
R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Chapter 6: Temporal Difference Learning

Introduce Temporal Difference (TD) learning
Focus first on policy evaluation, or prediction, methods
Compare efficiency of TD learning with MC learning
Then extend to control methods

Objectives of this chapter:

TD methods bootstrap and
sample

‣ Bootstrapping: update involves an estimate of the
value function

• TD and DP methods bootstrap
• MC methods do not bootstrap

‣ Sampling: update does not involve an expected value
• TD and MC method sample
• Classical DP does not sample

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

TD Prediction

Policy Evaluation (the prediction problem):
 for a given policy π, compute the state-value function vπ

Recall: Simple every-visit Monte Carlo method:

target: the actual return after time t

target: an estimate of the return

Chapter 6

Temporal-Di↵erence Learning

If one had to identify one idea as central and novel to reinforcement learning, it would
undoubtedly be temporal-di↵erence (TD) learning. TD learning is a combination
of Monte Carlo ideas and dynamic programming (DP) ideas. Like Monte Carlo
methods, TD methods can learn directly from raw experience without a model of
the environment’s dynamics. Like DP, TD methods update estimates based in part
on other learned estimates, without waiting for a final outcome (they bootstrap).
The relationship between TD, DP, and Monte Carlo methods is a recurring theme in
the theory of reinforcement learning. This chapter is the beginning of our exploration
of it. Before we are done, we will see that these ideas and methods blend into each
other and can be combined in many ways. In particular, in Chapter 7 we introduce
the TD(�) algorithm, which seamlessly integrates TD and Monte Carlo methods.

As usual, we start by focusing on the policy evaluation or prediction problem, that
of estimating the value function v⇡ for a given policy ⇡. For the control problem
(finding an optimal policy), DP, TD, and Monte Carlo methods all use some variation
of generalized policy iteration (GPI). The di↵erences in the methods are primarily
di↵erences in their approaches to the prediction problem.

6.1 TD Prediction

Both TD and Monte Carlo methods use experience to solve the prediction problem.
Given some experience following a policy ⇡, both methods update their estimate v
of v⇡ for the nonterminal states St occurring in that experience. Roughly speaking,
Monte Carlo methods wait until the return following the visit is known, then use
that return as a target for V (St). A simple every-visit Monte Carlo method suitable
for nonstationary environments is

V (St) V (St) + ↵
h
Gt � V (St)

i
, (6.1)

where Gt is the actual return following time t, and ↵ is a constant step-size parameter
(c.f., Equation 2.4). Let us call this method constant-↵ MC. Whereas Monte Carlo
methods must wait until the end of the episode to determine the increment to V (St)

127

The simplest temporal-difference method TD(0):

128 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

(only then is Gt known), TD methods need wait only until the next time step. At
time t + 1 they immediately form a target and make a useful update using the
observed reward Rt+1 and the estimate V (St+1). The simplest TD method, known
as TD(0), is

V (St) V (St) + ↵
h
Rt+1 + �V (St+1)� V (St)

i
. (6.2)

In e↵ect, the target for the Monte Carlo update is Gt, whereas the target for the TD
update is Rt+1 + �V (St+1).

Because the TD method bases its update in part on an existing estimate, we say
that it is a bootstrapping method, like DP. We know from Chapter 3 that

v⇡(s)
.
= E⇡[Gt | St =s] (6.3)

= E⇡

" 1X

k=0

�kRt+k+1

����� St =s

#

= E⇡

"
Rt+1 + �

1X

k=0

�kRt+k+2

����� St =s

#

= E⇡[Rt+1 + �v⇡(St+1) | St =s] . (6.4)

Roughly speaking, Monte Carlo methods use an estimate of (6.3) as a target, whereas
DP methods use an estimate of (6.4) as a target. The Monte Carlo target is an
estimate because the expected value in (6.3) is not known; a sample return is used
in place of the real expected return. The DP target is an estimate not because of
the expected values, which are assumed to be completely provided by a model of the
environment, but because v⇡(St+1) is not known and the current estimate, V (St+1),
is used instead. The TD target is an estimate for both reasons: it samples the
expected values in (6.4) and it uses the current estimate V instead of the true v⇡.
Thus, TD methods combine the sampling of Monte Carlo with the bootstrapping of
DP. As we shall see, with care and imagination this can take us a long way toward
obtaining the advantages of both Monte Carlo and DP methods.

Figure 6.1 specifies TD(0) completely in procedural form.

Input: the policy ⇡ to be evaluated
Initialize V (s) arbitrarily (e.g., V (s) = 0, 8s 2 S+)
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

A action given by ⇡ for S
Take action A; observe reward, R, and next state, S0

V (S) V (S) + ↵
⇥
R + �V (S0)� V (S)

⇤

S S0

until S is terminal

Figure 6.1: Tabular TD(0) for estimating v⇡.

TD target for prediction

‣ The TD target:
• it is an estimate like MC target because it samples

the expected value
• it is an estimate like the DP target because it uses

the current estimate of V instead of

Rt+1 + �v⇡(St+1)

v⇡

98 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

one-step TD, because it is a special case of the TD(�) and n-step TD methods developed in Chapter 12
and Chapter 7. The box below specifies TD(0) completely in procedural form.

Tabular TD(0) for estimating v⇡

Input: the policy ⇡ to be evaluated
Initialize V (s) arbitrarily (e.g., V (s) = 0, for all s 2 S

+)
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

A action given by ⇡ for S
Take action A, observe R, S0

V (S) V (S) + ↵
⇥
R + �V (S0)� V (S)

⇤

S S0

until S is terminal

Because the TD(0) bases its update in part on an existing estimate, we say that it is a bootstrapping
method, like DP. We know from Chapter 3 that

v⇡(s)
.
= E⇡[Gt | St =s] (6.3)

= E⇡[Rt+1 + �Gt+1 | St =s] (from (3.8))

= E⇡[Rt+1 + �v⇡(St+1) | St =s] . (6.4)

Roughly speaking, Monte Carlo methods use an estimate of (6.3) as a target, whereas DP methods use
an estimate of (6.4) as a target. The Monte Carlo target is an estimate because the expected value
in (6.3) is not known; a sample return is used in place of the real expected return. The DP target
is an estimate not because of the expected values, which are assumed to be completely provided by a
model of the environment, but because v⇡(St+1) is not known and the current estimate, V (St+1), is
used instead. The TD target is an estimate for both reasons: it samples the expected values in (6.4)
and it uses the current estimate V instead of the true v⇡. Thus, TD methods combine the sampling of
Monte Carlo with the bootstrapping of DP. As we shall see, with care and imagination this can take us
a long way toward obtaining the advantages of both Monte Carlo and DP methods.

TD(0)

The diagram to the right is the update diagram for tabular TD(0). The value estimate
for the state node at the top of the update diagram is updated on the basis of the one
sample transition from it to the immediately following state. We refer to TD and Monte
Carlo updates as sample updates because they involve looking ahead to a sample successor
state (or state–action pair), using the value of the successor and the reward along the way
to compute a backed-up value, and then updating the value of the original state (or state–
action pair) accordingly. Sample updates di↵er from the expected updates of DP methods
in that they are based on a single sample successor rather than on a complete distribution
of all possible successors.

Finally, note that the quantity in brackets in the TD(0) update is a sort of error, measuring the
di↵erence between the estimated value of St and the better estimate Rt+1 + �V (St+1). This quantity,
called the TD error, arises in various forms throughout reinforcement learning:

�t
.
= Rt+1 + �V (St+1) � V (St). (6.5)

Notice that the TD error at each time is the error in the estimate made at that time. Because the TD
error depends on the next state and next reward, it is not actually available until one time step later.
That is, �t is the error in V (St), available at time t + 1. Also note that if the array V does not change
during the episode (as it does not in Monte Carlo methods), then the Monte Carlo error can be written

Agent program
Environment program
Experiment program

Dynamic programing

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 2

cf. Dynamic Programming

T

T T TT

TT

T

TT

T

T

T

V (St)← Eπ Rt+1 + γV (St+1)[]
St

=
X

a

⇡(a|St)
X

s0,r

p(s0, r|St, a)[r + �V (s0)]

r
a

s0

Simple Monte Carlo

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 3

Simple Monte Carlo

T T T TT

T T T T T

T T

T T

TT T

T TT

V (St)←V (St)+α Gt −V (St)[]

St

Simplest TD method

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 4

Simplest TD Method

T T T TT

T T T T TTTTTT

T T T T T

V (St)←V (St)+α Rt+1 + γV (St+1)−V (St)[]
St

Rt+1St+1

Example: Driving Home

‣ Consider driving home:
• each day you drive home
• your goal is to try and predict how long it will take

at particular stages
• when you leave office you note the time, day, &

other relevant info
‣ Consider the policy evaluation or prediction task

Driving Home

6.1. TD PREDICTION 127

TD(0)

The diagram to the right is the backup diagram for tabular TD(0). The
value estimate for the state node at the top of the backup diagram is up-
dated on the basis of the one sample transition from it to the immediately
following state. We refer to TD and Monte Carlo updates as sample back-
ups because they involve looking ahead to a sample successor state (or
state–action pair), using the value of the successor and the reward along
the way to compute a backed-up value, and then changing the value of the
original state (or state–action pair) accordingly. Sample backups di↵er from the full
backups of DP methods in that they are based on a single sample successor rather
than on a complete distribution of all possible successors.

Example 6.1: Driving Home Each day as you drive home from work, you try to
predict how long it will take to get home. When you leave your o�ce, you note the
time, the day of week, and anything else that might be relevant. Say on this Friday
you are leaving at exactly 6 o’clock, and you estimate that it will take 30 minutes
to get home. As you reach your car it is 6:05, and you notice it is starting to rain.
Tra�c is often slower in the rain, so you reestimate that it will take 35 minutes from
then, or a total of 40 minutes. Fifteen minutes later you have completed the highway
portion of your journey in good time. As you exit onto a secondary road you cut
your estimate of total travel time to 35 minutes. Unfortunately, at this point you get
stuck behind a slow truck, and the road is too narrow to pass. You end up having
to follow the truck until you turn onto the side street where you live at 6:40. Three
minutes later you are home. The sequence of states, times, and predictions is thus
as follows:

Elapsed Time Predicted Predicted
State (minutes) Time to Go Total Time
leaving o�ce, friday at 6 0 30 30
reach car, raining 5 35 40
exiting highway 20 15 35
2ndary road, behind truck 30 10 40
entering home street 40 3 43
arrive home 43 0 43

The rewards in this example are the elapsed times on each leg of the journey.1 We
are not discounting (� = 1), and thus the return for each state is the actual time to
go from that state. The value of each state is the expected time to go. The second
column of numbers gives the current estimated value for each state encountered.

