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Chapter 5: Monte Carlo Methods

❐ Monte Carlo methods are learning methods  
      Experience → values, policy

❐ Monte Carlo methods can be used in two ways:
! model-free: No model necessary and still attains optimality
! simulated: Needs only a simulation, not a full model

❐ Monte Carlo methods learn from complete sample returns
! Only defined for episodic tasks (in this book)

❐ Like an associative version of a bandit method
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Monte Carlo Policy Evaluation

❐ Goal: learn
❐ Given: some number of episodes under π which contain s
❐ Idea: Average returns observed after visits to s

❐ Every-Visit MC: average returns for every time s is visited 
in an episode 

❐ First-visit MC: average returns only for first time s is 
visited in an episode 

❐ Both converge asymptotically

1 2 3 4 5

v⇡(s)
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First-visit Monte Carlo policy evaluation
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To handle the nonstationarity, we adapt the idea of general policy iteration (GPI)
developed in Chapter 4 for DP. Whereas there we computed value functions from
knowledge of the MDP, here we learn value functions from sample returns with
the MDP. The value functions and corresponding policies still interact to attain
optimality in essentially the same way (GPI). As in the DP chapter, first we consider
the prediction problem (the computation of v⇡ and q⇡ for a fixed arbitrary policy ⇡)
then policy improvement, and, finally, the control problem and its solution by GPI.
Each of these ideas taken from DP is extended to the Monte Carlo case in which
only sample experience is available.

5.1 Monte Carlo Prediction

We begin by considering Monte Carlo methods for learning the state-value function
for a given policy. Recall that the value of a state is the expected return—expected
cumulative future discounted reward—starting from that state. An obvious way to
estimate it from experience, then, is simply to average the returns observed after
visits to that state. As more returns are observed, the average should converge to
the expected value. This idea underlies all Monte Carlo methods.

In particular, suppose we wish to estimate v⇡(s), the value of a state s under
policy ⇡, given a set of episodes obtained by following ⇡ and passing through s.
Each occurrence of state s in an episode is called a visit to s. Of course, s may
be visited multiple times in the same episode; let us call the first time it is visited
in an episode the first visit to s. The first-visit MC method estimates v⇡(s) as the
average of the returns following first visits to s, whereas the every-visit MC method
averages the returns following all visits to s. These two Monte Carlo (MC) methods
are very similar but have slightly di↵erent theoretical properties. First-visit MC has
been most widely studied, dating back to the 1940s, and is the one we focus on
in this chapter. Every-visit MC extends more naturally to function approximation
and eligibility traces, as discussed in Chapters 9 and 7. First-visit MC is shown in
procedural form in Figure 5.1.

Initialize:
⇡  policy to be evaluated
V  an arbitrary state-value function
Returns(s) an empty list, for all s 2 S

Repeat forever:
Generate an episode using ⇡
For each state s appearing in the episode:

G return following the first occurrence of s
Append G to Returns(s)
V (s) average(Returns(s))

Figure 5.1: The first-visit MC method for estimating v⇡.
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Blackjack example

❐ Object: Have your card sum be greater than the dealer’s 
without exceeding 21.

❐ States (200 of them): 
! current sum (12-21)
! dealer’s showing card (ace-10)
! do I have a useable ace?

❐ Reward: +1 for winning, 0 for a draw, -1 for losing
❐ Actions: stick (stop receiving cards), hit (receive another 

card)
❐ Policy: Stick if my sum is 20 or 21, else hit
❐ No discounting (! = 1)
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Learned blackjack state-value functions



terminal state
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Backup diagram for Monte Carlo

❐ Entire rest of episode included

❐ Only one choice considered at 
each state (unlike DP)

! thus, there will be an 
explore/exploit dilemma

❐ Does not bootstrap from 
successor states’s values 
(unlike DP)

❐ Time required to estimate one 
state does not depend on the 
total number of states
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e.g., Elastic Membrane (Dirichlet Problem)

The Power of Monte Carlo

How do we compute the shape of the membrane or bubble?
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Relaxation Kakutani’s algorithm, 1945

Two Approaches
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Monte Carlo Estimation of Action Values (Q)

❐ Monte Carlo is most useful when a model is not available
! We want to learn q*

❐ qπ(s,a) - average return starting from state s and action a 
following π

❐ Converges asymptotically if every state-action pair is 
visited

❐ Exploring starts: Every state-action pair has a non-zero 
probability of being the starting pair
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Monte Carlo Control

