Understanding (Exact) Dynamic Programming through Bellman Operators

Ashwin Rao

ICME, Stanford University

January 15, 2019

Overview

- 2 [Bellman Operators](#page-4-0)
- 3 [Contraction and Monotonicity](#page-5-0)
	- **[Policy Evaluation](#page-6-0)**
- 5 [Policy Iteration](#page-7-0)
- 6 [Value Iteration](#page-9-0)
	- [Policy Optimality](#page-10-0)
- • Assume State pace S consists of *n* states: $\{s_1, s_2, \ldots, s_n\}$
- Assume Action space A consists of m actions $\{a_1, a_2, \ldots, a_m\}$
- This exposition extends easily to continuous state/action spaces too
- We denote a stochastic policy as $\pi(a|s)$ (probability of "a given s")
- Abusing notation, deterministic policy denoted as $\pi(s) = a$
- Consider *n*-dim space \mathbb{R}^n , each dim corresponding to a state in S
- Think of a Value Function (VF) $v: S \to \mathbb{R}$ as a vector in this space
- \bullet With coordinates $[v(s_1), v(s_2), \ldots, v(s_n)]$
- Value Function (VF) for a policy π is denoted as $\mathbf{v}_{\pi}: \mathcal{S} \to \mathbb{R}$
- \bullet Optimal VF denoted as $\mathbf{v}_* : \mathcal{S} \to \mathbb{R}$ such that for any $s \in \mathcal{S}$,

$$
\mathbf{v}_*(s) = \max_{\pi} \mathbf{v}_{\pi}(s)
$$

- Denote \mathcal{R}_s^a as the Expected Reward upon action a in state s
- Denote $\mathcal{P}^{\mathsf{a}}_{\mathsf{s},\mathsf{s}'}$ as the probability of transition $\mathsf{s}\to\mathsf{s}'$ upon action a **o** Define

$$
\mathsf{R}_{\pi}(s) = \sum_{\mathsf{a} \in \mathcal{A}} \pi(\mathsf{a} | s) \cdot \mathcal{R}_{s}^{\mathsf{a}}
$$

$$
\mathsf{P}_{\pi}(s,s') = \sum_{\mathsf{a} \in \mathcal{A}} \pi(\mathsf{a}|s) \cdot \mathcal{P}_{s,s'}^{\mathsf{a}}
$$

- Denote \mathbf{R}_{π} as the vector $[\mathbf{R}_{\pi}(s_1), \mathbf{R}_{\pi}(s_2), \ldots, \mathbf{R}_{\pi}(s_n)]$
- Denote \mathbf{P}_{π} as the matrix $[\mathbf{P}_{\pi}(s_i, s_{i'})], 1 \leq i, i' \leq n$
- Denote γ as the MDP discount factor

Bellman Operators B_{π} and B_{*}

- We define operators that transform a VF vector to another VF vector
- **Bellman Policy Operator B**_π (for policy π) operating on VF vector **v**:

$$
\mathbf{B}_{\pi}\mathbf{v}=\mathbf{R}_{\pi}+\gamma\mathbf{P}_{\pi}\cdot\mathbf{v}
$$

- **•** \mathbf{B}_{π} is a linear operator with fixed point \mathbf{v}_{π} , meaning $\mathbf{B}_{\pi}\mathbf{v}_{\pi} = \mathbf{v}_{\pi}$
- \bullet Bellman Optimality Operator **B**_{*} operating on VF vector **v**:

$$
(\mathbf{B}_{*}\mathbf{v})(s) = \max_{a} \{ \mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{s,s'}^{a} \cdot \mathbf{v}(s') \}
$$

- **B**^{*} is a non-linear operator with fixed point \mathbf{v}_* , meaning $\mathbf{B}_*\mathbf{v}_* = \mathbf{v}_*$
- Define a function G mapping a VF v to a deterministic "greedy" policy $G(v)$ as follows:

$$
G(\mathbf{v})(s) = \arg\max_{a} \{ \mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{s,s'}^{a} \cdot \mathbf{v}(s') \}
$$

■ B_{G(v)}**v** = **B**_{*}**v** for any VF **v** (Policy G(**v**) achieves the max in **B**_{*})

Contraction and Monotonicity of Operators

• Both \mathbf{B}_{π} and \mathbf{B}_{*} are γ -contraction operators in L^{∞} norm, meaning: • For any two VFs v_1 and v_2 ,

$$
\|\mathbf{B}_{\pi}\mathbf{v}_1 - \mathbf{B}_{\pi}\mathbf{v}_2\|_{\infty} \leq \gamma \|\mathbf{v}_1 - \mathbf{v}_2\|_{\infty}
$$

$$
\|\mathbf{B}_{\ast}\mathbf{v}_1 - \mathbf{B}_{\ast}\mathbf{v}_2\|_{\infty} \leq \gamma \|\mathbf{v}_1 - \mathbf{v}_2\|_{\infty}
$$

• So we can invoke Contraction Mapping Theorem to claim fixed point

• We use the notation $v_1 \le v_2$ for any two VFs v_1, v_2 to mean:

$$
\mathsf{v}_1(s) \leq \mathsf{v}_2(s) \text{ for all } s \in \mathcal{S}
$$

- Also, both \mathbf{B}_{π} and \mathbf{B}_{*} are monotonic, meaning:
- For any two VFs v_1 and v_2 ,

$$
\begin{aligned} \textbf{v}_1 \leq \textbf{v}_2 &\Rightarrow \textbf{B}_{\pi} \textbf{v}_1 \leq \textbf{B}_{\pi} \textbf{v}_2 \\ \textbf{v}_1 \leq \textbf{v}_2 &\Rightarrow \textbf{B}_{\ast} \textbf{v}_1 \leq \textbf{B}_{\ast} \textbf{v}_2 \end{aligned}
$$