A simple way to view the operation of Monte Carlo methods is to plot the predicted
total time (the last column) over the sequence, as in Figure 6.2 (left). The arrows
show the changes in predictions recommended by the constant-↵ MC method (6.1),
for ↵ = 1. These are exactly the errors between the estimated value (predicted time
to go) in each state and the actual return (actual time to go). For example, when
you exited the highway you thought it would take only 15 minutes more to get home,

1
If this were a control problem with the objective of minimizing travel time, then we would of

course make the rewards the negative of the elapsed time. But since we are concerned here only

with prediction (policy evaluation), we can keep things simple by using positive numbers.

Driving home as an RL
problem

‣ Rewards = 1 per step (if we were minimizing travel
time what would reward be?)

‣ γ = 1
‣ Gt = time to go from state St

‣ V(St) = expected time to get home from St

Updating our predictions

‣ Goal: update the prediction of total time leaving from
office, while driving home

‣ With MC we would need to wait for a termination—until
we get home—then calculate Gt for each step of
episode, then apply our updates

Driving home

‣ Task: update the value function as we go, based on
observed elapsed time—Reward column

6.1. TD PREDICTION 127

TD(0)

The diagram to the right is the backup diagram for tabular TD(0). The
value estimate for the state node at the top of the backup diagram is up-
dated on the basis of the one sample transition from it to the immediately
following state. We refer to TD and Monte Carlo updates as sample back-
ups because they involve looking ahead to a sample successor state (or
state–action pair), using the value of the successor and the reward along
the way to compute a backed-up value, and then changing the value of the
original state (or state–action pair) accordingly. Sample backups di↵er from the full
backups of DP methods in that they are based on a single sample successor rather
than on a complete distribution of all possible successors.

Example 6.1: Driving Home Each day as you drive home from work, you try to
predict how long it will take to get home. When you leave your o�ce, you note the
time, the day of week, and anything else that might be relevant. Say on this Friday
you are leaving at exactly 6 o’clock, and you estimate that it will take 30 minutes
to get home. As you reach your car it is 6:05, and you notice it is starting to rain.
Tra�c is often slower in the rain, so you reestimate that it will take 35 minutes from
then, or a total of 40 minutes. Fifteen minutes later you have completed the highway
portion of your journey in good time. As you exit onto a secondary road you cut
your estimate of total travel time to 35 minutes. Unfortunately, at this point you get
stuck behind a slow truck, and the road is too narrow to pass. You end up having
to follow the truck until you turn onto the side street where you live at 6:40. Three
minutes later you are home. The sequence of states, times, and predictions is thus
as follows:

Elapsed Time Predicted Predicted
State (minutes) Time to Go Total Time
leaving o�ce, friday at 6 0 30 30
reach car, raining 5 35 40
exiting highway 20 15 35
2ndary road, behind truck 30 10 40
entering home street 40 3 43
arrive home 43 0 43

The rewards in this example are the elapsed times on each leg of the journey.1 We
are not discounting (� = 1), and thus the return for each state is the actual time to
go from that state. The value of each state is the expected time to go. The second
column of numbers gives the current estimated value for each state encountered.

A simple way to view the operation of Monte Carlo methods is to plot the predicted
total time (the last column) over the sequence, as in Figure 6.2 (left). The arrows
show the changes in predictions recommended by the constant-↵ MC method (6.1),
for ↵ = 1. These are exactly the errors between the estimated value (predicted time
to go) in each state and the actual return (actual time to go). For example, when
you exited the highway you thought it would take only 15 minutes more to get home,

1
If this were a control problem with the objective of minimizing travel time, then we would of

course make the rewards the negative of the elapsed time. But since we are concerned here only

with prediction (policy evaluation), we can keep things simple by using positive numbers.

V(s)

R
5

15
10
10
3

V(office)

Driving home

‣ update V(office) with ! = 1?
• V(s) = V(s) + ![Rt+1 + "V(s’) - V(s)]
• V(office) = V(office) + ![Rt+1 + "V(car) - V(office)]
• new V(office) = 40; # = +10

‣ update V(car)?
• V(car) = 30; # = -5

‣ update V(exit)?
• V(exit) = 20; # = +5

6.1. TD PREDICTION 127

TD(0)

The diagram to the right is the backup diagram for tabular TD(0). The
value estimate for the state node at the top of the backup diagram is up-
dated on the basis of the one sample transition from it to the immediately
following state. We refer to TD and Monte Carlo updates as sample back-
ups because they involve looking ahead to a sample successor state (or
state–action pair), using the value of the successor and the reward along
the way to compute a backed-up value, and then changing the value of the
original state (or state–action pair) accordingly. Sample backups di↵er from the full
backups of DP methods in that they are based on a single sample successor rather
than on a complete distribution of all possible successors.

Example 6.1: Driving Home Each day as you drive home from work, you try to
predict how long it will take to get home. When you leave your o�ce, you note the
time, the day of week, and anything else that might be relevant. Say on this Friday
you are leaving at exactly 6 o’clock, and you estimate that it will take 30 minutes
to get home. As you reach your car it is 6:05, and you notice it is starting to rain.
Tra�c is often slower in the rain, so you reestimate that it will take 35 minutes from
then, or a total of 40 minutes. Fifteen minutes later you have completed the highway
portion of your journey in good time. As you exit onto a secondary road you cut
your estimate of total travel time to 35 minutes. Unfortunately, at this point you get
stuck behind a slow truck, and the road is too narrow to pass. You end up having
to follow the truck until you turn onto the side street where you live at 6:40. Three
minutes later you are home. The sequence of states, times, and predictions is thus
as follows:

Elapsed Time Predicted Predicted
State (minutes) Time to Go Total Time
leaving o�ce, friday at 6 0 30 30
reach car, raining 5 35 40
exiting highway 20 15 35
2ndary road, behind truck 30 10 40
entering home street 40 3 43
arrive home 43 0 43

The rewards in this example are the elapsed times on each leg of the journey.1 We
are not discounting (� = 1), and thus the return for each state is the actual time to
go from that state. The value of each state is the expected time to go. The second
column of numbers gives the current estimated value for each state encountered.

A simple way to view the operation of Monte Carlo methods is to plot the predicted
total time (the last column) over the sequence, as in Figure 6.2 (left). The arrows
show the changes in predictions recommended by the constant-↵ MC method (6.1),
for ↵ = 1. These are exactly the errors between the estimated value (predicted time
to go) in each state and the actual return (actual time to go). For example, when
you exited the highway you thought it would take only 15 minutes more to get home,

1
If this were a control problem with the objective of minimizing travel time, then we would of

course make the rewards the negative of the elapsed time. But since we are concerned here only

with prediction (policy evaluation), we can keep things simple by using positive numbers.

V(s)
R

5
15
10
10
3

V(office)

Changes recommended by TD
methods (! = 1)128 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

road

30

35

40

45

Predicted
total

travel
time

leaving

office
exiting

highway

2ndary home arrive

Situation

actual outcome

reach
car street home

actual
outcome

Situation

30

35

40

45

Predicted
total
travel
time

road
leaving

office
exiting

highway

2ndary home arrivereach
car street home

Figure 6.2: Changes recommended in the driving home example by Monte Carlo methods
(left) and TD methods (right).

but in fact it took 23 minutes. Equation 6.1 applies at this point and determines
an increment in the estimate of time to go after exiting the highway. The error,
Gt �V (St), at this time is eight minutes. Suppose the step-size parameter, ↵, is 1/2.
Then the predicted time to go after exiting the highway would be revised upward by
four minutes as a result of this experience. This is probably too large a change in
this case; the truck was probably just an unlucky break. In any event, the change
can only be made o↵-line, that is, after you have reached home. Only at this point
do you know any of the actual returns.

Is it necessary to wait until the final outcome is known before learning can begin?
Suppose on another day you again estimate when leaving your o�ce that it will
take 30 minutes to drive home, but then you become stuck in a massive tra�c jam.
Twenty-five minutes after leaving the o�ce you are still bumper-to-bumper on the
highway. You now estimate that it will take another 25 minutes to get home, for
a total of 50 minutes. As you wait in tra�c, you already know that your initial
estimate of 30 minutes was too optimistic. Must you wait until you get home before
increasing your estimate for the initial state? According to the Monte Carlo approach
you must, because you don’t yet know the true return.

According to a TD approach, on the other hand, you would learn immediately,
shifting your initial estimate from 30 minutes toward 50. In fact, each estimate would
be shifted toward the estimate that immediately follows it. Returning to our first
day of driving, Figure 6.2 (right) shows the changes in the predictions recommended
by the TD rule (6.2) (these are the changes made by the rule if ↵ = 1). Each error
is proportional to the change over time of the prediction, that is, to the temporal
di↵erences in predictions.

Besides giving you something to do while waiting in tra�c, there are several com-
putational reasons why it is advantageous to learn based on your current predictions
rather than waiting until termination when you know the actual return. We briefly
discuss some of these next.

128 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

road

30

35

40

45

Predicted
total

travel
time

leaving

office
exiting

highway

2ndary home arrive

Situation

actual outcome

reach
car street home

actual
outcome

Situation

30

35

40

45

Predicted
total
travel
time

road
leaving

office
exiting

highway

2ndary home arrivereach
car street home

Figure 6.2: Changes recommended in the driving home example by Monte Carlo methods
(left) and TD methods (right).

but in fact it took 23 minutes. Equation 6.1 applies at this point and determines
an increment in the estimate of time to go after exiting the highway. The error,
Gt �V (St), at this time is eight minutes. Suppose the step-size parameter, ↵, is 1/2.
Then the predicted time to go after exiting the highway would be revised upward by
four minutes as a result of this experience. This is probably too large a change in
this case; the truck was probably just an unlucky break. In any event, the change
can only be made o↵-line, that is, after you have reached home. Only at this point
do you know any of the actual returns.

Is it necessary to wait until the final outcome is known before learning can begin?
Suppose on another day you again estimate when leaving your o�ce that it will
take 30 minutes to drive home, but then you become stuck in a massive tra�c jam.
Twenty-five minutes after leaving the o�ce you are still bumper-to-bumper on the
highway. You now estimate that it will take another 25 minutes to get home, for
a total of 50 minutes. As you wait in tra�c, you already know that your initial
estimate of 30 minutes was too optimistic. Must you wait until you get home before
increasing your estimate for the initial state? According to the Monte Carlo approach
you must, because you don’t yet know the true return.