❐ MC policy iteration: Policy evaluation using MC methods 
followed by policy improvement

❐ Policy improvement step: greedify with respect to value 
(or action-value) function

evaluation

improvement

⇡ Q
⇡  greedy(Q)

Q q⇡
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Policy improvement is done by making the policy greedy with respect to the current
value function. In this case we have an action-value function, and therefore no
model is needed to construct the greedy policy. For any action-value function q, the
corresponding greedy policy is the one that, for each s 2 S, deterministically chooses
an action with maximal action-value:

⇡(s)
.
= arg max

a
q(s, a). (5.1)

Policy improvement then can be done by constructing each ⇡k+1 as the greedy policy
with respect to q⇡k

. The policy improvement theorem (Section 4.2) then applies to
⇡k and ⇡k+1 because, for all s 2 S,

q⇡k
(s, ⇡k+1(s)) = q⇡k

(s, argmax
a

q⇡k
(s, a))

= max
a

q⇡k
(s, a)

� q⇡k
(s, ⇡k(s))

= v⇡k
(s).

As we discussed in the previous chapter, the theorem assures us that each ⇡k+1 is
uniformly better than ⇡k, or just as good as ⇡k, in which case they are both optimal
policies. This in turn assures us that the overall process converges to the optimal
policy and optimal value function. In this way Monte Carlo methods can be used
to find optimal policies given only sample episodes and no other knowledge of the
environment’s dynamics.

We made two unlikely assumptions above in order to easily obtain this guarantee of
convergence for the Monte Carlo method. One was that the episodes have exploring
starts, and the other was that policy evaluation could be done with an infinite number
of episodes. To obtain a practical algorithm we will have to remove both assumptions.
We postpone consideration of the first assumption until later in this chapter.

For now we focus on the assumption that policy evaluation operates on an infinite
number of episodes. This assumption is relatively easy to remove. In fact, the
same issue arises even in classical DP methods such as iterative policy evaluation,
which also converge only asymptotically to the true value function. In both DP
and Monte Carlo cases there are two ways to solve the problem. One is to hold
firm to the idea of approximating q⇡k

in each policy evaluation. Measurements and
assumptions are made to obtain bounds on the magnitude and probability of error
in the estimates, and then su�cient steps are taken during each policy evaluation to
assure that these bounds are su�ciently small. This approach can probably be made
completely satisfactory in the sense of guaranteeing correct convergence up to some
level of approximation. However, it is also likely to require far too many episodes to
be useful in practice on any but the smallest problems.

The second approach to avoiding the infinite number of episodes nominally required
for policy evaluation is to forgo trying to complete policy evaluation before returning
to policy improvement. On each evaluation step we move the value function toward
q⇡k

, but we do not expect to actually get close except over many steps. We used this
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Convergence of MC Control

❐ Greedified policy meets the conditions for policy improvement:

❐ And thus must be ≥ πk by the policy improvement theorem
❐ This assumes exploring starts and infinite number of episodes 

for MC policy evaluation
❐ To solve the latter: 

! update only to a given level of performance
! alternate between evaluation and improvement per episode

≥
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Monte Carlo Exploring Starts

Fixed point is optimal 
policy π*

Now proven (almost)

5.3. MONTE CARLO CONTROL 107

Initialize, for all s 2 S, a 2 A(s):
Q(s, a) arbitrary
⇡(s) arbitrary
Returns(s, a) empty list

Repeat forever:
Choose S0 2 S and A0 2 A(S0) s.t. all pairs have probability > 0
Generate an episode starting from S0, A0, following ⇡
For each pair s, a appearing in the episode:

G return following the first occurrence of s, a
Append G to Returns(s, a)
Q(s, a) average(Returns(s, a))

For each s in the episode:
⇡(s) argmaxa Q(s, a)

Figure 5.4: Monte Carlo ES: A Monte Carlo control algorithm assuming exploring starts
and that episodes always terminate for all policies.

idea when we first introduced the idea of GPI in Section 4.6. One extreme form of
the idea is value iteration, in which only one iteration of iterative policy evaluation
is performed between each step of policy improvement. The in-place version of
value iteration is even more extreme; there we alternate between improvement and
evaluation steps for single states.

