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Value Functions as Vectors

Assume State pace S consists of n states: {s1,s,...,5n}

Assume Action space A consists of m actions {a1, a2,...,am}

This exposition extends easily to continuous state/action spaces too
We denote a stochastic policy as 7(a|s) (probability of “a given s")
Abusing notation, deterministic policy denoted as w(s) = a
Consider n-dim space R"”, each dim corresponding to a state in S
Think of a Value Function (VF) v: & — R as a vector in this space
With coordinates [v(s1),v(s2),...,v(sn)]

Value Function (VF) for a policy 7 is denoted as v : S — R
Optimal VF denoted as v, : S — R such that for any s € S,

vi(s) = max v(s)
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Some more notation

@ Denote RZ as the Expected Reward upon action a in state s
@ Denote 77;5, as the probability of transition s — s’ upon action a
@ Define
Rx(s) = m(als)- R2
acA
P,(s,s') = Z m(als) - Py

acA
@ Denote R as the vector [Rz(s1), Rz(s2), ..., Rx(sn)]
@ Denote P as the matrix [Pr(s;,s/)],1 <i,i" <n
@ Denote v as the MDP discount factor
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Bellman Operators B, and B,

We define operators that transform a VF vector to another VF vector
Bellman Policy Operator B, (for policy 7) operating on VF vector v:

B,v=R;+7P,-v

B is a linear operator with fixed point v, meaning B, v, = v,

Bellman Optimality Operator B, operating on VF vector v:
i a a . /
(B.v)(s) = max{Rs + v > Piyv(s)}

s'eS

B. is a non-linear operator with fixed point v,, meaning B,v, = v,

Define a function G mapping a VF v to a deterministic “greedy”
policy G(v) as follows:

G(v)(s) = argmax{RZ+~ > _ P2, -v(s')}
a s'eS
e BV = B.v for any VF v (Policy G(v) achieves the max in B.)
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Contraction and Monotonicity of Operators

@ Both B, and B, are ~v-contraction operators in L> norm, meaning:
@ For any two VFs vy and vy,

[Brvi — Brvalloo < 7[[v1 — V2o

||B*V1 - B*V2||oo < ’7”"1 - V2||oo
@ So we can invoke Contraction Mapping Theorem to claim fixed point
@ We use the notation v < vy for any two VFs v, vy to mean:

vi(s) < wvy(s) forallse S

@ Also, both B, and B, are monotonic, meaning:
@ For any two VFs vy and vy,

vi <vy = Brvi < B;vp

vi <v2 = B,v; <B.vy

Ashwin Rao (Stanford) Bellman Operators January 15, 2019 6/11



Policy Evaluation

B, satisfies the conditions of Contraction Mapping Theorem
B, has a unique fixed point v, meaning B,v, = v,

This is a succinct representation of Bellman Expectation Equation

Starting with any VF v and repeatedly applying B, we will reach v,

lim BNv = v, for any VF v
N—ro0

@ This is a succinct representation of the Policy Evaluation Algorithm
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Policy Improvement

@ Let mx and v, denote the Policy and the VF for the Policy in
iteration k of Policy Iteration

e Policy Improvement Step is: w41 = G(vy, ), i.e. deterministic greedy
o Earlier we argued that B.v = Bg(,)v for any VF v. Therefore,

B.v, = BG(ka)Vﬂk = Br, Vr, (1)
@ We also know from operator definitions that B,v > B v for all w,v

B.vy, > B Vv, =V, (2)
e Combining (1) and (2), we get:
Br .V = Vi,
@ Monotonicity of By, , implies
BQ’kHka > Bfrkﬂv7r > B Ve = Vi
Vi, = I|m Bﬁkﬂv7rk > Vo,
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Policy lteration

We have shown that in iteration k + 1 of Policy Iteration, vz, , > v,
If vr, ., = Vr,, the above inequalities would hold as equalities

So this would mean B,vy, = v,

But B. has a unique fixed point v,

So this would mean v, = v,

Thus, at each iteration, Policy lteration either strictly improves the
VF or achieves the optimal VF v,
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Value lteration

B. satisfies the conditions of Contraction Mapping Theorem
B. has a unique fixed point v,, meaning B,v, = v,

This is a succinct representation of Bellman Optimality Equation

Starting with any VF v and repeatedly applying B,, we will reach v,

lim BNv = v, for any VF v
N—oo

@ This is a succinct representation of the Value Iteration Algorithm
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Greedy Policy from Optimal VF is an Optimal Policy

o Earlier we argued that Bg(,)v = B.v for any VF v. Therefore,
BG(V*)V* = B..v,
@ But v, is the fixed point of B, meaning B,v, = v.. Therefore,
BG(v.)vs = Vs
@ But we know that B(y,) has a unique fixed point vg(y,). Therefore,
Vi = VG(v,)

@ This says that simply following the deterministic greedy policy G(v.)
(created from the Optimal VF v,.) in fact achieves the Optimal VF v,

@ In other words, G(v.) is an Optimal (Deterministic) Policy
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