According to a TD approach, on the other hand, you would learn immediately,
shifting your initial estimate from 30 minutes toward 50. In fact, each estimate would
be shifted toward the estimate that immediately follows it. Returning to our first
day of driving, Figure 6.2 (right) shows the changes in the predictions recommended
by the TD rule (6.2) (these are the changes made by the rule if ↵ = 1). Each error
is proportional to the change over time of the prediction, that is, to the temporal
di↵erences in predictions.

Besides giving you something to do while waiting in tra�c, there are several com-
putational reasons why it is advantageous to learn based on your current predictions
rather than waiting until termination when you know the actual return. We briefly
discuss some of these next.

V(office)

Driving Home

V(office)

128 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

road

30

35

40

45

Predicted
total

travel
time

leaving

office
exiting

highway

2ndary home arrive

Situation

actual outcome

reach
car street home

actual
outcome

Situation

30

35

40

45

Predicted
total
travel
time

road
leaving

office
exiting

highway

2ndary home arrivereach
car street home

Figure 6.2: Changes recommended in the driving home example by Monte Carlo methods
(left) and TD methods (right).

but in fact it took 23 minutes. Equation 6.1 applies at this point and determines
an increment in the estimate of time to go after exiting the highway. The error,
Gt �V (St), at this time is eight minutes. Suppose the step-size parameter, ↵, is 1/2.
Then the predicted time to go after exiting the highway would be revised upward by
four minutes as a result of this experience. This is probably too large a change in
this case; the truck was probably just an unlucky break. In any event, the change
can only be made o↵-line, that is, after you have reached home. Only at this point
do you know any of the actual returns.

Is it necessary to wait until the final outcome is known before learning can begin?
Suppose on another day you again estimate when leaving your o�ce that it will
take 30 minutes to drive home, but then you become stuck in a massive tra�c jam.
Twenty-five minutes after leaving the o�ce you are still bumper-to-bumper on the
highway. You now estimate that it will take another 25 minutes to get home, for
a total of 50 minutes. As you wait in tra�c, you already know that your initial
estimate of 30 minutes was too optimistic. Must you wait until you get home before
increasing your estimate for the initial state? According to the Monte Carlo approach
you must, because you don’t yet know the true return.

According to a TD approach, on the other hand, you would learn immediately,
shifting your initial estimate from 30 minutes toward 50. In fact, each estimate would
be shifted toward the estimate that immediately follows it. Returning to our first
day of driving, Figure 6.2 (right) shows the changes in the predictions recommended
by the TD rule (6.2) (these are the changes made by the rule if ↵ = 1). Each error
is proportional to the change over time of the prediction, that is, to the temporal
di↵erences in predictions.

Besides giving you something to do while waiting in tra�c, there are several com-
putational reasons why it is advantageous to learn based on your current predictions
rather than waiting until termination when you know the actual return. We briefly
discuss some of these next.

Changes recommended by
Monte Carlo methods (α=1)

Changes recommended
by TD methods (α=1)

Advantages of TD learning
‣ TD methods do not require a model of the environment,

only experience
‣ TD methods can be fully incremental

‣ Make updates before knowing the final outcome
‣ Requires less memory
‣ Requires less peak computation

‣ You can learn without the final outcome, from incomplete
sequences

‣ Both MC and TD converge (under certain assumptions to
be detailed later), but which is faster?

Random walk
‣ C is start state, episodic, undiscounted γ = 1

‣ $ is left or right with equal probability in all states

‣ termination at either end
‣ rewards +1 on right termination, 0 otherwise
‣ what does tell us?

• probability of termination on right side from each state,
under random policy

• what is =[A B C D E]?
• = [1/6 2/6 3/6 4/6 5/6]

‣ Initialize V(s) = 0.5

130 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

Example 6.2: Random Walk In this example we empirically compare the
prediction abilities of TD(0) and constant-↵ MC applied to the small Markov reward
process shown in the upper part of Figure 6.3. All episodes start in the center
state, C, and proceed either left or right by one state on each step, with equal
probability. This behavior can be thought of as due to the combined e↵ect of a
fixed policy and an environment’s state-transition probabilities, but we do not care
which; we are concerned only with predicting returns however they are generated.
Episodes terminate either on the extreme left or the extreme right. When an episode
terminates on the right, a reward of +1 occurs; all other rewards are zero. For
example, a typical epsiode might consist of the following state-and-reward sequence:
C, 0, B, 0, C, 0, D, 0, E, 1. Because this task is undiscounted, the true value of each
state is the probability of terminating on the right if starting from that state. Thus,
the true value of the center state is v⇡(C) = 0.5. The true values of all the states, A
through E, are 1

6 , 2
6 , 3

6 , 4
6 , and 5

6 . The left part of Figure 6.3 shows the values learned
by TD(0) approaching the true values as more episodes are experienced. Averaging
over many episode sequences, the right part of the figure shows the average error
in the predictions found by TD(0) and constant-↵ MC, for a variety of values of ↵,
as a function of number of episodes. In all cases the approximate value function
was initialized to the intermediate value V (s) = 0.5, for all s. The TD method was
consistently better than the MC method on this task.

0.8

0

0.2

0.4

0.6

A B C D E

0

10

1

100

State

Estimated

value

true

values

A B C D E
100000

start

Estimated
value

0

0.05

0.1

0.15

0.2

0.25

0 25 50 75 100

Walks / Episodes

TD

MC

!=.05

!=.01

!=.1

!=.15

!=.02

!=.04

!=.03

RMS error,
averaged
over states

Empirical RMS error,
averaged over states

Figure 6.3: Results with the 5-state random walk. Above: The small Markov reward
process generating the episodes. Left: Results from a single run after various numbers of
episodes. The estimate after 100 episodes is about as close as they ever get to the true
values; with a constant step-size parameter (↵ = 0.1 in this example), the values fluctuate
indefinitely in response to the outcomes of the most recent episodes. Right: Learning curves
for TD(0) and constant-↵ MC methods, for various values of ↵. The performance measure
shown is the root mean-squared (RMS) error between the value function learned and the
true value function, averaged over the five states. These data are averages over 100 di↵erent
sequences of episodes.

v⇡

v⇡

v⇡(s)

8 s 2 S

Values learned by TD from one run, after various
numbers of episodes

130 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

Example 6.2: Random Walk In this example we empirically compare the
prediction abilities of TD(0) and constant-↵ MC applied to the small Markov reward
process shown in the upper part of Figure 6.3. All episodes start in the center
state, C, and proceed either left or right by one state on each step, with equal
probability. This behavior can be thought of as due to the combined e↵ect of a
fixed policy and an environment’s state-transition probabilities, but we do not care
which; we are concerned only with predicting returns however they are generated.
Episodes terminate either on the extreme left or the extreme right. When an episode
terminates on the right, a reward of +1 occurs; all other rewards are zero. For
example, a typical epsiode might consist of the following state-and-reward sequence:
C, 0, B, 0, C, 0, D, 0, E, 1. Because this task is undiscounted, the true value of each
state is the probability of terminating on the right if starting from that state. Thus,
the true value of the center state is v⇡(C) = 0.5. The true values of all the states, A
through E, are 1

6 , 2
6 , 3

6 , 4
6 , and 5

6 . The left part of Figure 6.3 shows the values learned
by TD(0) approaching the true values as more episodes are experienced. Averaging
over many episode sequences, the right part of the figure shows the average error
in the predictions found by TD(0) and constant-↵ MC, for a variety of values of ↵,
as a function of number of episodes. In all cases the approximate value function
was initialized to the intermediate value V (s) = 0.5, for all s. The TD method was
consistently better than the MC method on this task.

0.8

0

0.2

0.4

0.6

A B C D E

0

10

1

100

State

Estimated

value

true

values

A B C D E
100000

start

Estimated
value

0

0.05

0.1

0.15

0.2

0.25

0 25 50 75 100

Walks / Episodes

TD

MC

!=.05

!=.01

!=.1

!=.15

!=.02

!=.04

!=.03

RMS error,
averaged
over states

Empirical RMS error,
averaged over states

Figure 6.3: Results with the 5-state random walk. Above: The small Markov reward
process generating the episodes. Left: Results from a single run after various numbers of
episodes. The estimate after 100 episodes is about as close as they ever get to the true
values; with a constant step-size parameter (↵ = 0.1 in this example), the values fluctuate
indefinitely in response to the outcomes of the most recent episodes. Right: Learning curves
for TD(0) and constant-↵ MC methods, for various values of ↵. The performance measure
shown is the root mean-squared (RMS) error between the value function learned and the
true value function, averaged over the five states. These data are averages over 100 di↵erent
sequences of episodes.

130 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

Example 6.2: Random Walk In this example we empirically compare the
prediction abilities of TD(0) and constant-↵ MC applied to the small Markov reward
process shown in the upper part of Figure 6.3. All episodes start in the center
state, C, and proceed either left or right by one state on each step, with equal
probability. This behavior can be thought of as due to the combined e↵ect of a
fixed policy and an environment’s state-transition probabilities, but we do not care
which; we are concerned only with predicting returns however they are generated.
Episodes terminate either on the extreme left or the extreme right. When an episode
terminates on the right, a reward of +1 occurs; all other rewards are zero. For
example, a typical epsiode might consist of the following state-and-reward sequence:
C, 0, B, 0, C, 0, D, 0, E, 1. Because this task is undiscounted, the true value of each
state is the probability of terminating on the right if starting from that state. Thus,
the true value of the center state is v⇡(C) = 0.5. The true values of all the states, A
through E, are 1

6 , 2
6 , 3

6 , 4
6 , and 5

6 . The left part of Figure 6.3 shows the values learned
by TD(0) approaching the true values as more episodes are experienced. Averaging
over many episode sequences, the right part of the figure shows the average error
in the predictions found by TD(0) and constant-↵ MC, for a variety of values of ↵,
as a function of number of episodes. In all cases the approximate value function
was initialized to the intermediate value V (s) = 0.5, for all s. The TD method was
consistently better than the MC method on this task.

0.8

0

0.2

0.4

0.6

A B C D E

0

10

1

100

State

Estimated

value

true

values

A B C D E
100000

start

Estimated
value

0

0.05

0.1

0.15

0.2

0.25

0 25 50 75 100

Walks / Episodes

TD

MC

!=.05

!=.01

!=.1

!=.15

!=.02

!=.04

!=.03

RMS error,
averaged
over states

Empirical RMS error,
averaged over states

Figure 6.3: Results with the 5-state random walk. Above: The small Markov reward
process generating the episodes. Left: Results from a single run after various numbers of
episodes. The estimate after 100 episodes is about as close as they ever get to the true
values; with a constant step-size parameter (↵ = 0.1 in this example), the values fluctuate
indefinitely in response to the outcomes of the most recent episodes. Right: Learning curves
for TD(0) and constant-↵ MC methods, for various values of ↵. The performance measure
shown is the root mean-squared (RMS) error between the value function learned and the
true value function, averaged over the five states. These data are averages over 100 di↵erent
sequences of episodes.

