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Value Functions as Vectors

Assume State pace S consists of n states: {s1, s2, . . . , sn}
Assume Action space A consists of m actions {a1, a2, . . . , am}
This exposition extends easily to continuous state/action spaces too

We denote a stochastic policy as π(a|s) (probability of “a given s”)

Abusing notation, deterministic policy denoted as π(s) = a

Consider n-dim space Rn, each dim corresponding to a state in S
Think of a Value Function (VF) v: S → R as a vector in this space

With coordinates [v(s1), v(s2), . . . , v(sn)]

Value Function (VF) for a policy π is denoted as vπ : S → R
Optimal VF denoted as v∗ : S → R such that for any s ∈ S,

v∗(s) = max
π

vπ(s)
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Some more notation

Denote Ra
s as the Expected Reward upon action a in state s

Denote Pa
s,s′ as the probability of transition s → s ′ upon action a

Define
Rπ(s) =

∑
a∈A

π(a|s) · Ra
s

Pπ(s, s ′) =
∑
a∈A

π(a|s) · Pa
s,s′

Denote Rπ as the vector [Rπ(s1),Rπ(s2), . . . ,Rπ(sn)]

Denote Pπ as the matrix [Pπ(si , si ′)], 1 ≤ i , i ′ ≤ n

Denote γ as the MDP discount factor
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Bellman Operators Bπ and B∗

We define operators that transform a VF vector to another VF vector

Bellman Policy Operator Bπ (for policy π) operating on VF vector v:

Bπv = Rπ + γPπ · v

Bπ is a linear operator with fixed point vπ, meaning Bπvπ = vπ
Bellman Optimality Operator B∗ operating on VF vector v:

(B∗v)(s) = max
a
{Ra

s + γ
∑
s′∈S
Pa
s,s′ · v(s ′)}

B∗ is a non-linear operator with fixed point v∗, meaning B∗v∗ = v∗
Define a function G mapping a VF v to a deterministic “greedy”
policy G (v) as follows:

G (v)(s) = arg max
a
{Ra

s + γ
∑
s′∈S
Pa
s,s′ · v(s ′)}

BG(v)v = B∗v for any VF v (Policy G (v) achieves the max in B∗)
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Contraction and Monotonicity of Operators

Both Bπ and B∗ are γ-contraction operators in L∞ norm, meaning:

For any two VFs v1 and v2,

‖Bπv1 − Bπv2‖∞ ≤ γ‖v1 − v2‖∞

‖B∗v1 − B∗v2‖∞ ≤ γ‖v1 − v2‖∞
So we can invoke Contraction Mapping Theorem to claim fixed point

We use the notation v1 ≤ v2 for any two VFs v1, v2 to mean:

v1(s) ≤ v2(s) for all s ∈ S

Also, both Bπ and B∗ are monotonic, meaning:

For any two VFs v1 and v2,

v1 ≤ v2 ⇒ Bπv1 ≤ Bπv2

v1 ≤ v2 ⇒ B∗v1 ≤ B∗v2
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Policy Evaluation

Bπ satisfies the conditions of Contraction Mapping Theorem

Bπ has a unique fixed point vπ, meaning Bπvπ = vπ

This is a succinct representation of Bellman Expectation Equation

Starting with any VF v and repeatedly applying Bπ, we will reach vπ

lim
N→∞

BN
π v = vπ for any VF v

This is a succinct representation of the Policy Evaluation Algorithm
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Policy Improvement

Let πk and vπk denote the Policy and the VF for the Policy in
iteration k of Policy Iteration
Policy Improvement Step is: πk+1 = G (vπk), i.e. deterministic greedy
Earlier we argued that B∗v = BG(v)v for any VF v. Therefore,

B∗vπk = BG(vπk )
vπk = Bπk+1

vπk (1)

We also know from operator definitions that B∗v ≥ Bπv for all π, v

B∗vπk ≥ Bπkvπk = vπk (2)

Combining (1) and (2), we get:

Bπk+1
vπk ≥ vπk

Monotonicity of Bπk+1
implies

BN
πk+1

vπk ≥ . . .B
2
πk+1

vπk ≥ Bπk+1
vπk ≥ vπk

vπk+1 = lim
N→∞

BN
πk+1

vπk ≥ vπk
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Policy Iteration

We have shown that in iteration k + 1 of Policy Iteration, vπk+1 ≥ vπk
If vπk+1 = vπk , the above inequalities would hold as equalities

So this would mean B∗vπk = vπk
But B∗ has a unique fixed point v∗

So this would mean vπk = v∗

Thus, at each iteration, Policy Iteration either strictly improves the
VF or achieves the optimal VF v∗

Ashwin Rao (Stanford) Bellman Operators January 15, 2019 9 / 11



Value Iteration

B∗ satisfies the conditions of Contraction Mapping Theorem

B∗ has a unique fixed point v∗, meaning B∗v∗ = v∗

This is a succinct representation of Bellman Optimality Equation

Starting with any VF v and repeatedly applying B∗, we will reach v∗

lim
N→∞

BN
∗ v = v∗ for any VF v

This is a succinct representation of the Value Iteration Algorithm
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Greedy Policy from Optimal VF is an Optimal Policy

Earlier we argued that BG(v)v = B∗v for any VF v. Therefore,

BG(v∗)v∗ = B∗v∗

But v∗ is the fixed point of B∗, meaning B∗v∗ = v∗. Therefore,

BG(v∗)v∗ = v∗

But we know that BG(v∗) has a unique fixed point vG(v∗). Therefore,

v∗ = vG(v∗)

This says that simply following the deterministic greedy policy G (v∗)
(created from the Optimal VF v∗) in fact achieves the Optimal VF v∗

In other words, G (v∗) is an Optimal (Deterministic) Policy
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