For Monte Carlo policy evaluation it is natural to alternate between evaluation
and improvement on an episode-by-episode basis. After each episode, the observed
returns are used for policy evaluation, and then the policy is improved at all the
states visited in the episode. A complete simple algorithm along these lines is given
in Figure 5.4. We call this algorithm Monte Carlo ES, for Monte Carlo with Exploring
Starts.

In Monte Carlo ES, all the returns for each state–action pair are accumulated and
averaged, irrespective of what policy was in force when they were observed. It is easy
to see that Monte Carlo ES cannot converge to any suboptimal policy. If it did, then
the value function would eventually converge to the value function for that policy,
and that in turn would cause the policy to change. Stability is achieved only when
both the policy and the value function are optimal. Convergence to this optimal
fixed point seems inevitable as the changes to the action-value function decrease
over time, but has not yet been formally proved. In our opinion, this is one of the
most fundamental open theoretical questions in reinforcement learning (for a partial
solution, see Tsitsiklis, 2002).

Example 5.3: Solving Blackjack It is straightforward to apply Monte Carlo
ES to blackjack. Since the episodes are all simulated games, it is easy to arrange
for exploring starts that include all possibilities. In this case one simply picks the
dealer’s cards, the player’s sum, and whether or not the player has a usable ace, all
at random with equal probability. As the initial policy we use the policy evaluated
in the previous blackjack example, that which sticks only on 20 or 21. The initial
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Blackjack example continued

❐ Exploring starts
❐ Initial policy as described before
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Figure 5.5: The optimal policy and state-value function for blackjack, found by Monte
Carlo ES (Figure 5.4). The state-value function shown was computed from the action-value
function found by Monte Carlo ES.

action-value function can be zero for all state–action pairs. Figure 5.5 shows the
optimal policy for blackjack found by Monte Carlo ES. This policy is the same as the
“basic” strategy of Thorp (1966) with the sole exception of the leftmost notch in the
policy for a usable ace, which is not present in Thorp’s strategy. We are uncertain
of the reason for this discrepancy, but confident that what is shown here is indeed
the optimal policy for the version of blackjack we have described.

5.4 Monte Carlo Control without Exploring Starts

How can we avoid the unlikely assumption of exploring starts? The only general way
to ensure that all actions are selected infinitely often is for the agent to continue to
select them. There are two approaches to ensuring this, resulting in what we call
on-policy methods and o↵-policy methods. On-policy methods attempt to evaluate
or improve the policy that is used to make decisions, whereas o↵-policy methods
evaluate or improve a policy di↵erent from that used to generate the data. The
Monte Carlo ES method developed above is an example of an on-policy method. In
this section we show how an on-policy Monte Carlo control method can be designed
that does not use the unrealistic assumption of exploring starts. O↵-policy methods
are considered in the next section.

In on-policy control methods the policy is generally soft, meaning that ⇡(a|s) > 0
for all s 2 S and all a 2 A(s), but gradually shifted closer and closer to a deterministic
optimal policy. Many of the methods discussed in Chapter 2 provide mechanisms
for this. The on-policy method we present in this section uses "-greedy policies,



❐ On-policy: learn about policy currently executing
❐ How do we get rid of exploring starts?

! The policy must be eternally soft: 
– π(a|s) > 0 for all s and a

! e.g. ε-soft policy: 
– probability of an action =              or
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On-policy Monte Carlo Control

max (greedy)non-max

❐ Similar to GPI: move policy towards greedy policy  
(e.g.,  ε-greedy)

❐ Converges to best ε-soft policy
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policies. Let ev⇤ and eq⇤ denote the optimal value functions for the new environment.
Then a policy ⇡ is optimal among "-soft policies if and only if v⇡ = ev⇤. From the
definition of ev⇤ we know that it is the unique solution to

ev⇤(s) = (1� ") max
a

eq⇤(s, a) +
✏

|A(s)|
X

a

eq⇤(s, a)
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h
r + �ev⇤(s
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✏
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X
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r + �ev⇤(s

0)
i
.

When equality holds and the "-soft policy ⇡ is no longer improved, then we also
know, from (5.2), that

v⇡(s) = (1� ") max
a

q⇡(s, a) +
✏

|A(s)|
X

a

q⇡(s, a)

= (1� ") max
a

X
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i
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X
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r + �v⇡(s0)

i
.