128 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

(only then is Gt known), TD methods need wait only until the next time step. At
time t + 1 they immediately form a target and make a useful update using the
observed reward Rt+1 and the estimate V (St+1). The simplest TD method, known
as TD(0), is

V (St) V (St) + ↵
h
Rt+1 + �V (St+1)� V (St)

i
. (6.2)

In e↵ect, the target for the Monte Carlo update is Gt, whereas the target for the TD
update is Rt+1 + �V (St+1).

Because the TD method bases its update in part on an existing estimate, we say
that it is a bootstrapping method, like DP. We know from Chapter 3 that

v⇡(s)
.
= E⇡[Gt | St =s] (6.3)

= E⇡

" 1X

k=0

�kRt+k+1

����� St =s

#

= E⇡

"
Rt+1 + �

1X

k=0

�kRt+k+2

����� St =s

#

= E⇡[Rt+1 + �v⇡(St+1) | St =s] . (6.4)

Roughly speaking, Monte Carlo methods use an estimate of (6.3) as a target, whereas
DP methods use an estimate of (6.4) as a target. The Monte Carlo target is an
estimate because the expected value in (6.3) is not known; a sample return is used
in place of the real expected return. The DP target is an estimate not because of
the expected values, which are assumed to be completely provided by a model of the
environment, but because v⇡(St+1) is not known and the current estimate, V (St+1),
is used instead. The TD target is an estimate for both reasons: it samples the
expected values in (6.4) and it uses the current estimate V instead of the true v⇡.
Thus, TD methods combine the sampling of Monte Carlo with the bootstrapping of
DP. As we shall see, with care and imagination this can take us a long way toward
obtaining the advantages of both Monte Carlo and DP methods.

Figure 6.1 specifies TD(0) completely in procedural form.

Input: the policy ⇡ to be evaluated
Initialize V (s) arbitrarily (e.g., V (s) = 0, 8s 2 S+)
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

A action given by ⇡ for S
Take action A; observe reward, R, and next state, S0

V (S) V (S) + ↵
⇥
R + �V (S0)� V (S)

⇤

S S0

until S is terminal

Figure 6.1: Tabular TD(0) for estimating v⇡.

TD and MC on the Random Walk

130 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

Example 6.2: Random Walk In this example we empirically compare the
prediction abilities of TD(0) and constant-↵ MC applied to the small Markov reward
process shown in the upper part of Figure 6.3. All episodes start in the center
state, C, and proceed either left or right by one state on each step, with equal
probability. This behavior can be thought of as due to the combined e↵ect of a
fixed policy and an environment’s state-transition probabilities, but we do not care
which; we are concerned only with predicting returns however they are generated.
Episodes terminate either on the extreme left or the extreme right. When an episode
terminates on the right, a reward of +1 occurs; all other rewards are zero. For
example, a typical epsiode might consist of the following state-and-reward sequence:
C, 0, B, 0, C, 0, D, 0, E, 1. Because this task is undiscounted, the true value of each
state is the probability of terminating on the right if starting from that state. Thus,
the true value of the center state is v⇡(C) = 0.5. The true values of all the states, A
through E, are 1

6 , 2
6 , 3

6 , 4
6 , and 5

6 . The left part of Figure 6.3 shows the values learned
by TD(0) approaching the true values as more episodes are experienced. Averaging
over many episode sequences, the right part of the figure shows the average error
in the predictions found by TD(0) and constant-↵ MC, for a variety of values of ↵,
as a function of number of episodes. In all cases the approximate value function
was initialized to the intermediate value V (s) = 0.5, for all s. The TD method was
consistently better than the MC method on this task.

0.8

0

0.2

0.4

0.6

A B C D E

0

10

1

100

State

Estimated

value

true

values

A B C D E
100000

start

Estimated
value

0

0.05

0.1

0.15

0.2

0.25

0 25 50 75 100

Walks / Episodes

TD

MC

!=.05

!=.01

!=.1

!=.15

!=.02

!=.04

!=.03

RMS error,
averaged
over states

Empirical RMS error,
averaged over states

Figure 6.3: Results with the 5-state random walk. Above: The small Markov reward
process generating the episodes. Left: Results from a single run after various numbers of
episodes. The estimate after 100 episodes is about as close as they ever get to the true
values; with a constant step-size parameter (↵ = 0.1 in this example), the values fluctuate
indefinitely in response to the outcomes of the most recent episodes. Right: Learning curves
for TD(0) and constant-↵ MC methods, for various values of ↵. The performance measure
shown is the root mean-squared (RMS) error between the value function learned and the
true value function, averaged over the five states. These data are averages over 100 di↵erent
sequences of episodes.

Data averaged over
100 sequences of episodes

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Batch Updating in TD and MC methods

Batch Updating: train completely on a finite amount of data,
 e.g., train repeatedly on 10 episodes until convergence.

 Compute updates according to TD or MC, but only update
 estimates after each complete pass through the data.

For any finite Markov prediction task, under batch updating,
TD converges for sufficiently small α.

Constant-α MC also converges under these conditions, but to
a difference answer!

Random Walk under Batch Updating

‣ After each new episode, all episodes seen so far are treated as a
batch

‣ This growing batch is repeatedly processed by TD and MC until
convergence

130 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

Example 6.2: Random Walk In this example we empirically compare the
prediction abilities of TD(0) and constant-↵ MC applied to the small Markov reward
process shown in the upper part of Figure 6.3. All episodes start in the center
state, C, and proceed either left or right by one state on each step, with equal
probability. This behavior can be thought of as due to the combined e↵ect of a
fixed policy and an environment’s state-transition probabilities, but we do not care
which; we are concerned only with predicting returns however they are generated.
Episodes terminate either on the extreme left or the extreme right. When an episode
terminates on the right, a reward of +1 occurs; all other rewards are zero. For
example, a typical epsiode might consist of the following state-and-reward sequence:
C, 0, B, 0, C, 0, D, 0, E, 1. Because this task is undiscounted, the true value of each
state is the probability of terminating on the right if starting from that state. Thus,
the true value of the center state is v⇡(C) = 0.5. The true values of all the states, A
through E, are 1

6 , 2
6 , 3

6 , 4
6 , and 5

6 . The left part of Figure 6.3 shows the values learned
by TD(0) approaching the true values as more episodes are experienced. Averaging
over many episode sequences, the right part of the figure shows the average error
in the predictions found by TD(0) and constant-↵ MC, for a variety of values of ↵,
as a function of number of episodes. In all cases the approximate value function
was initialized to the intermediate value V (s) = 0.5, for all s. The TD method was
consistently better than the MC method on this task.

0.8

0

0.2

0.4

0.6

A B C D E

0

10

1

100

State

Estimated

value

true

values

A B C D E
100000

start

Estimated
value

0

0.05

0.1

0.15

0.2

0.25

0 25 50 75 100

Walks / Episodes

TD

MC

!=.05

!=.01

!=.1

!=.15

!=.02

!=.04

!=.03

RMS error,
averaged
over states

Empirical RMS error,
averaged over states

Figure 6.3: Results with the 5-state random walk. Above: The small Markov reward
process generating the episodes. Left: Results from a single run after various numbers of
episodes. The estimate after 100 episodes is about as close as they ever get to the true
values; with a constant step-size parameter (↵ = 0.1 in this example), the values fluctuate
indefinitely in response to the outcomes of the most recent episodes. Right: Learning curves
for TD(0) and constant-↵ MC methods, for various values of ↵. The performance measure
shown is the root mean-squared (RMS) error between the value function learned and the
true value function, averaged over the five states. These data are averages over 100 di↵erent
sequences of episodes.

(Repeated 100 times)

Random Walk under Batch Updating

‣ After each new episode, all episodes seen so far are treated as a
batch

‣ This growing batch is repeatedly processed by TD and MC until
convergence

130 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

Example 6.2: Random Walk In this example we empirically compare the
prediction abilities of TD(0) and constant-↵ MC applied to the small Markov reward
process shown in the upper part of Figure 6.3. All episodes start in the center
state, C, and proceed either left or right by one state on each step, with equal
probability. This behavior can be thought of as due to the combined e↵ect of a
fixed policy and an environment’s state-transition probabilities, but we do not care
which; we are concerned only with predicting returns however they are generated.
Episodes terminate either on the extreme left or the extreme right. When an episode
terminates on the right, a reward of +1 occurs; all other rewards are zero. For
example, a typical epsiode might consist of the following state-and-reward sequence:
C, 0, B, 0, C, 0, D, 0, E, 1. Because this task is undiscounted, the true value of each
state is the probability of terminating on the right if starting from that state. Thus,
the true value of the center state is v⇡(C) = 0.5. The true values of all the states, A
through E, are 1

6 , 2
6 , 3

6 , 4
6 , and 5

6 . The left part of Figure 6.3 shows the values learned
by TD(0) approaching the true values as more episodes are experienced. Averaging
over many episode sequences, the right part of the figure shows the average error
in the predictions found by TD(0) and constant-↵ MC, for a variety of values of ↵,
as a function of number of episodes. In all cases the approximate value function
was initialized to the intermediate value V (s) = 0.5, for all s. The TD method was
consistently better than the MC method on this task.

0.8

0

0.2

0.4

0.6

A B C D E

0

10

1

100

State

Estimated

value

true

values

A B C D E
100000

start

Estimated
value

0

0.05

0.1

0.15

0.2

0.25

0 25 50 75 100

Walks / Episodes

TD

MC

!=.05

!=.01

!=.1

!=.15

!=.02

!=.04

!=.03

RMS error,
averaged
over states

Empirical RMS error,
averaged over states

Figure 6.3: Results with the 5-state random walk. Above: The small Markov reward
process generating the episodes. Left: Results from a single run after various numbers of
episodes. The estimate after 100 episodes is about as close as they ever get to the true
values; with a constant step-size parameter (↵ = 0.1 in this example), the values fluctuate
indefinitely in response to the outcomes of the most recent episodes. Right: Learning curves
for TD(0) and constant-↵ MC methods, for various values of ↵. The performance measure
shown is the root mean-squared (RMS) error between the value function learned and the
true value function, averaged over the five states. These data are averages over 100 di↵erent
sequences of episodes.