- \bullet B_π satisfies the conditions of Contraction Mapping Theorem
- **•** \mathbf{B}_{π} has a unique fixed point \mathbf{v}_{π} , meaning $\mathbf{B}_{\pi}\mathbf{v}_{\pi} = \mathbf{v}_{\pi}$
- This is a succinct representation of Bellman Expectation Equation
- **•** Starting with any VF **v** and repeatedly applying \mathbf{B}_{π} , we will reach \mathbf{v}_{π}

$$
\lim_{N \to \infty} \mathbf{B}_{\pi}^N \mathbf{v} = \mathbf{v}_{\pi} \text{ for any VF } \mathbf{v}
$$

This is a succinct representation of the Policy Evaluation Algorithm

Policy Improvement

- Let π_k and $\mathbf{v}_{\pi_{\mathbf{k}}}$ denote the Policy and the VF for the Policy in iteration k of Policy Iteration
- Policy Improvement Step is: $\pi_{k+1} = G(\mathsf{v}_{\pi_{\mathsf{k}}})$, i.e. deterministic greedy
- Earlier we argued that $B_*v = B_{G(v)}v$ for any VF v. Therefore,

$$
\mathbf{B}_{*}\mathbf{v}_{\pi_{k}} = \mathbf{B}_{G(\mathbf{v}_{\pi_{k}})}\mathbf{v}_{\pi_{k}} = \mathbf{B}_{\pi_{k+1}}\mathbf{v}_{\pi_{k}}
$$
(1)

• We also know from operator definitions that $B_*v > B_{\pi}v$ for all π, v

$$
\mathbf{B}_{*}\mathbf{v}_{\pi_{k}} \geq \mathbf{B}_{\pi_{k}}\mathbf{v}_{\pi_{k}} = \mathbf{v}_{\pi_{k}}
$$
 (2)

• Combining (1) and (2) , we get:

$$
\mathbf{B}_{\pi_{k+1}}\mathbf{v}_{\pi_{k}}\geq \mathbf{v}_{\pi_{k}}
$$

• Monotonicity of $\mathbf{B}_{\pi_{k+1}}$ implies

$$
\mathbf{B}_{\pi_{k+1}}^N\mathbf{v}_{\pi_k}\geq \ldots \mathbf{B}_{\pi_{k+1}}^2\mathbf{v}_{\pi_k}\geq \mathbf{B}_{\pi_{k+1}}\mathbf{v}_{\pi_k}\geq \mathbf{v}_{\pi_k}
$$

$$
\mathbf{v}_{\pi_{k+1}}=\lim_{N\to\infty}\mathbf{B}_{\pi_{k+1}}^N\mathbf{v}_{\pi_k}\geq \mathbf{v}_{\pi_k}
$$

- We have shown that in iteration $k + 1$ of Policy Iteration, $\mathbf{v}_{\pi_{k+1}} \geq \mathbf{v}_{\pi_k}$
- If $\bm{{\mathsf{v}}}_{\pi_{{\mathsf{k}}+1}} = \bm{{\mathsf{v}}}_{\pi_{{\mathsf{k}}}},$ the above inequalities would hold as equalities
- So this would mean $$
- But B_{*} has a unique fixed point v_{*}
- So this would mean $$
- Thus, at each iteration, Policy Iteration either strictly improves the VF or achieves the optimal VF v_*
- B[∗] satisfies the conditions of Contraction Mapping Theorem
- B_* has a unique fixed point v_* , meaning $B_*v_* = v_*$
- This is a succinct representation of Bellman Optimality Equation
- Starting with any VF v and repeatedly applying B_{*} , we will reach v_{*}

$$
\lim_{N \to \infty} \mathbf{B}_*^N \mathbf{v} = \mathbf{v}_*
$$
 for any VF \mathbf{v}

This is a succinct representation of the Value Iteration Algorithm

Greedy Policy from Optimal VF is an Optimal Policy

• Earlier we argued that $B_{G(v)}v = B_*v$ for any VF v. Therefore,

$$
\mathsf{B}_{\mathsf{G}(\mathsf{v}_*)}\mathsf{v}_*=\mathsf{B}_*\mathsf{v}_*
$$

• But \mathbf{v}_* is the fixed point of \mathbf{B}_* , meaning $\mathbf{B}_*\mathbf{v}_* = \mathbf{v}_*$. Therefore,

$$
\mathsf{B}_{\mathsf{G}(\mathsf{v}_*)}\mathsf{v}_*=\mathsf{v}_*
$$

But we know that ${\bf B}_{G({\bf v}_*)}$ has a unique fixed point ${\bf v}_{G({\bf v}_*)}.$ Therefore,

$$
\mathbf{v}_* = \mathbf{v}_{G(\mathbf{v}_*)}
$$

- This says that simply following the deterministic greedy policy $G(v_*)$ (created from the Optimal VF v∗) in fact achieves the Optimal VF v[∗]
- In other words, $G(v_*)$ is an Optimal (Deterministic) Policy