However, this equation is the same as the previous one, except for the substitution
of v⇡ for ev⇤. Since ev⇤ is the unique solution, it must be that v⇡ = ev⇤.

In essence, we have shown in the last few pages that policy iteration works for "-soft
policies. Using the natural notion of greedy policy for "-soft policies, one is assured
of improvement on every step, except when the best policy has been found among
the "-soft policies. This analysis is independent of how the action-value functions are

Initialize, for all s 2 S, a 2 A(s):
Q(s, a) arbitrary
Returns(s, a) empty list
⇡(a|s) an arbitrary "-soft policy

Repeat forever:
(a) Generate an episode using ⇡
(b) For each pair s, a appearing in the episode:

G return following the first occurrence of s, a
Append G to Returns(s, a)
Q(s, a) average(Returns(s, a))

(c) For each s in the episode:
a⇤  arg maxa Q(s, a)
For all a 2 A(s):

⇡(a|s) 
⇢

1� " + "/|A(s)| if a = a⇤

"/|A(s)| if a 6= a⇤

Figure 5.6: An on-policy first-visit MC control algorithm for "-soft policies.

1� ✏+
✏

|A(s)|
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On-policy MC Control

110 CHAPTER 5. MONTE CARLO METHODS

policies. Let ev⇤ and eq⇤ denote the optimal value functions for the new environment.
Then a policy ⇡ is optimal among "-soft policies if and only if v⇡ = ev⇤. From the
definition of ev⇤ we know that it is the unique solution to

ev⇤(s) = (1� ") max
a

eq⇤(s, a) +
✏

|A(s)|
X

a

eq⇤(s, a)

= (1� ") max
a

X

s0,r

p(s0, r|s, a)
h
r + �ev⇤(s

0)
i

+
✏

|A(s)|
X

a

X

s0,r

p(s0, r|s, a)
h
r + �ev⇤(s

0)
i
.

When equality holds and the "-soft policy ⇡ is no longer improved, then we also
know, from (5.2), that

v⇡(s) = (1� ") max
a

q⇡(s, a) +
✏

|A(s)|
X

a

q⇡(s, a)

= (1� ") max
a

X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s0)

i

+
✏

|A(s)|
X

a

X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s0)

i
.
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What we’ve learned about Monte Carlo so far

❐ MC has several advantages over DP:
! Can learn directly from interaction with environment
! No need for full models
! No need to learn about ALL states (no bootstrapping)
! Less harmed by violating Markov property (later in book)

❐ MC methods provide an alternate policy evaluation process
❐ One issue to watch for: maintaining sufficient exploration

! exploring starts, soft policies



Off-policy methods

❐  Learn the value of the target policy π from experience due 
to behavior policy b

❐ For example, π is the greedy policy (and ultimately the 
optimal policy) while " is exploratory (e.g., #-soft)

❐ In general, we only require coverage, i.e., that b generates 
behavior that covers, or includes, π

❐ Idea: importance sampling
– Weight each return by the ratio of the probabilities 

of the trajectory under the two policies

17
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that ⇡(a|s) > 0 implies µ(a|s) > 0. This is called the assumption of coverage. It
follows from coverage that µ must be stochastic in states where it is not identical
to ⇡. The target policy ⇡, on the other hand, may be deterministic, and, in fact,
this is a case of particular interest in control problems. In control, the target policy
is typically the deterministic greedy policy with respect to the current action-value
function estimate. This policy becomes a deterministic optimal policy while the
behavior policy remains stochastic and more exploratory, for example, an "-greedy
policy. In this section, however, we consider the prediction problem, in which ⇡ is
unchanging and given.

Almost all o↵-policy methods utilize importance sampling, a general technique for
estimating expected values under one distribution given samples from another. We
apply importance sampling to o↵-policy learning by weighting returns according to
the relative probability of their trajectories occurring under the target and behavior
policies, called the importance-sampling ratio. Given a starting state St, the prob-
ability of the subsequent state–action trajectory, At, St+1, At+1, . . . , ST , occurring
under any policy ⇡ is

T�1Y

k=t

⇡(Ak|Sk)p(Sk+1|Sk, Ak),

where p here is the state-transition probability function defined by (3.8). Thus,
the relative probability of the trajectory under the target and behavior policies (the
importance-sampling ratio) is

⇢T
t

.
=

QT�1
k=t ⇡(Ak|Sk)p(Sk+1|Sk, Ak)QT�1
k=t µ(Ak|Sk)p(Sk+1|Sk, Ak)

=
T�1Y

k=t

⇡(Ak|Sk)

µ(Ak|Sk)
. (5.3)

Note that although the trajectory probabilities depend on the MDP’s transition
probabilities, which are generally unknown, all the transition probabilities cancel.
The importance sampling ratio ends up depending only on the two policies and not
at all on the MDP.