132 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

. 0

.05

. 1

.15

. 2

.25

0 25 50 75 100

TD

MC

BATCH TRAINING

Walks / Episodes

RMS error,
averaged
over states

Figure 6.4: Performance of TD(0) and constant-↵ MC under batch training on the random
walk task.

small. The constant-↵ MC method also converges deterministically under the same
conditions, but to a di↵erent answer. Understanding these two answers will help
us understand the di↵erence between the two methods. Under normal updating the
methods do not move all the way to their respective batch answers, but in some sense
they take steps in these directions. Before trying to understand the two answers in
general, for all possible tasks, we first look at a few examples.

Example 6.3: Random walk under batch updating Batch-updating versions
of TD(0) and constant-↵ MC were applied as follows to the random walk predic-
tion example (Example 6.2). After each new episode, all episodes seen so far were
treated as a batch. They were repeatedly presented to the algorithm, either TD(0) or
constant-↵ MC, with ↵ su�ciently small that the value function converged. The re-
sulting value function was then compared with v⇡, and the average root mean-squared
error across the five states (and across 100 independent repetitions of the whole ex-
periment) was plotted to obtain the learning curves shown in Figure 6.4. Note that
the batch TD method was consistently better than the batch Monte Carlo method.

Under batch training, constant-↵ MC converges to values, V (s), that are sample
averages of the actual returns experienced after visiting each state s. These are
optimal estimates in the sense that they minimize the mean-squared error from the
actual returns in the training set. In this sense it is surprising that the batch TD
method was able to perform better according to the root mean-squared error measure
shown in Figure 6.4. How is it that batch TD was able to perform better than this
optimal method? The answer is that the Monte Carlo method is optimal only in
a limited way, and that TD is optimal in a way that is more relevant to predicting
returns. But first let’s develop our intuitions about di↵erent kinds of optimality
through another example.

(Repeated 100 times)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

You are the Predictor

Suppose you observe the following 8 episodes:

A, 0, B, 0
B, 1
B, 1
B, 1
B, 1
B, 1
B, 1
B, 0

V(B)?

Assume Markov states, no discounting (% = 1)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

You are the Predictor

Suppose you observe the following 8 episodes:

A, 0, B, 0
B, 1
B, 1
B, 1
B, 1
B, 1
B, 1
B, 0

0.75V(B)?
V(A)?

Assume Markov states, no discounting (% = 1)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

You are the Predictor

Suppose you observe the following 8 episodes:

A, 0, B, 0
B, 1
B, 1
B, 1
B, 1
B, 1
B, 1
B, 0

0.75V(B)?
V(A)? 0?

Assume Markov states, no discounting (% = 1)

Consider the following data

‣ V(B)
• 6 out of 8 times we saw a 1; V(B) = 3/4

‣ The batch MC prediction for V(A):
• 100% of returns from A equal zero; V(A) = 0

6.3. OPTIMALITY OF TD(0) 133

Example 6.4: You are the Predictor Place yourself now in the role of the
predictor of returns for an unknown Markov reward process. Suppose you observe
the following eight episodes:

A, 0, B, 0 B, 1
B, 1 B, 1
B, 1 B, 1
B, 1 B, 0

This means that the first episode started in state A, transitioned to B with a reward
of 0, and then terminated from B with a reward of 0. The other seven episodes were
even shorter, starting from B and terminating immediately. Given this batch of data,
what would you say are the optimal predictions, the best values for the estimates
V (A) and V (B)? Everyone would probably agree that the optimal value for V (B) is
3
4 , because six out of the eight times in state B the process terminated immediately
with a return of 1, and the other two times in B the process terminated immediately
with a return of 0.

A B

r = 1

100%

75%

25%

r = 0

r = 0

But what is the optimal value for the estimate V (A)
given this data? Here there are two reasonable answers.
One is to observe that 100% of the times the process was
in state A it traversed immediately to B (with a reward
of 0); and since we have already decided that B has value
3
4 , therefore A must have value 3

4 as well. One way of
viewing this answer is that it is based on first modeling
the Markov process, in this case as shown to the right,
and then computing the correct estimates given the model, which indeed in this case
gives V (A) = 3

4 . This is also the answer that batch TD(0) gives.

The other reasonable answer is simply to observe that we have seen A once and
the return that followed it was 0; we therefore estimate V (A) as 0. This is the answer
that batch Monte Carlo methods give. Notice that it is also the answer that gives
minimum squared error on the training data. In fact, it gives zero error on the data.
But still we expect the first answer to be better. If the process is Markov, we expect
that the first answer will produce lower error on future data, even though the Monte
Carlo answer is better on the existing data.

The above example illustrates a general di↵erence between the estimates found
by batch TD(0) and batch Monte Carlo methods. Batch Monte Carlo methods
always find the estimates that minimize mean-squared error on the training set,
whereas batch TD(0) always finds the estimates that would be exactly correct for
the maximum-likelihood model of the Markov process. In general, the maximum-
likelihood estimate of a parameter is the parameter value whose probability of gen-
erating the data is greatest. In this case, the maximum-likelihood estimate is the
model of the Markov process formed in the obvious way from the observed episodes:
the estimated transition probability from i to j is the fraction of observed transitions
from i that went to j, and the associated expected reward is the average of the re-
wards observed on those transitions. Given this model, we can compute the estimate

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

You are the Predictor

V(A)?

‣ Modeling the Markov process based on
the observed training data

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

You are the Predictor

V(A)? 0.75

‣ Modeling the Markov process based on
the observed training data

Optimality of TD(0)
‣ The prediction that best matches the training data is V(A)=0:

• This minimizes the mean-square-error between V(s) and
the sample returns in the training set. (zero MSE in our
example)

• Under batch training, this is what constant-! MC gets

‣ TD(0) achieves a different type of optimality, where V(A)=0.75
• This is correct for the maximum likelihood estimate of the

Markov model generating the data
• i.e., if we do a best fit Markov model, and assume it is

exactly correct, and then compute the predictions
• This is called the certainty-equivalence estimate
• This is what TD gets

Advantages of TD

‣ If the process is Markov, then we expect the TD
estimate to produce lower error on future data

‣ This helps explain why TD methods converge more
quickly than MC in the batch setting

‣ TD(0) makes progress towards the certainty-
equivalence estimate without explicitly building the
model!

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Summary so far

Introduced one-step tabular model-free TD methods
These methods bootstrap and sample, combining aspects of DP
and MC methods
TD methods are computationally congenial
If the world is truly Markov, then TD methods will learn faster
than MC methods
MC methods have lower error on past data, but higher error on
future data

width
of update

depth
(length)

of update

Temporal-
difference

learning

Dynamic
programming

Monte
Carlo

...

Exhaustive
search

29

Unified View

Multi-step
bootstrapping

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 30

Learning An Action-Value Function

Estimate qπ for the current policy π

St,At

Rt+1St St+1, At+1

Rt+2St+1
Rt+3St+2 St+3.

St+2, At+2 St+3, At+3

After every transition from a nonterminal state, St , do this:
Q(St ,At)←Q(St ,At)+α Rt+1 + γQ(St+1,At+1)−Q(St ,At)[]
If St+1 is terminal, then define Q(St+1,At+1) = 0

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 31

Sarsa: On-Policy TD Control

Turn this into a control method by always updating the
policy to be greedy with respect to the current estimate: 142 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

Initialize Q(s, a), 8s 2 S, a 2 A(s), arbitrarily, and Q(terminal-state, ·) = 0

Repeat (for each episode):

Initialize S
Choose A from S using policy derived from Q (e.g., "-greedy)
Repeat (for each step of episode):

Take action A, observe R, S0

Choose A0
from S0

using policy derived from Q (e.g., "-greedy)
Q(S,A) Q(S,A) + ↵[R+ �Q(S0, A0

)�Q(S,A)]
S S0

; A A0
;

until S is terminal

Figure 6.9: Sarsa: An on-policy TD control algorithm.

long as all state–action pairs are visited an infinite number of times and the
policy converges in the limit to the greedy policy (which can be arranged, for
example, with "-greedy policies by setting " = 1/t), but this result has not yet
been published in the literature.

Example 6.5: Windy Gridworld Figure 6.10 shows a standard gridworld,
with start and goal states, but with one di↵erence: there is a crosswind upward
through the middle of the grid. The actions are the standard four—up, down,
right, and left—but in the middle region the resultant next states are shifted
upward by a “wind,” the strength of which varies from column to column. The
strength of the wind is given below each column, in number of cells shifted
upward. For example, if you are one cell to the right of the goal, then the
action left takes you to the cell just above the goal. Let us treat this as an
undiscounted episodic task, with constant rewards of �1 until the goal state
is reached. Figure 6.11 shows the result of applying "-greedy Sarsa to this
task, with " = 0.1, ↵ = 0.5, and the initial values Q(s, a) = 0 for all s, a. The
increasing slope of the graph shows that the goal is reached more and more
quickly over time. By 8000 time steps, the greedy policy (shown inset) was
long since optimal; continued "-greedy exploration kept the average episode
length at about 17 steps, two more than the minimum of 15. Note that Monte
Carlo methods cannot easily be used on this task because termination is not
guaranteed for all policies. If a policy was ever found that caused the agent to
stay in the same state, then the next episode would never end. Step-by-step
learning methods such as Sarsa do not have this problem because they quickly
learn during the episode that such policies are poor, and switch to something
else.

Exercise 6.6: Windy Gridworld with King’s Moves Re-solve the
windy gridworld task assuming eight possible actions, including the diagonal
moves, rather than the usual four. How much better can you do with the extra

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 32

Windy Gridworld

undiscounted, episodic, reward = –1 until goal

Wind:

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 33

Results of Sarsa on the Windy Gridworld

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 34

Q-Learning: Off-Policy TD Control

6.5. Q-LEARNING: OFF-POLICY TD CONTROL 145

Initialize Q(s, a), 8s 2 S, a 2 A(s), arbitrarily, and Q(terminal-state, ·) = 0

Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g., "-greedy)
Take action A, observe R, S0

Q(S,A) Q(S,A) + ↵[R+ �maxaQ(S0, a)�Q(S,A)]
S S0

;

until S is terminal

Figure 6.12: Q-learning: An o↵-policy TD control algorithm.

(Figure 3.7). Can you guess now what the diagram is? If so, please do make
a guess before turning to the answer in Figure 6.14.

Reward
per

epsiode

!100

!75

!50

!25

0 100 200 300 400 500

Episodes

Sarsa

Q-learning

S G

r = !100

T h e C l i f f

r = !1 safe path

optimal path

Figure 6.13: The cli↵-walking task. The results are from a single run, but
smoothed.

