
Monte Carlo Tree Search
Cmput 366/609 Guest Lecture

Fall 2017
Martin Müller

mmueller@ualberta.ca

mailto:mmueller@ualberta.ca

Contents

• 3+1 Pillars of Heuristic Search

• Monte Carlo Tree Search

• Learning and using Knowledge

• Deep neural nets and AlphaGo

Decision-Making
• One-shot decision making

• Example - image
classification

• Analyze image, tell what’s
in it

• Sequential decision-making

• Need to look at possible
futures in order to make a
good decision now

Source: http://cs231n.github.io/
assets/classify.png

Heuristic Search

• State space (e.g. game position; location of
robot and obstacles; state of Rubik’s cube)

• Actions (e.g. play on C3; move 50cm North;
turn left)

• Start state and goal

• Heuristic evaluation function - estimate
distance of a state to goal

Three plus one Pillars of  
Modern Heuristic Search
• Search algorithm

• Evaluation function, heuristic

• Simulation

• We have had search+evaluation for decades
(alphabeta, A*, greedy best-first search,…)

• Combining all three is relatively new -

• Machine learning is key

Alphabeta Search

• Classic algorithm for games

• Search + evaluation, no simulation

• Minimax principle

• My turn: choose best move

• Opponent’s turn: they choose move
that’s worst for me

αβ Successes (1)

• Solved games -  
proven value of starting position

• checkers (Schaeffer et al 2007)

• Nine men’s morris (Gasser 1994)

• Gomoku (5 in a row) (Allis 1990)

• Awari, 5x5 Go, 5x5 Amazons,.....

αβ Successes (2)

• Not solved, but super-human strength:

• chess (Deep Blue team, 1996)

• Othello (Buro 1996)

• shogi (Japanese chess, around 2013?)

• xiangqi (Chinese chess, around 2013?)

αβ Failures

• Go

• General Game Playing (GGP)

• Why fail?

• Focus on Go here

Go

• Classic Asian board game

• Simple rules, complex strategy

• Played by millions

• Hundreds of top experts - professional
players

• Until recently, computers much weaker
than humans

Go Rules

• Start: empty board

• Goal: surround

• Empty points

• Opponent (capture)

• Win: control more  
than half the board

1 1

9

4

2
1 0

8 6

1 2
1 4

1

1 3

7

3

a

5

• End: both players pass

• Territory - intersections surrounded by one player

• The player with more (stones+territory) wins the game

• Komi: adjustment for first player advantage (e.g. 7.5 points)

End of Game

Why does αβ
Fail in Go?

• Huge state space,  
depth and width of game tree

• 250 moves on average

• game length > 250 moves average

• Until very recently:  
no good evaluation function  

Monte Carlo Methods
• Popular in the last 10 years

• Hugely successful in many applications

• Backgammon (Tesauro) early example

• Go (many)

• Amazons, Havannah, Lines of Action, ...

• Planning, energy management,
mathematical optimization, solve
MDP,...

Monte Carlo Simulation

• No evaluation function? No
problem!

• Simulate rest of game using
random moves (easy)

• Score the game at the end
(easy)

• Use that as evaluation (hmm,
but...)

The GIGO Principle
• Garbage in, garbage out

• Even the best algorithms
do not work if the input
data is bad

• Making random moves
sounds pretty bad...

• How can we gain any
information from playing
them?

Well, it Works!

• For some games, anyway

• Even random moves often preserve some
difference between a good position and a
bad one

• The rest is (mostly) statistics…

Basic “Flat” Monte
Carlo Search Algorithm

1. Play lots of random games starting with
each possible move

2. Keep winning statistics for each move

3. Play move with best winning percentage

Example

Current position s

Simulation

 1 1 0 0 Outcomes

V(s) = 2/4 = 0.5

How to Improve?

1. Better-than-random simulations

2. Add game tree (as in αβ)

3. Add knowledge as bias in the game tree

4. AlphaGo

1. Better Simulations

• Goal: strong correlation between initial
position and result of simulation

• Try to preserve wins and losses

• How?