Now we are ready to give a Monte Carlo algorithm that uses a batch of observed
episodes following policy µ to estimate v⇡(s). It is convenient here to number time
steps in a way that increases across episode boundaries. That is, if the first episode
of the batch ends in a terminal state at time 100, then the next episode begins at
time t = 101. This enables us to use time-step numbers to refer to particular steps in
particular episodes. In particular, we can define the set of all time steps in which state
s is visited, denoted T(s). This is for an every-visit method; for a first-visit method,
T(s) would only include time steps that were first visits to s within their episodes.
Also, let T (t) denote the first time of termination following time t, and Gt denote the
return after t up through T (t). Then {Gt}t2T(s) are the returns that pertain to state

s, and {⇢T (t)
t }t2T(s) are the corresponding importance-sampling ratios. To estimate

v⇡(s), we simply scale the returns by the ratios and average the results:

V (s)
.
=

P
t2T(s) ⇢T (t)

t Gt

|T(s)| . (5.4)

for every s,a at which b(a|s) > 0



❐ Probability of the rest of the trajectory, after St, under π:

❐ In importance sampling, each return is weighted by the 
relative probability of the trajectory under the two policies

❐ This is called the importance sampling ratio
❐ All importance sampling ratios have expected value 1

Importance Sampling Ratio

18
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that ⇡(a|s) > 0 implies µ(a|s) > 0. This is called the assumption of coverage. It
follows from coverage that µ must be stochastic in states where it is not identical
to ⇡. The target policy ⇡, on the other hand, may be deterministic, and, in fact,
this is a case of particular interest in control problems. In control, the target policy
is typically the deterministic greedy policy with respect to the current action-value
function estimate. This policy becomes a deterministic optimal policy while the
behavior policy remains stochastic and more exploratory, for example, an "-greedy
policy. In this section, however, we consider the prediction problem, in which ⇡ is
unchanging and given.

Almost all o↵-policy methods utilize importance sampling, a general technique for
estimating expected values under one distribution given samples from another. We
apply importance sampling to o↵-policy learning by weighting returns according to
the relative probability of their trajectories occurring under the target and behavior
policies, called the importance-sampling ratio. Given a starting state St, the prob-
ability of the subsequent state–action trajectory, At, St+1, At+1, . . . , ST , occurring
under any policy ⇡ is

Pr{At, St+1, At+1, . . . , ST | St, At:T�1 ⇠ ⇡}
= ⇡(At|St)p(St+1|St, At)⇡(At+1|St+1) · · · p(ST |ST�1, AT�1)

=
T�1Y

k=t

⇡(Ak|Sk)p(Sk+1|Sk, Ak),

where p here is the state-transition probability function defined by (3.10). Thus,
the relative probability of the trajectory under the target and behavior policies (the
importance-sampling ratio) is

⇢T
t =

QT�1
k=t ⇡(Ak|Sk)p(Sk+1|Sk, Ak)QT�1
k=t µ(Ak|Sk)p(Sk+1|Sk, Ak)

=
T�1Y

k=t

⇡(Ak|Sk)

µ(Ak|Sk)
. (5.3)

Although the trajectory probabilities depend on the MDP’s transition probabilities,
which are generally unknown, they appear identically in both the numerator and
denominator, and thus cancel. The importance sampling ratio ends up depending
only on the two policies and the sequence, not on the MDP.

