Real-world Derivatives Hedging with Deep Reinforcement Learning

Ashwin Rao

ICME, Stanford University

November 14, 2020
Classical Pricing and Hedging of Derivatives

- Classical Pricing/Hedging Theory is based on a few core concepts:
 - **Arbitrage-Free Market** - where you cannot make money from nothing
 - **Replication** - when the payoff of a *Derivative* can be constructed by assembling (and rebalancing) a portfolio of the underlying securities
 - **Complete Market** - where payoffs of all derivatives can be replicated
 - **Risk-Neutral Measure** - Altered probability measure for movements of underlying securities for mathematical convenience in pricing

- Assumptions of arbitrage-free and completeness lead to (dynamic, exact, unique) replication of derivatives with the underlying securities

- Assumptions of frictionless trading provide these idealistic conditions
 - Frictionless := continuous trading, any volume, no transaction costs
 - Replication strategy gives us the pricing and hedging solutions
 - This is the foundation of the famous Black-Scholes formulas
 - However, the real-world has many frictions ⇒ *Incomplete Market*
 - ... where derivatives cannot be exactly replicated
In an incomplete market, we have multiple risk-neutral measures
So, multiple derivative prices (each consistent with no-arbitrage)
The market/trader “chooses” a risk-neutral measure (hence, price)
This “choice” is typically made in ad-hoc and inconsistent ways
Alternative approach is for a trader to play *Portfolio Optimization*
Maximizing “risk-adjusted return” of the derivative plus hedges
Based on a specified preference for trading risk versus return
This preference is equivalent to specifying a *Utility function*
Reminiscent of the *Portfolio Optimization problem* we’ve seen before
Likewise, we can set this up as a stochastic control (MDP) problem
Where the decision at each time step is: *Trades in the hedges*
So what’s the best way to solve this MDP?
Deep Reinforcement Learning (DRL)

- Dynamic Programming not suitable in practice due to:
 - Curse of Dimensionality
 - Curse of Modeling

- So we solve the MDP with *Deep Reinforcement Learning* (DRL)
- The idea is to use real market data and real market frictions
- Developing realistic simulations to derive the optimal policy
- The optimal policy gives us the (practical) hedging strategy
- The optimal value function gives us the price (valuation)
- Formulation based on *Deep Hedging paper* by J.P.Morgan researchers
- More details in the *prior paper* by some of the same authors
Problem Setup

- We will simplify the problem setup a bit for ease of exposition.
- This model works for more complex, more frictionful markets too.
- Assume time is in discrete (finite) steps $t = 0, 1, \ldots, T$.
- Assume we have a position (portfolio) D in m derivatives.
- Assume each of these m derivatives expires in time $\leq T$.
- Portfolio-aggregated *Contingent Cashflows* at time t denoted $X_t \in \mathbb{R}$.
- Assume we have n underlying market securities as potential hedges.
- Hedge positions (units held) at time t denoted $\alpha_t \in \mathbb{R}^n$.
- Cashflows per unit of hedges held at time t denoted $Y_t \in \mathbb{R}^n$.
- Prices per unit of hedges at time t denoted $P_t \in \mathbb{R}^n$.
- PnL position at time t is denoted as $\beta_t \in \mathbb{R}$.

Ashwin Rao (Stanford)
Denote state space at time t as S_t, state at time t as $s_t \in S_t$

Among other things, s_t contains $t, \alpha_t, P_t, \beta_t, D$

s_t will include any market information relevant to trading actions

For simplicity, we assume s_t is just the tuple $(t, \alpha_t, P_t, \beta_t, D)$

Denote action space at time t as A_t, action at time t as $a_t \in A_t$

a_t represents units of hedges traded (positive for buy, negative for sell)

Trading restrictions (eg: no short-selling) define A_t as a function of s_t

State transitions $P_{t+1}|P_t$ available from a simulator, whose internals are estimated from real market data and realistic assumptions
Sequence of events at each time step $t = 0, \ldots, T$

1. Observe state $s_t = (t, \alpha_t, P_t, \beta_t, D)$
2. Perform action (trades) a_t to produce trading PnL $= -a_t \cdot P_t$
3. Trading transaction costs, example $= -\gamma P_t \cdot |a_t|$ for some $\gamma > 0$
4. Update α_t as: $\alpha_{t+1} = \alpha_t + a_t$
 (force-liquidation at termination means $a_T = -\alpha_T$)
5. Realize cashflows (from updated positions) $= X_{t+1} + \alpha_{t+1} \cdot Y_{t+1}$
6. Update PnL β_t as:

 $$\beta_{t+1} = \beta_t - a_t \cdot P_t - \gamma P_t \cdot |a_t| + X_{t+1} + \alpha_{t+1} \cdot Y_{t+1}$$

7. Reward $r_t = 0$ for all $t = 0, \ldots, T - 1$ and $r_T = U(\beta_{T+1})$ for an appropriate concave Utility function U (based on risk-aversion)
8. Simulator evolves hedge prices from P_t to P_{t+1}
Pricing and Hedging

- Assume we now want to enter into an incremental position (portfolio) D' in m' derivatives (denote the combined position as $D \cup D'$)
- We want to determine the Price of the incremental position D', as well as the hedging strategy for D'
- Denote the Optimal Value Function at time t as $V_t^*: S_t \rightarrow \mathbb{R}$
- Pricing of D' is based on the principle that introducing the incremental position of D' together with a calibrated cashflow (Price) at $t = 0$ should leave the Optimal Value (at $t = 0$) unchanged
- Precisely, Price of D' is the value x such that

$$V_0^*((0, \alpha_0, P_0, \beta_0 - x, D \cup D')) = V_0^*((0, \alpha_0, P_0, \beta_0, D))$$

- This Pricing principle is known as the principle of *Indifference Pricing*
- The hedging strategy at time t for all $0 \leq t < T$ is given by the Optimal Policy $\pi_t^*: S_t \rightarrow \mathcal{A}_t$
The industry practice/tradition has been to start with *Complete Market* assumption, and then layer ad-hoc/unsatisfactory adjustments. There is some past work on pricing/hedging in incomplete markets. But it’s theoretical and not usable in real trading (eg: Superhedging). My view: This DRL approach is a breakthrough for practical trading. Key advantages of this DRL approach:

- Algorithm for pricing/hedging independent of market dynamics
- Computational cost scales efficiently with size m of derivatives portfolio
- Enables one to faithfully capture practical trading situations/constraints
- Deep Neural Networks provide great function approximation for RL