Use Knowledge in
Simulations

• MoGo-style patterns

• Tactical rules

• Machine learning using features and
feature weights

MoGo-Style Patterns
• 3x3 or 2x3 patterns

• Apply as response near last move

Building a better
Randomized Policy

• Use rules, patterns  
to set probabilities for each legal move

• Learn probabilities

• From human games

• From self-play

2. Add Game Tree
• First idea:

• Use αβ

• Use simulations directly as an
evaluation function for

• This fails:

• Too much noise

• Too slow

Monte Carlo
Tree Search

• Idea: use results of simulations  
to guide growth of the game tree

• Exploitation:  
focus on promising moves

• Exploration: focus on moves where
uncertainty about evaluation is high

• Two contradictory goals?

UCB Formula

• Multi-armed bandits (slot machines in
Casino)

• Which bandit has best payoff?

• Explore all arms, but:

• Play promising arms more often

• Minimize regret from playing poor arms

Some Statistics
• Take random

samples from fixed
probability
distribution

• With many trials,
average outcome
will converge to the
expected outcome

• Confidence bounds:
true value is
probably within
these bounds

UCB Idea

• UCB = Upper confidence bound

• Take next sample for the arm for which
UCB is highest

• Principle:  
optimism in the face of uncertainty

UCT Algorithm
• Kocsis and Szepesvari (2006)

• Apply UCB in each node 
 of a game tree

• Which node to expand next?

• Start at root (current state)

• While in tree, choose child n that
maximizes:

UCTValue(parent, n) =
 winrate(n)  
+ C * sqrt(ln(parent.visits)/n.visits)

UCTValue(parent, n) =

winrate(n) + C * sqrt(ln(parent.visits)/n.visits)

• winrate(n) .. exploitation term - average
success of n so far

• 1/n.visits .. part of exploration term - explore
nodes with very few visits - reduce
uncertainty

• ln(parent.visits) .. part of exploration term -
explore all nodes at least a little bit

• C .. exploration constant - how important is
exploration relative to exploitation?

Slides adapted from  
David Silver’s

Summary - Monte
Carlo Tree Search

• Amazingly successful in games and in
probabilistic planning (PROST system)

• Top in Backgammon, Go, General
Game Playing, Hex, Amazons, Lines of
Action, Havannah,...

• Similar methods work in multiplayer
games (e.g. card games), planning,
puzzles, energy resource allocation,...

MCTS Comments

• Very successful in practice

• Scales OK to parallel machines

• Why and how does it work?

• Still poorly understood

• Some limitations (see next slide)

Adding Machine-
Learned Knowledge to

MCTS
• Game-specific knowledge can overcome

limitations

• Two case studies

• Learning with simple features

• Deep convolutional neural nets and
AlphaGo

Why Learn Knowledge?

• In Go, usually only a small number of good
moves

• Human masters strongly prune almost all
other moves - and it works!

• It takes time for noisy simulations to
rediscover these bad moves every time

• So - let’s learn it.

Example of Knowledge
• Learned move values 

Blue = good 
Green = bad

• Use as initial bias  
in the MCTS tree  
(in-tree, not in playouts)

• Search will initially focus  
on probably good moves

• Search can still discover 
other moves later

Simple Knowledge

• Fast machine-learned evaluation function

• Supervised learning from master games

• Simple features express quality of moves

• Algorithms learn weights for individual
features, and combinations of features

• Training goal: move prediction  
- what did the master play?

Simple Knowledge
Examples

• Properties of a candidate move

• Help to predict whether that move is good

• Examples:

• location on board

• local context, e.g. 3x3 pattern

• capture/escape with stones, “ladder”

• liberties, cut/connect, eye,...

How to Learn
Features?

• Standard approach in MCTS (Coulom):

• Each feature has a weight

• If a move has several features, then:  
move value is the product (or sum)  
of the feature weights

• Improvement: take interactions of features
into account (Wistuba, Xiao)

Learning Example

• Professional game records

• about 40.000 games from badukmovies.com

• about 10 Million positions, 2.5 billion move
candidates

• Label all moves in all positions in all games
with their features

• Each feature has a unique ID number

Example of Labeled Candidate
Moves for One Position

.....
0 16 21 80 85 117 122 136 1122
0 21 41 81 85 117 122 124 1127
0 21 40 82 85 117 122 1125
0 21 39 81 85 117 122 1134
0 21 38 80 85 117 122 1134
0 21 37 79 85 117 122 1134
0 21 36 78 85 117 122 1134
0 21 41 73 85 117 122 123 142
0 0
1 10 18 22 77 85 117 122 128 1883

0 .. move not played
1 .. move played
16, 21, ... feature IDs

Training
• Total data: about 65GB

• Learn model: values for all features using
stochastic gradient descent

• Use a validation set to check progress

• 5-10% of data, kept separate

• Iterate over data until 3x no improvement

• Keep the model that does best on
validation set

• Best result: about 39% move prediction

Examples

Computer Go Before AlphaGo

❖ Summary of state of the art
before AlphaGo:

❖ Search - quite strong
❖ Simulations - OK, but hard to

improve
❖ Knowledge

❖ Good for move selection
❖ Considered hopeless for

position evaluation Who is better here?