Now we are ready to give a Monte Carlo algorithm that uses a batch of observed
episodes following policy µ to estimate v⇡(s). It is convenient here to number time
steps in a way that increases across episode boundaries. That is, if the first episode
of the batch ends in a terminal state at time 100, then the next episode begins at
time t = 101. This enables us to use time-step numbers to refer to particular steps in
particular episodes. In particular, we can define the set of all time steps in which state
s is visited, denoted T(s). This is for an every-visit method; for a first-visit method,
T(s) would only include time steps that were first visits to s within their episodes.
Also, let T (t) denote the first time of termination following time t, and Gt denote the
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Throughout the rest of this book we consider both on-policy and o↵-policy methods. On-policy
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Pr{At, St+1, At+1, . . . , ST | St, At:T�1 ⇠ ⇡}
= ⇡(At|St)p(St+1 |St, At)⇡(At+1|St+1) · · · p(ST |ST�1, AT�1)

=
T�1Y

k=t

⇡(Ak|Sk)p(Sk+1 |Sk, Ak),

where p here is the state-transition probability function defined by (3.3). Thus, the relative probability
of the trajectory under the target and behavior policies (the importance-sampling ratio) is

⇢t:T�1 =

QT�1
k=t ⇡(Ak|Sk)p(Sk+1 |Sk, Ak)

QT�1
k=t b(Ak|Sk)p(Sk+1 |Sk, Ak)

=
T�1Y

k=t

⇡(Ak|Sk)

b(Ak|Sk)
. (5.3)

Although the trajectory probabilities depend on the MDP’s transition probabilities, which are generally
unknown, they appear identically in both the numerator and denominator, and thus cancel. The
importance sampling ratio ends up depending only on the two policies and the sequence, not on the
MDP.

Now we are ready to give a Monte Carlo algorithm that uses a batch of observed episodes following
policy b to estimate v⇡(s). It is convenient here to number time steps in a way that increases across
episode boundaries. That is, if the first episode of the batch ends in a terminal state at time 100, then
the next episode begins at time t = 101. This enables us to use time-step numbers to refer to particular
steps in particular episodes. In particular, we can define the set of all time steps in which state s

.
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Now we need to scale the flat partial returns by an importance sampling ratio that is similarly
truncated. As Ḡt:h only involves rewards up to a horizon h, we only need the ratio of the probabilities
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V (s)
.
=

P
t2T(s)

⇣
(1 � �)

PT (t)�1
h=t+1 �h�t�1⇢t:h�1Ḡt:h + �T (t)�t�1⇢t:T (t)�1Ḡt:T (t)

⌘

|T(s)| , (5.8)

and a weighted importance-sampling estimator, analogous to (5.5), as

V (s)
.
=

P
t2T(s)

⇣
(1 � �)

PT (t)�1
h=t+1 �h�t�1⇢t:h�1Ḡt:h + �T (t)�t�1⇢t:T (t)�1Ḡt:T (t)

⌘

P
t2T(s)

⇣
(1 � �)

PT (t)�1
h=t+1 �h�t�1⇢t:h�1 + �T (t)�t�1⇢t:T (t)�1

⌘ . (5.9)

We call these two estimators discounting-aware importance sampling estimators. They take into account
the discount rate but have no e↵ect (are the same as the o↵-policy estimators from Section 5.5) if � = 1.

5.9 *Per-reward Importance Sampling

There is one more way in which the structure of the return as a sum of rewards can be taken into account
in o↵-policy importance sampling, a way that may be able to reduce variance even in the absence of
discounting (that is, even if � = 1). In the o↵-policy estimators (5.4) and (5.5), each term of the sum
in the numerator is itself a sum:

⇢t:T�1Gt = ⇢t:T�1

�
Rt+1 + �Rt+2 + · · · + �T�t�1RT

�

= ⇢t:T�1Rt+1 + �⇢t:T�1Rt+2 + · · · + �T�t�1⇢t:T�1RT . (5.10)

The o↵-policy estimators rely on the expected values of these terms; let us see if we can write them
in a simpler way. Note that each sub-term of (5.10) is a product of a random reward and a random
importance-sampling ratio. For example, the first sub-term can be written, using (5.3), as

⇢t:T�1Rt+1 =
⇡(At|St)

b(At|St)

⇡(At+1|St+1)

b(At+1|St+1)

⇡(At+2|St+2)

b(At+2|St+2)
· · · ⇡(AT�1|ST�1)

b(AT�1|ST�1)
Rt+1.

Now notice that, of all these factors, only the first and the last (the reward) are correlated; all the other
ratios are independent random variables whose expected value is one:

E

⇡(Ak|Sk)

b(Ak|Sk)

�
=

X

a

b(a|Sk)
⇡(a|Sk)

b(a|Sk)
=

X

a

⇡(a|Sk) = 1.

