Understanding (Exact) Dynamic Programming through Bellman Operators

Ashwin Rao

ICME, Stanford University

January 15, 2019

Overview

- 2 Bellman Operators
- 3 Contraction and Monotonicity
 - Policy Evaluation
- 5 Policy Iteration
- 6 Value Iteration
 - Policy Optimality

Value Functions as Vectors

- Assume State pace S consists of n states: $\{s_1, s_2, \ldots, s_n\}$
- Assume Action space A consists of m actions $\{a_1, a_2, \ldots, a_m\}$
- This exposition extends easily to continuous state/action spaces too
- We denote a stochastic policy as $\pi(a|s)$ (probability of "a given s")
- Abusing notation, deterministic policy denoted as $\pi(s) = a$
- Consider *n*-dim space \mathbb{R}^n , each dim corresponding to a state in S
- Think of a Value Function (VF) \mathbf{v} : $\mathcal{S} \to \mathbb{R}$ as a vector in this space
- With coordinates $[\mathbf{v}(s_1), \mathbf{v}(s_2), \dots, \mathbf{v}(s_n)]$
- Value Function (VF) for a policy π is denoted as $\mathbf{v}_{\pi} : S \to \mathbb{R}$
- Optimal VF denoted as $\mathbf{v}_*:\mathcal{S} o \mathbb{R}$ such that for any $s \in \mathcal{S}$,

$$\mathbf{v}_*(s) = \max_{\pi} \mathbf{v}_{\pi}(s)$$

- Denote \mathcal{R}_s^a as the Expected Reward upon action a in state s
- Denote $\mathcal{P}^a_{s,s'}$ as the probability of transition $s \to s'$ upon action a Define

$$\mathsf{R}_{\pi}(s) = \sum_{\mathsf{a} \in \mathcal{A}} \pi(\mathsf{a}|s) \cdot \mathcal{R}^{\mathsf{a}}_{s}$$

$$\mathsf{P}_{\pi}(s,s') = \sum_{{\sf a} \in \mathcal{A}} \pi({\sf a}|s) \cdot \mathcal{P}^{\sf a}_{s,s'}$$

- Denote \mathbf{R}_{π} as the vector $[\mathbf{R}_{\pi}(s_1), \mathbf{R}_{\pi}(s_2), \dots, \mathbf{R}_{\pi}(s_n)]$
- Denote \mathbf{P}_{π} as the matrix $[\mathbf{P}_{\pi}(s_i,s_{i'})], 1\leq i,i'\leq n$
- Denote γ as the MDP discount factor

Bellman Operators \mathbf{B}_{π} and \mathbf{B}_{*}

- We define operators that transform a VF vector to another VF vector
- Bellman Policy Operator \mathbf{B}_{π} (for policy π) operating on VF vector \mathbf{v} :

$$\mathbf{B}_{\pi}\mathbf{v} = \mathbf{R}_{\pi} + \gamma \mathbf{P}_{\pi} \cdot \mathbf{v}$$

- ${f B}_\pi$ is a linear operator with fixed point ${f v}_\pi$, meaning ${f B}_\pi {f v}_\pi = {f v}_\pi$
- Bellman Optimality Operator **B**_{*} operating on VF vector **v**:

$$(\mathbf{B}_*\mathbf{v})(s) = \max_{a} \{\mathcal{R}^a_s + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}^a_{s,s'} \cdot \mathbf{v}(s')\}$$

- B_* is a non-linear operator with fixed point v_* , meaning $B_*v_* = v_*$
- Define a function G mapping a VF v to a deterministic "greedy" policy G(v) as follows:

$$G(\mathbf{v})(s) = \arg\max_{a} \{\mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{s,s'}^{a} \cdot \mathbf{v}(s')\}$$

• $\mathbf{B}_{G(\mathbf{v})}\mathbf{v} = \mathbf{B}_*\mathbf{v}$ for any VF \mathbf{v} (Policy $G(\mathbf{v})$ achieves the max in \mathbf{B}_*)

Contraction and Monotonicity of Operators

Both B_π and B_{*} are γ-contraction operators in L[∞] norm, meaning:
For any two VFs v₁ and v₂,

$$\begin{aligned} \|\mathbf{B}_{\pi}\mathbf{v}_{1} - \mathbf{B}_{\pi}\mathbf{v}_{2}\|_{\infty} &\leq \gamma \|\mathbf{v}_{1} - \mathbf{v}_{2}\|_{\infty} \\ \|\mathbf{B}_{*}\mathbf{v}_{1} - \mathbf{B}_{*}\mathbf{v}_{2}\|_{\infty} &\leq \gamma \|\mathbf{v}_{1} - \mathbf{v}_{2}\|_{\infty} \end{aligned}$$

So we can invoke Contraction Mapping Theorem to claim fixed point

• We use the notation $\mathbf{v}_1 \leq \mathbf{v}_2$ for any two VFs $\mathbf{v}_1, \mathbf{v}_2$ to mean:

$$\mathsf{v_1}(s) \leq \mathsf{v_2}(s)$$
 for all $s \in \mathcal{S}$

- Also, both \mathbf{B}_{π} and \mathbf{B}_{*} are monotonic, meaning:
- For any two VFs **v**₁ and **v**₂,

$$\begin{split} \mathbf{v}_1 \leq \mathbf{v}_2 \Rightarrow \mathbf{B}_{\pi} \mathbf{v}_1 \leq \mathbf{B}_{\pi} \mathbf{v}_2 \\ \mathbf{v}_1 \leq \mathbf{v}_2 \Rightarrow \mathbf{B}_* \mathbf{v}_1 \leq \mathbf{B}_* \mathbf{v}_2 \end{split}$$