Neural Networks (1)
• Deep convolutional neural networks

(DCNN)

• Large, multilayer networks

• None of the limitations of simple features

• Learn complex relations on the board

• Originally trained by supervised learning

• 2015: Human-level move prediction (57%)

Neural Networks (2)

• AlphaGo (2016)

• Start with supervised learning for DCNN

• Improve move selection by self-play and
reinforcement learning (RL)

• Learned value network for evaluation

• Integrate networks in MCTS

• Beat top human Go player 4-1 in match

Value Network (2016)

❖ Given a Go position
❖ Computes probability of

winning
❖ Static evaluation function
❖ Trained from millions of Go

positions labeled with self-play
game result (win, loss)

❖ Trains a deep neural network

AlphaGo Zero (2017)

• Learn Go without human knowledge

• Train by RL, only from self play

• Start with random play, continuously update
neural net

• Train a single net for both policy and value

AlphaGo Zero Details
• Policy net is trained by running MCTS (!)

• Move selection frequency mapped to probability

• MCTS: no more simulations!!!

• Only in-tree phase

• Evaluate leaf node by value net

• Update value net from result at end of game

• Becomes stronger than previous AlphaGo

AlphaGo Zero
Comments

• Architecture is a lot more elegant

• Strong integration of learning and MCTS

• MCTS used to define the learning target for
policy

• MCTS uses thelearned net at every step

• Requires massive, Google-scale resources to train

Alpha Zero

• Just published on arxiv, Dec 5, 2017

• Apply AlphaGo Zero approach to chess, shogi
(Japanese chess)

• Remove Go-specific training details

• Simplify training procedure for network

• Learns to beat top chess, shogi programs

• Requires massive, Google-scale resources to train

Alpha Zero Results

Where do we Go  
from Here?

• Which problems can we use this for?

• The methods are quite general,  
not game-specific

• We need an internal model of the
problem in order to learn from self play

• Can we use similar approaches when we
have lots of data to define an approaximate
model?

Is the Game of Go
Solved Now?

• No!

• AlphaGo is incredibly strong…

• But it is all heuristics

• AlphaGo still makes mistakes

• 5x5, 5x6 Go are solved

• Can play some full-board 19x19
puzzles perfectly using
combinatorial game theory  

Solving Go Endgame
Puzzles

Game of Hex
• Connect two sides of

your own color

• No draws

• Some similarities to Go,
some differences

• Very hard game of pure
strategy

Image: https://ilk.uvt.nl/icga/games/hex/hex0m.gif

https://ilk.uvt.nl/icga/games/hex/hex0m.gif

MoHex (1)

• MoHex: world’s strongest Hex program

• Developed by Ryan Hayward’s group in
Alberta

• Open source

• Won last four Computer Olympiads

MoHex (2)
Game-specific enhancements:

• Hard pruning - provably bad or inferior
moves

• Very strong exact endgame solver -
uses an search algorithm called depth-
first proof-number search

• See https://webdocs.cs.ualberta.ca/
~hayward/hex/

Learn more about
modern heuristic search,

MCTS and AlphaGo
• Course Cmput 496

• Search, Knowledge and Simulations

• From the basics to AlphaGo

• Second run starting Winter 2018

• Low math content, focus on concepts and
code examples

Summary (1)

• Monte Carlo methods revolutionized
heuristic search in games and planning

• Modern algorithms use all three: search,
knowledge and simulation

• Machine learning to improve knowledge,
e.g. feature learning, deep neural nets

Except Alpha Zero…

Summary (2)
• Alpha Zero combines all these methods

effectively - superhuman strength in Go,
chess, shogi

• MCTS: Many very successful applications,
still not well understood in general

• Newest development: tightly integrate
search and deep learning

• Future challenge: extend to exact
solutions?

