $(-\infty, \infty)$, then X has a continuous density f given by

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} c(t) dt.$$

It follows from the inversion theorem that if two r.v.’s X and Y have the same characteristic function, then $X \overset{D}{=} Y$.

The following result establishes the connection between weak convergence and convergence of characteristic functions.

Theorem 3. Let $(X_n : 1 \leq n \leq \infty)$ be a sequence of finite real-valued random variables, and put $c_n(t) = E[\exp(itX_n)]$ for $1 \leq n \leq \infty$.

i.) If $X_n \Rightarrow X_\infty$ as $n \to \infty$, then $c_n(\cdot) \to c_\infty(\cdot)$ uniformly in every finite interval.

ii.) Suppose that for each $t \in \mathbb{R}$, $c_n(t) \to c(t)$ as $n \to \infty$, where $c(\cdot)$ is continuous at $t = 0$. Then, $c(\cdot)$ is the characteristic function of a r.v. Y and $X_n \Rightarrow Y$ as $n \to \infty$.