- \mathbf{B}_{π} satisfies the conditions of Contraction Mapping Theorem
- \mathbf{B}_{π} has a unique fixed point \mathbf{v}_{π} , meaning $\mathbf{B}_{\pi}\mathbf{v}_{\pi} = \mathbf{v}_{\pi}$
- This is a succinct representation of Bellman Expectation Equation
- Starting with any VF **v** and repeatedly applying \mathbf{B}_{π} , we will reach \mathbf{v}_{π}

$$\lim_{N \to \infty} \mathbf{B}_{\pi}^{N} \mathbf{v} = \mathbf{v}_{\pi} \text{ for any VF } \mathbf{v}$$

• This is a succinct representation of the Policy Evaluation Algorithm

Policy Improvement

- Let π_k and **v**_{π_k} denote the Policy and the VF for the Policy in iteration k of Policy Iteration
- Policy Improvement Step is: $\pi_{k+1} = G(\mathbf{v}_{\pi_k})$, i.e. deterministic greedy
- \bullet Earlier we argued that $B_*\nu=B_{{\mathcal G}(\nu)}\nu$ for any VF $\nu.$ Therefore,

$$\mathbf{B}_* \mathbf{v}_{\pi_{\mathbf{k}}} = \mathbf{B}_{G(\mathbf{v}_{\pi_{\mathbf{k}}})} \mathbf{v}_{\pi_{\mathbf{k}}} = \mathbf{B}_{\pi_{k+1}} \mathbf{v}_{\pi_{\mathbf{k}}}$$
(1)

• We also know from operator definitions that ${f B}_* {f v} \geq {f B}_\pi {f v}$ for all $\pi, {f v}$

$$\mathbf{B}_* \mathbf{v}_{\pi_{\mathbf{k}}} \geq \mathbf{B}_{\pi_k} \mathbf{v}_{\pi_{\mathbf{k}}} = \mathbf{v}_{\pi_{\mathbf{k}}}$$
(2)

• Combining (1) and (2), we get:

$$\mathbf{B}_{\pi_{k+1}}\mathbf{v}_{\pi_{\mathbf{k}}} \geq \mathbf{v}_{\pi_{\mathbf{k}}}$$

• Monotonicity of $\mathbf{B}_{\pi_{k+1}}$ implies

$$\begin{split} \mathbf{B}_{\pi_{k+1}}^{N}\mathbf{v}_{\pi_{k}} &\geq \dots \mathbf{B}_{\pi_{k+1}}^{2}\mathbf{v}_{\pi_{k}} \geq \mathbf{B}_{\pi_{k+1}}\mathbf{v}_{\pi_{k}} \geq \mathbf{v}_{\pi_{k}} \\ \mathbf{v}_{\pi_{k+1}} &= \lim_{N \to \infty} \mathbf{B}_{\pi_{k+1}}^{N}\mathbf{v}_{\pi_{k}} \geq \mathbf{v}_{\pi_{k}} \end{split}$$

- We have shown that in iteration k+1 of Policy Iteration, $\mathbf{v}_{\pi_{\mathbf{k}+1}} \geq \mathbf{v}_{\pi_{\mathbf{k}}}$
- If $\mathbf{v}_{\pi_{\mathbf{k}+1}} = \mathbf{v}_{\pi_{\mathbf{k}}}$, the above inequalities would hold as equalities
- So this would mean $\mathbf{B}_* \mathbf{v}_{\pi_k} = \mathbf{v}_{\pi_k}$
- But B_{*} has a unique fixed point v_{*}
- So this would mean $\mathbf{v}_{\pi_{\mathbf{k}}} = \mathbf{v}_{*}$
- Thus, at each iteration, Policy Iteration either strictly improves the VF or achieves the optimal VF \mathbf{v}_*

- \mathbf{B}_* satisfies the conditions of Contraction Mapping Theorem
- \mathbf{B}_* has a unique fixed point \mathbf{v}_* , meaning $\mathbf{B}_*\mathbf{v}_* = \mathbf{v}_*$
- This is a succinct representation of Bellman Optimality Equation
- $\bullet\,$ Starting with any VF ν and repeatedly applying $B_*,$ we will reach ν_*

$$\lim_{N \to \infty} {\bf B}_*^N {\bf v} = {\bf v}_* \text{ for any VF } {\bf v}$$

• This is a succinct representation of the Value Iteration Algorithm

Greedy Policy from Optimal VF is an Optimal Policy

 $\bullet\,$ Earlier we argued that ${\bf B}_{{\cal G}({\bf v})}{\bf v}={\bf B}_*{\bf v}$ for any VF ${\bf v}.$ Therefore,

$$\mathsf{B}_{\mathcal{G}(\mathsf{v}_*)}\mathsf{v}_*=\mathsf{B}_*\mathsf{v}_*$$

• But \mathbf{v}_* is the fixed point of \mathbf{B}_* , meaning $\mathbf{B}_*\mathbf{v}_* = \mathbf{v}_*$. Therefore,

$$\mathsf{B}_{G(\mathsf{v}_*)}\mathsf{v}_*=\mathsf{v}_*$$

• But we know that $\mathbf{B}_{G(\mathbf{v}_*)}$ has a unique fixed point $\mathbf{v}_{G(\mathbf{v}_*)}$. Therefore,

$$\mathbf{v}_* = \mathbf{v}_{G(\mathbf{v}_*)}$$

- This says that simply following the deterministic greedy policy G(v_{*}) (created from the Optimal VF v_{*}) in fact achieves the Optimal VF v_{*}
- In other words, $G(\mathbf{v}_*)$ is an Optimal (Deterministic) Policy