Thus, because the expectation of the product of independent random variables is the product of their
expectations, all the ratios except the first drop out in expectation, leaving just

E[⇢t:T�1Rt+1] = E[⇢t:tRt+1] .

If we repeat this analysis for the kth term of (5.10), we get

E[⇢t:T�1Rt+k] = E[⇢t:t+k�1Rt+k] .

It follows then that the expectation of our original term (5.10) can be written

E[⇢t:T�1Gt] = E
h
G̃t

i
,

.
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is visited, denoted T(s). This is for an every-visit method; for a first-visit method, T(s) would only
include time steps that were first visits to s within their episodes. Also, let T (t) denote the first time
of termination following time t, and Gt denote the return after t up through T (t). Then {Gt}t2T(s) are
the returns that pertain to state s, and

�
⇢t:T (t)�1

 
t2T(s)

are the corresponding importance-sampling

ratios. To estimate v⇡(s), we simply scale the returns by the ratios and average the results:

V (s)
.
=

P
t2T(s) ⇢t:T (t)�1Gt

|T(s)| . (5.4)

When importance sampling is done as a simple average in this way it is called ordinary importance
sampling.

An important alternative is weighted importance sampling, which uses a weighted average, defined as

V (s)
.
=

P
t2T(s) ⇢t:T (t)�1GtP

t2T(s) ⇢t:T (t)�1
, (5.5)

or zero if the denominator is zero. To understand these two varieties of importance sampling, consider
their estimates after observing a single return. In the weighted-average estimate, the ratio ⇢t:T (t)�1

for the single return cancels in the numerator and denominator, so that the estimate is equal to the
observed return independent of the ratio (assuming the ratio is nonzero). Given that this return was the
only one observed, this is a reasonable estimate, but its expectation is vb(s) rather than v⇡(s), and in
this statistical sense it is biased. In contrast, the simple average (5.4) is always v⇡(s) in expectation (it
is unbiased), but it can be extreme. Suppose the ratio were ten, indicating that the trajectory observed
is ten times as likely under the target policy as under the behavior policy. In this case the ordinary
importance-sampling estimate would be ten times the observed return. That is, it would be quite far
from the observed return even though the episode’s trajectory is considered very representative of the
target policy.

Formally, the di↵erence between the two kinds of importance sampling is expressed in their biases and
variances. The ordinary importance-sampling estimator is unbiased whereas the weighted importance-
sampling estimator is biased (the bias converges asymptotically to zero). On the other hand, the
variance of the ordinary importance-sampling estimator is in general unbounded because the variance
of the ratios can be unbounded, whereas in the weighted estimator the largest weight on any single
return is one. In fact, assuming bounded returns, the variance of the weighted importance-sampling
estimator converges to zero even if the variance of the ratios themselves is infinite (Precup, Sutton,
and Dasgupta 2001). In practice, the weighted estimator usually has dramatically lower variance and
is strongly preferred. Nevertheless, we will not totally abandon ordinary importance sampling as it
is easier to extend to the approximate methods using function approximation that we explore in the
second part of this book.

A complete every-visit MC algorithm for o↵-policy policy evaluation using weighted importance
sampling is given in the next section on page 90.

Example 5.4: O↵-policy Estimation of a Blackjack State Value
We applied both ordinary and weighted importance-sampling methods to estimate the value of a single
blackjack state from o↵-policy data. Recall that one of the advantages of Monte Carlo methods is that
they can be used to evaluate a single state without forming estimates for any other states. In this
example, we evaluated the state in which the dealer is showing a deuce, the sum of the player’s cards is
13, and the player has a usable ace (that is, the player holds an ace and a deuce, or equivalently three
aces). The data was generated by starting in this state then choosing to hit or stick at random with
equal probability (the behavior policy). The target policy was to stick only on a sum of 20 or 21, as
in Example 5.1. The value of this state under the target policy is approximately �0.27726 (this was
determined by separately generating one-hundred million episodes using the target policy and averaging
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Figure 5.7: Weighted importance sampling produces lower error estimates of the value of a
single blackjack state from o↵-policy episodes (see Example 5.4).

of number of episodes. The weighted importance-sampling method has much lower
overall error in this example, as is typical in practice.