Example 6.6: Cli↵ Walking This gridworld example compares Sarsa
and Q-learning, highlighting the di↵erence between on-policy (Sarsa) and o↵-
policy (Q-learning) methods. Consider the gridworld shown in the upper part
of Figure 6.13. This is a standard undiscounted, episodic task, with start and
goal states, and the usual actions causing movement up, down, right, and left.
Reward is �1 on all transitions except those into the the region marked “The

6.5. Q-LEARNING: OFF-POLICY TD CONTROL 139

6.5 Q-learning: O↵-Policy TD Control

One of the most important breakthroughs in reinforcement learning was the devel-
opment of an o↵-policy TD control algorithm known as Q-learning (Watkins, 1989).
Its simplest form, one-step Q-learning , is defined by

Q(St, At) Q(St, At) + ↵
h
Rt+1 + � max

a
Q(St+1, a)�Q(St, At)

i
. (6.6)

In this case, the learned action-value function, Q, directly approximates q⇤, the op-
timal action-value function, independent of the policy being followed. This dramat-
ically simplifies the analysis of the algorithm and enabled early convergence proofs.
The policy still has an e↵ect in that it determines which state–action pairs are visited
and updated. However, all that is required for correct convergence is that all pairs
continue to be updated. As we observed in Chapter 5, this is a minimal requirement
in the sense that any method guaranteed to find optimal behavior in the general case
must require it. Under this assumption and a variant of the usual stochastic approx-
imation conditions on the sequence of step-size parameters, Q has been shown to
converge with probability 1 to q⇤. The Q-learning algorithm is shown in procedural
form in Figure 6.10.

What is the backup diagram for Q-learning? The rule (6.6) updates a state–action
pair, so the top node, the root of the backup, must be a small, filled action node.
The backup is also from action nodes, maximizing over all those actions possible in
the next state. Thus the bottom nodes of the backup diagram should be all these
action nodes. Finally, remember that we indicate taking the maximum of these “next
action” nodes with an arc across them (Figure 3.7). Can you guess now what the
diagram is? If so, please do make a guess before turning to the answer in Figure 6.12.

Initialize Q(s, a), 8s 2 S, a 2 A(s), arbitrarily, and Q(terminal-state, ·) = 0
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g., ✏-greedy)
Take action A, observe R, S0

Q(S, A) Q(S, A) + ↵
⇥
R + � maxa Q(S0, a)�Q(S, A)

⇤

S S0;
until S is terminal

Figure 6.10: Q-learning: An o↵-policy TD control algorithm.

One-step Q-learning:

6.5. Q-LEARNING: OFF-POLICY TD CONTROL 143

Reward
per

epsiode

!100

!75

!50

!25

0 100 200 300 400 500

Episodes

Sarsa

Q-learning

S G

r = !100

T h e C l i f f

r = !1 safe path

optimal path

R

R

Sum of
rewards
during

episode

Figure 6.5: The cli↵-walking task. The results are from a single run, but smoothed by
averaging the reward sums from 10 successive episodes.

The lower part of Figure 6.5 shows the performance of the Sarsa and Q-learning
methods with "-greedy action selection, " = 0.1. After an initial transient, Q-learning
learns values for the optimal policy, that which travels right along the edge of the
cli↵. Unfortunately, this results in its occasionally falling o↵ the cli↵ because of
the "-greedy action selection. Sarsa, on the other hand, takes the action selection
into account and learns the longer but safer path through the upper part of the
grid. Although Q-learning actually learns the values of the optimal policy, its on-
line performance is worse than that of Sarsa, which learns the roundabout policy.
Of course, if " were gradually reduced, then both methods would asymptotically
converge to the optimal policy.

Exercise 6.9 Why is Q-learning considered an o↵-policy control method?

Q-learning Expected Sarsa

Figure 6.6: The backup diagrams for Q-learning and expected Sarsa.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 35

Cliffwalking

ε−greedy, ε = 0.1

R

R

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Expected Sarsa

36

Instead of the sample value-of-next-state, use the expectation!

Expected Sarsa’s performs better than Sarsa (but costs more)

6.6. EXPECTED SARSA 141

Q-learning Expected Sarsa

Figure 6.12: The backup diagrams for Q-learning and expected Sarsa.

6.6 Expected Sarsa

Consider the learning algorithm that is just like Q-learning except that instead of
the maximum over next state–action pairs it uses the expected value, taking into
account how likely each action is under the current policy. That is, consider the
algorithm with the update rule

Q(St, At) Q(St, At) + ↵
h
Rt+1 + �E[Q(St+1, At+1) | St+1]�Q(St, At)

i

 Q(St, At) + ↵
h
Rt+1 + �

X

a

⇡(a|St+1)Q(St+1, a)�Q(St, At)
i
, (6.7)

but that otherwise follows the schema of Q-learning (as in Figure 6.10). Given the
next state, St+1, this algorithm moves deterministically in the same direction as
Sarsa moves in expectation, and accordingly it is called expected Sarsa. Its backup
diagram is shown in Figure 6.12.

Expected Sarsa is more complex computationally than Sarsa but, in return, it
eliminates the variance due to the random selection of At+1. Given the same amount
of experience we might expect it to perform slightly better than Sarsa, and indeed it
generally does. Figure 6.13 shows summary results on the cli↵-walking task with Ex-
pected Sarsa compared to Sarsa and Q-learning. As an on-policy method, Expected
Sarsa retains the significant advantage of Sarsa over Q-learning on this problem. In
addition, Expected Sarsa shows a significant improvement over Sarsa over a wide
range of values for the step-size parameter ↵. In cli↵ walking the state transitions
are all deterministic and all randomness comes from the policy. In such cases, Ex-
pected Sarsa can safely set ↵ = 1 without su↵ering any degradation of asymptotic
performance, whereas Sarsa can only perform well in the long run at a small value
of ↵, at which short-term performance is poor. In this and other examples there is
a consistent empirical advantage of Expected Sarsa over Sarsa.

In these cli↵ walking results we have taken Expected Sarsa to be an on-policy
algorithm, but in general we can use a policy di↵erent from the target policy ⇡ to
generate behavior, in which case Expected Sarsa becomes an o↵-policy algorithm.
For example, suppose ⇡ is the greedy policy while behavior is more exploratory;
then Expected Sarsa is exactly Q-learning. In this sense Expected Sarsa subsumes
and generalizes Q-learning while reliably improving over Sarsa. Except for the small
additional computational cost, Expected Sarsa may completely dominate both of the
other more-well-known TD control algorithms.

6.6. EXPECTED SARSA 141

Q-learning Expected Sarsa

Figure 6.12: The backup diagrams for Q-learning and expected Sarsa.

6.6 Expected Sarsa

Consider the learning algorithm that is just like Q-learning except that instead of
the maximum over next state–action pairs it uses the expected value, taking into
account how likely each action is under the current policy. That is, consider the
algorithm with the update rule

Q(St, At) Q(St, At) + ↵
h
Rt+1 + �E[Q(St+1, At+1) | St+1]�Q(St, At)

i

 Q(St, At) + ↵
h
Rt+1 + �

X

a

⇡(a|St+1)Q(St+1, a)�Q(St, At)
i
, (6.7)

but that otherwise follows the schema of Q-learning (as in Figure 6.10). Given the
next state, St+1, this algorithm moves deterministically in the same direction as
Sarsa moves in expectation, and accordingly it is called expected Sarsa. Its backup
diagram is shown in Figure 6.12.

Expected Sarsa is more complex computationally than Sarsa but, in return, it
eliminates the variance due to the random selection of At+1. Given the same amount
of experience we might expect it to perform slightly better than Sarsa, and indeed it
generally does. Figure 6.13 shows summary results on the cli↵-walking task with Ex-
pected Sarsa compared to Sarsa and Q-learning. As an on-policy method, Expected
Sarsa retains the significant advantage of Sarsa over Q-learning on this problem. In
addition, Expected Sarsa shows a significant improvement over Sarsa over a wide
range of values for the step-size parameter ↵. In cli↵ walking the state transitions
are all deterministic and all randomness comes from the policy. In such cases, Ex-
pected Sarsa can safely set ↵ = 1 without su↵ering any degradation of asymptotic
performance, whereas Sarsa can only perform well in the long run at a small value
of ↵, at which short-term performance is poor. In this and other examples there is
a consistent empirical advantage of Expected Sarsa over Sarsa.

In these cli↵ walking results we have taken Expected Sarsa to be an on-policy
algorithm, but in general we can use a policy di↵erent from the target policy ⇡ to
generate behavior, in which case Expected Sarsa becomes an o↵-policy algorithm.
For example, suppose ⇡ is the greedy policy while behavior is more exploratory;
then Expected Sarsa is exactly Q-learning. In this sense Expected Sarsa subsumes
and generalizes Q-learning while reliably improving over Sarsa. Except for the small
additional computational cost, Expected Sarsa may completely dominate both of the
other more-well-known TD control algorithms.

a

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Performance on the Cliff-walking Task

37

142 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

We then present results on two versions of the windy
grid world problem, one with a deterministic environment
and one with a stochastic environment. We do so in order
to evaluate the influence of environment stochasticity on
the performance difference between Expected Sarsa and
Sarsa and confirm the first part of Hypothesis 2. We then
present results for different amounts of policy stochasticity
to confirm the second part of Hypothesis 2. For completeness,
we also show the performance of Q-learning on this problem.
Finally, we present results in other domains verifying the
advantages of Expected Sarsa in a broader setting. All results
presented below are averaged over numerous independent
trials such that the standard error becomes negligible.

A. Cliff Walking

We begin by testing Hypothesis 1 using the cliff walking
task, an undiscounted, episodic navigation task in which the
agent has to find its way from start to goal in a deterministic
grid world. Along the edge of the grid world is a cliff (see
Figure 1). The agent can take any of four movement actions:
up, down, left and right, each of which moves the agent one
square in the corresponding direction. Each step results in a
reward of -1, except when the agent steps into the cliff area,
which results in a reward of -100 and an immediate return
to the start state. The episode ends upon reaching the goal
state.

S G

Fig. 1. The cliff walking task. The agent has to move from the start [S]
to the goal [G], while avoiding stepping into the cliff (grey area).

We evaluated the performance over the first n episodes as
a function of the learning rate ↵ using an ✏-greedy policy
with ✏ = 0.1. Figure 2 shows the result for n = 100 and
n = 100, 000. We averaged the results over 50,000 runs and
10 runs, respectively.

Discussion. Expected Sarsa outperforms Q-learning and
Sarsa for all learning rate values, confirming Hypothesis 1
and providing some evidence for Hypothesis 2. The optimal
↵ value of Expected Sarsa for n = 100 is 1, while for
Sarsa it is lower, as expected for a deterministic problem.
That the optimal value of Q-learning is also lower than 1 is
surprising, since Q-learning also has no stochasticity in its
updates in a deterministic environment. Our explanation is
that Q-learning first learns policies that are sub-optimal in
the greedy sense, i.e. walking towards the goal with a detour
further from the cliff. Q-learning iteratively optimizes these
early policies, resulting in a path more closely along the cliff.
However, although this path is better in the off-line sense, in
terms of on-line performance it is worse. A large value of
↵ ensures the goal is reached quickly, but a value somewhat
lower than 1 ensures that the agent does not try to walk right

on the edge of the cliff immediately, resulting in a slightly
better on-line performance.

For n = 100, 000, the average return is equal for all
↵ values in case of Expected Sarsa and Q-learning. This
indicates that the algorithms have converged long before the
end of the run for all ↵ values, since we do not see any
effect of the initial learning phase. For Sarsa the performance
comes close to the performance of Expected Sarsa only for
↵ = 0.1, while for large ↵, the performance for n = 100, 000
even drops below the performance for n = 100. The reason
is that for large values of ↵ the Q values of Sarsa diverge.
Although the policy is still improved over the initial random
policy during the early stages of learning, divergence causes
the policy to get worse in the long run.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−160

−140

−120

−100

−80

−60

−40

−20

0

alpha

av
er

ag
e

re
tu

rn

n = 100, Sarsa
n = 100, Q−learning
n = 100, Expected Sarsa
n = 1E5, Sarsa
n = 1E5, Q−learning
n = 1E5, Expected Sarsa

Fig. 2. Average return on the cliff walking task over the first n episodes
for n = 100 and n = 100, 000 using an ✏-greedy policy with ✏ = 0.1. The
big dots indicate the maximal values.

B. Windy Grid World
We turn to the windy grid world task to further test Hy-

pothesis 2. The windy grid world task is another navigation
task, where the agent has to find its way from start to goal.
The grid has a height of 7 and a width of 10 squares. There
is a wind blowing in the ’up’ direction in the middle part of
the grid, with a strength of 1 or 2 depending on the column.
Figure 3 shows the grid world with a number below each
column indicating the wind strength. Again, the agent can
choose between four movement actions: up, down, left and
right, each resulting in a reward of -1. The result of an action
is a movement of 1 square in the corresponding direction plus
an additional movement in the ’up’ direction, corresponding
with the wind strength. For example, when the agent is in
the square right of the goal and takes a ’left’ action, it ends
up in the square just above the goal.

1) Deterministic Environment: We first consider a de-
terministic environment. As in the cliff walking task, we
use an ✏-greedy policy with ✏ = 0.1. Figure 4 shows the
performance as a function of the learning rate ↵ over the
first n episodes for n = 100 and n = 100, 000. For n = 100

Expected Sarsa

SarsaQ-learning

Asymptotic Performance

Interim Performance
(after 100 episodes)

Q-learning
Reward

per
episode

↵
10.1 0.2 0.4 0.6 0.80.3 0.5 0.7 0.9

0

-40

-80

-120

Figure 6.13: Interim and asymptotic performance of TD control methods on the cli↵-walking
task as a function of ↵. All algorithms used an "-greedy policy with " = 0.1. “Asymptotic”
performance is an average over 100,000 episodes. These data are averages of over 50,000 and
10 runs for the interim and asymptotic cases respectively. The solid circles mark the best
interim performance of each method. Adapted from van Seijen et al. (2009).

6.7 Maximization Bias and Double Learning

All the control algorithms that we have discussed so far involve maximization in the
construction of their target policies. For example, in Q-learning the target policy is
the greedy policy given the current action values, which is defined with a max, and in
Sarsa the policy is often "-greedy, which also involves a maximization operation. In
these algorithms, a maximum over estimated values is used implicitly as an estimate
of the maximum value, which can lead to a significant positive bias. To see why,
consider a single state s where there are many actions a whose true values, q(s, a),
are all zero but whose estimated values, Q(s, a), are uncertain and thus distributed
some above and some below zero. The maximum of the true values is zero, but the
maximum of the estimates is positive, a positive bias. We call this maximization
bias.

Maximization bias can be a problem for our control algorithms. A simple example
in which it harms performance is the MDP shown inset in Figure 6.14. The MDP
has two non-terminal states A and B. Episodes always start in A with a choice be-
tween two actions, right and wrong. The right action transitions immediately to the
terminal state with a reward and return of zero. The wrong action transitions to B,
also with a reward of zero, from which there are many possible actions all of which
cause immediate termination with a reward drawn from a normal distribution with
mean �0.1 and variance 1.0. Thus, the expected return for any trajectory starting
with wrong is �0.1, and wrong is indeed the ‘wrong’ action to take in state A. Nev-

van Seijen, van Hasselt, Whiteson, & Wiering 2009

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Off-policy Expected Sarsa

38

Expected Sarsa generalizes to arbitrary behavior policies &
in which case it includes Q-learning as the special case in
which π is the greedy policy

This idea seems to be new

6.6. EXPECTED SARSA 141

Q-learning Expected Sarsa

Figure 6.12: The backup diagrams for Q-learning and expected Sarsa.

6.6 Expected Sarsa

Consider the learning algorithm that is just like Q-learning except that instead of
the maximum over next state–action pairs it uses the expected value, taking into
account how likely each action is under the current policy. That is, consider the
algorithm with the update rule

Q(St, At) Q(St, At) + ↵
h
Rt+1 + �E[Q(St+1, At+1) | St+1]�Q(St, At)

i

 Q(St, At) + ↵
h
Rt+1 + �

X

a

⇡(a|St+1)Q(St+1, a)�Q(St, At)
i
, (6.7)

but that otherwise follows the schema of Q-learning (as in Figure 6.10). Given the
next state, St+1, this algorithm moves deterministically in the same direction as
Sarsa moves in expectation, and accordingly it is called expected Sarsa. Its backup
diagram is shown in Figure 6.12.

Expected Sarsa is more complex computationally than Sarsa but, in return, it
eliminates the variance due to the random selection of At+1. Given the same amount
of experience we might expect it to perform slightly better than Sarsa, and indeed it
generally does. Figure 6.13 shows summary results on the cli↵-walking task with Ex-
pected Sarsa compared to Sarsa and Q-learning. As an on-policy method, Expected
Sarsa retains the significant advantage of Sarsa over Q-learning on this problem. In
addition, Expected Sarsa shows a significant improvement over Sarsa over a wide
range of values for the step-size parameter ↵. In cli↵ walking the state transitions
are all deterministic and all randomness comes from the policy. In such cases, Ex-
pected Sarsa can safely set ↵ = 1 without su↵ering any degradation of asymptotic
performance, whereas Sarsa can only perform well in the long run at a small value
of ↵, at which short-term performance is poor. In this and other examples there is
a consistent empirical advantage of Expected Sarsa over Sarsa.

In these cli↵ walking results we have taken Expected Sarsa to be an on-policy
algorithm, but in general we can use a policy di↵erent from the target policy ⇡ to
generate behavior, in which case Expected Sarsa becomes an o↵-policy algorithm.
For example, suppose ⇡ is the greedy policy while behavior is more exploratory;
then Expected Sarsa is exactly Q-learning. In this sense Expected Sarsa subsumes
and generalizes Q-learning while reliably improving over Sarsa. Except for the small
additional computational cost, Expected Sarsa may completely dominate both of the
other more-well-known TD control algorithms.

6.6. EXPECTED SARSA 141

Q-learning Expected Sarsa

Figure 6.12: The backup diagrams for Q-learning and expected Sarsa.

6.6 Expected Sarsa

Consider the learning algorithm that is just like Q-learning except that instead of
the maximum over next state–action pairs it uses the expected value, taking into
account how likely each action is under the current policy. That is, consider the
algorithm with the update rule

Q(St, At) Q(St, At) + ↵
h
Rt+1 + �E[Q(St+1, At+1) | St+1]�Q(St, At)

i

 Q(St, At) + ↵
h
Rt+1 + �

X

a

⇡(a|St+1)Q(St+1, a)�Q(St, At)
i
, (6.7)

but that otherwise follows the schema of Q-learning (as in Figure 6.10). Given the
next state, St+1, this algorithm moves deterministically in the same direction as
Sarsa moves in expectation, and accordingly it is called expected Sarsa. Its backup
diagram is shown in Figure 6.12.

Expected Sarsa is more complex computationally than Sarsa but, in return, it
eliminates the variance due to the random selection of At+1. Given the same amount
of experience we might expect it to perform slightly better than Sarsa, and indeed it
generally does. Figure 6.13 shows summary results on the cli↵-walking task with Ex-
pected Sarsa compared to Sarsa and Q-learning. As an on-policy method, Expected
Sarsa retains the significant advantage of Sarsa over Q-learning on this problem. In
addition, Expected Sarsa shows a significant improvement over Sarsa over a wide
range of values for the step-size parameter ↵. In cli↵ walking the state transitions
are all deterministic and all randomness comes from the policy. In such cases, Ex-
pected Sarsa can safely set ↵ = 1 without su↵ering any degradation of asymptotic
performance, whereas Sarsa can only perform well in the long run at a small value
of ↵, at which short-term performance is poor. In this and other examples there is
a consistent empirical advantage of Expected Sarsa over Sarsa.

In these cli↵ walking results we have taken Expected Sarsa to be an on-policy
algorithm, but in general we can use a policy di↵erent from the target policy ⇡ to
generate behavior, in which case Expected Sarsa becomes an o↵-policy algorithm.
For example, suppose ⇡ is the greedy policy while behavior is more exploratory;
then Expected Sarsa is exactly Q-learning. In this sense Expected Sarsa subsumes
and generalizes Q-learning while reliably improving over Sarsa. Except for the small
additional computational cost, Expected Sarsa may completely dominate both of the
other more-well-known TD control algorithms.

aNothing
changes

here

Maximization Bias Example

B A rightwrong
0. . .

N(�0.1, 1)

0

Q-learning
Double
Q-learning

Episodes
1001 200 300

%
Wrong
actions

100%

75%

50%

25%

5%
0

optimal

6.5. Q-LEARNING: OFF-POLICY TD CONTROL 139

6.5 Q-learning: O↵-Policy TD Control

One of the most important breakthroughs in reinforcement learning was the devel-
opment of an o↵-policy TD control algorithm known as Q-learning (Watkins, 1989).
Its simplest form, one-step Q-learning , is defined by

Q(St, At) Q(St, At) + ↵
h
Rt+1 + � max

a
Q(St+1, a)�Q(St, At)

i
. (6.6)

In this case, the learned action-value function, Q, directly approximates q⇤, the op-
timal action-value function, independent of the policy being followed. This dramat-
ically simplifies the analysis of the algorithm and enabled early convergence proofs.
The policy still has an e↵ect in that it determines which state–action pairs are visited
and updated. However, all that is required for correct convergence is that all pairs
continue to be updated. As we observed in Chapter 5, this is a minimal requirement
in the sense that any method guaranteed to find optimal behavior in the general case
must require it. Under this assumption and a variant of the usual stochastic approx-
imation conditions on the sequence of step-size parameters, Q has been shown to
converge with probability 1 to q⇤. The Q-learning algorithm is shown in procedural
form in Figure 6.10.

What is the backup diagram for Q-learning? The rule (6.6) updates a state–action
pair, so the top node, the root of the backup, must be a small, filled action node.
The backup is also from action nodes, maximizing over all those actions possible in
the next state. Thus the bottom nodes of the backup diagram should be all these
action nodes. Finally, remember that we indicate taking the maximum of these “next
action” nodes with an arc across them (Figure 3.7). Can you guess now what the
diagram is? If so, please do make a guess before turning to the answer in Figure 6.12.

Initialize Q(s, a), 8s 2 S, a 2 A(s), arbitrarily, and Q(terminal-state, ·) = 0
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g., ✏-greedy)
Take action A, observe R, S0

Q(S, A) Q(S, A) + ↵
⇥
R + � maxa Q(S0, a)�Q(S, A)

⇤

S S0;
until S is terminal

Figure 6.10: Q-learning: An o↵-policy TD control algorithm.

Tabular Q-learning:

START

0.19 0.63 0.75 0.67 0.85 0.58 0.85 0.36 0.80 0.42
0.79 0.47 0.92 0.33 0.95 0.37 0.68 0.81 0.68 0.35
0.05 0.17 0.81 0.23 0.58 0.28 0.75 0.44 0.68 0.79
0.51 0.98 0.68 0.13 0.78 0.17 0.40 0.70 0.36 0.30
0.24 0.58 0.98 0.93 0.45 0.62 0.69 0.22 0.95 0.50
0.78 0.98 0.87 0.22 0.39 0.08 0.36 0.67 0.27 0.45
0.14 0.31 0.65 0.85 0.97 0.37 0.78 0.63 0.57 0.44
0.14 0.87 0.29 0.38 0.98 0.87 0.93 0.98 0.98 0.33
0.31 0.20 0.98 0.17 0.62 0.22 0.22 0.25 0.27 0.89
0.96 0.48 0.93 0.50 0.41 0.22 0.10 0.46 0.47 0.12

Double Q-Learning
• Train 2 action-value functions, Q1 and Q2

• Do Q-learning on both, but

• never on the same time steps (Q1 and Q2 are indep.)

• pick Q1 or Q2 at random to be updated on each step

• If updating Q1, use Q2 for the value of the next state:

• Action selections are (say) '-greedy with respect to the sum
of Q1 and Q2

Hado van Hasselt 2010

144 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

Initialize Q1(s, a) and Q2(s, a), 8s 2 S, a 2 A(s), arbitrarily
Initialize Q1(terminal-state, ·) = Q2(terminal-state, ·) = 0
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

Choose A from S using policy derived from Q1 and Q2 (e.g., "-greedy in Q1 + Q2)
Take action A, observe R, S0

With 0.5 probabilility:

Q1(S, A) Q1(S, A) + ↵
⇣
R + �Q2

�
S0, argmaxa Q1(S0, a)

�
�Q1(S, A)

⌘

else:

Q2(S, A) Q2(S, A) + ↵
⇣
R + �Q1

�
S0, argmaxa Q2(S0, a)

�
�Q2(S, A)

⌘

S S0;
until S is terminal

Figure 6.15: Double Q-learning.

The idea of doubled learning extends naturally to algorithms for full MDPs. For
example, the doubled learning algorithm analogous to Q-learning, called Double Q-
learning, divides the time steps in two, perhaps by flipping a coin on each step. If
the coin comes up heads, the update is

Q1(St, At) Q1(St, At)+↵
⇣
Rt+1 +Q2

�
St+1, argmax

a

Q1(St+1, a)
�
�Q1(St, At)

⌘
.

(6.8)

If the coin comes up tails, then the same update is done with Q1 and Q2 switched,
so that Q2 is updated. The two approximate value functions are treated completely
symmetrically. The behavior policy can use both action value estimates. For ex-
ample, an "-greedy policy for Double Q-learning could be based on the average (or
sum) of the two action-value estimates. A complete algorithm for Double Q-learning
is given in Figure 6.15. This is the algorithm used to produce the results in Fig-
ure 6.14. In this example, doubled learning seems to eliminate the harm caused by
maximization bias. Of course there are also doubled versions of Sarsa and Expected
Sarsa.

6.8 Games, Afterstates, and Other Special Cases

In this book we try to present a uniform approach to a wide class of tasks, but of
course there are always exceptional tasks that are better treated in a specialized way.
For example, our general approach involves learning an action-value function, but in
Chapter 1 we presented a TD method for learning to play tic-tac-toe that learned
something much more like a state-value function. If we look closely at that example, it
becomes apparent that the function learned there is neither an action-value function
nor a state-value function in the usual sense. A conventional state-value function
evaluates states in which the agent has the option of selecting an action, but the

Double Q-Learning
Hado van Hasselt 2010

144 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

Initialize Q1(s, a) and Q2(s, a), 8s 2 S, a 2 A(s), arbitrarily
Initialize Q1(terminal-state, ·) = Q2(terminal-state, ·) = 0
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

Choose A from S using policy derived from Q1 and Q2 (e.g., "-greedy in Q1 + Q2)
Take action A, observe R, S0

With 0.5 probabilility:

Q1(S, A) Q1(S, A) + ↵
⇣
R + �Q2

�
S0, argmaxa Q1(S0, a)

�
�Q1(S, A)

⌘

else:

Q2(S, A) Q2(S, A) + ↵
⇣
R + �Q1

�
S0, argmaxa Q2(S0, a)

�
�Q2(S, A)

⌘

S S0;
until S is terminal

Figure 6.15: Double Q-learning.

The idea of doubled learning extends naturally to algorithms for full MDPs. For
example, the doubled learning algorithm analogous to Q-learning, called Double Q-
learning, divides the time steps in two, perhaps by flipping a coin on each step. If
the coin comes up heads, the update is

Q1(St, At) Q1(St, At)+↵
⇣
Rt+1 +Q2

�
St+1, argmax

a

Q1(St+1, a)
�
�Q1(St, At)

⌘
.

(6.8)

If the coin comes up tails, then the same update is done with Q1 and Q2 switched,
so that Q2 is updated. The two approximate value functions are treated completely
symmetrically. The behavior policy can use both action value estimates. For ex-
ample, an "-greedy policy for Double Q-learning could be based on the average (or
sum) of the two action-value estimates. A complete algorithm for Double Q-learning
is given in Figure 6.15. This is the algorithm used to produce the results in Fig-
ure 6.14. In this example, doubled learning seems to eliminate the harm caused by
maximization bias. Of course there are also doubled versions of Sarsa and Expected
Sarsa.

6.8 Games, Afterstates, and Other Special Cases

In this book we try to present a uniform approach to a wide class of tasks, but of
course there are always exceptional tasks that are better treated in a specialized way.
For example, our general approach involves learning an action-value function, but in
Chapter 1 we presented a TD method for learning to play tic-tac-toe that learned
something much more like a state-value function. If we look closely at that example, it
becomes apparent that the function learned there is neither an action-value function
nor a state-value function in the usual sense. A conventional state-value function
evaluates states in which the agent has the option of selecting an action, but the

Example of Maximization Bias

B A rightwrong
0. . .

N(�0.1, 1)

0

Q-learning
Double
Q-learning

Episodes
1001 200 300

%
Wrong
actions

100%

75%

50%

25%

5%
0

optimal

Double Q-learning:

START

146 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

and � = 1).

B A rightleft
0. . .

N(�0.1, 1)

0

Q-learning
Double
Q-learning

Episodes
1001 200 300

% left
actions
from A

100%

75%

50%

25%

5%
0

optimal

Figure 6.8: Comparison of Q-learning and Double Q-learning on a simple episodic MDP
(shown inset). Q-learning initially learns to take the left action much more often than the right
action, and always takes it significantly more often than the 5% minimum probability enforced
by "-greedy action selection with " = 0.1. In contrast, Double Q-learning is essentially
una↵ected by maximization bias. These data are averaged over 10,000 runs. The initial
action-value estimates were zero. Any ties in "-greedy action selection were broken randomly.

Are there algorithms that avoid maximization bias? To start, consider a bandit
case in which we have noisy estimates of the value of each of many actions, obtained
as sample averages of the rewards received on all the plays with each action. As we
discussed above, there will be a positive maximization bias if we use the maximum
of the estimates as an estimate of the maximum of the true values. One way to view
the problem is that it is due to using the same samples (plays) both to determine
the maximizing action and to estimate its value. Suppose we divided the plays in
two sets and used them to learn two independent estimates, call them Q1(a) and
Q2(a), each an estimate of the true value q(a), for all a 2 A. We could then use
one estimate, say Q1, to determine the maximizing action A⇤ = argmaxa Q1(a), and
the other, Q2, to provide the estimate of its value, Q2(A⇤) = Q2(argmaxa Q1(a)).
This estimate will then be unbiased in the sense that E[Q2(A⇤)] = q(A⇤). We can
also repeat the process with the role of the two estimates reversed to yield a second
unbiased estimate Q1(argmaxa Q2(a)). This is the idea of doubled learning. Note
that although we learn two estimates, only one estimate is updated on each play;
doubled learning doubles the memory requirements, but is no increase at all in the
amount of computation per step.

The idea of doubled learning extends naturally to algorithms for full MDPs. For
example, the doubled learning algorithm analogous to Q-learning, called Double Q-
learning, divides the time steps in two, perhaps by flipping a coin on each step. If
the coin comes up heads, the update is

Q1(St, At) Q1(St, At)+↵
h
Rt+1 +�Q2

�
St+1, argmax

a

Q1(St+1, a)
�
�Q1(St, At)

i
.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 44

Afterstates

Usually, a state-value function evaluates states in which
the agent can take an action.
But sometimes it is useful to evaluate states after agent has
acted, as in tic-tac-toe.
Why is this useful?

What is this in general?

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 45

Summary

Introduced one-step tabular model-free TD methods
These methods bootstrap and sample, combining aspects of
DP and MC methods
TD methods are computationally congenial
If the world is truly Markov, then TD methods will learn
faster than MC methods
MC methods have lower error on past data, but higher error
on future data
Extend prediction to control by employing some form of GPI

On-policy control: Sarsa, Expected Sarsa
Off-policy control: Q-learning, Expected Sarsa

Avoiding maximization bias with Double Q-learning