Example 5.5: Infinite Variance
The estimates of ordinary importance sampling will typically have infinite variance,
and thus unsatisfactory convergence properties, whenever the scaled returns have
infinite variance—and this can easily happen in o↵-policy learning when trajecto-
ries contain loops. A simple example is shown inset in Figure 5.8. There is only
one nonterminal state s and two actions, end and back. The end action causes a
deterministic transition to termination, whereas the back action transitions, with
probability 0.9, back to s or, with probability 0.1, on to termination. The rewards
are +1 on the latter transition and otherwise zero. Consider the target policy that
always selects back. All episodes under this policy consist of some number (possibly
zero) of transitions back to s followed by termination with a reward and return of
+1. Thus the value of s under the target policy is 1. Suppose we are estimating this
value from o↵-policy data using the behavior policy that selects end and back with
equal probability.

The lower part of Figure 5.8 shows ten independent runs of the first-visit MC
algorithm using ordinary importance sampling. Even after millions of episodes,
the estimates fail to converge to the correct value of 1. In contrast, the weighted
importance-sampling algorithm would give an estimate of exactly 1 everafter the
first episode that was consistent with the target policy (i.e., that ended with the
back action). This is clear because that algorithm produces a weighted average of
the returns consistent with the target policy, all of which would be exactly 1.

We can verify that the variance of the importance-sampling-scaled returns is infi-
nite in this example by a simple calculation. The variance of any random variable
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improving the target policy. These techniques require that the behavior policy has
a nonzero probability of selecting all actions that might be selected by the target
policy (coverage). To explore all possibilities, we require that the behavior policy be
soft (i.e., that it select all actions in all states with nonzero probability).

The box below shows an o↵-policy Monte Carlo control method, based on GPI and
weighted importance sampling, for estimating ⇡⇤ and q⇤. The target policy ⇡ ⇡ ⇡⇤ is
the greedy policy with respect to Q, which is an estimate of q⇡. The behavior policy
b can be anything, but in order to assure convergence of ⇡ to the optimal policy, an
infinite number of returns must be obtained for each pair of state and action. This
can be assured by choosing b to be "-soft. The policy ⇡ converges to optimal at
all encountered states even though actions are selected according to a di↵erent soft
policy b, which may change between or even within episodes.

A potential problem is that this method learns only from the tails of episodes,
when all of the remaining actions in the episode are greedy. If nongreedy actions are
common, then learning will be slow, particularly for states appearing in the early
portions of long episodes. Potentially, this could greatly slow learning. There has
been insu�cient experience with o↵-policy Monte Carlo methods to assess how seri-
ous this problem is. If it is serious, the most important way to address it is probably
by incorporating temporal-di↵erence learning, the algorithmic idea developed in the
next chapter. Alternatively, if � is less than 1, then the idea developed in the next
section may also help significantly.

Exercise 5.8: Racetrack (programming) Consider driving a race car around a
turn like those shown in Figure 5.5. You want to go as fast as possible, but not so fast
as to run o↵ the track. In our simplified racetrack, the car is at one of a discrete set
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of grid positions, the cells in the diagram. The velocity is also discrete, a number of
grid cells moved horizontally and vertically per time step. The actions are increments
to the velocity components. Each may be changed by +1, �1, or 0 in one step, for a
total of nine actions. Both velocity components are restricted to be nonnegative and
less than 5, and they cannot both be zero except at the starting line. Each episode
begins in one of the randomly selected start states with both velocity components
zero and ends when the car crosses the finish line. The rewards are �1 for each step
until the car crosses the finish line. If the car hits the track boundary, it is moved
back to a random position on the starting line, both velocity components are reduced
to zero, and the episode continues. Before updating the car’s location at each time
step, check to see if the projected path of the car intersects the track boundary. If
it intersects the finish line, the episode ends; if it intersects anywhere else, the car is
considered to have hit the track boundary and is sent back to the starting line. To
make the task more challenging, with probability 0.1 at each time step the velocity
increments are both zero, independently of the intended increments. Apply a Monte
Carlo control method to this task to compute the optimal policy from each starting
state. Exhibit several trajectories following the optimal policy (but turn the noise
o↵ for these trajectories). ⇤

5.8 *Discounting-aware Importance Sampling

The o↵-policy methods that we have considered so far are based on forming importance-
sampling weights for returns considered as unitary wholes, without taking into ac-
count the returns’ internal structures as sums of discounted rewards. We now briefly

O↵-policy MC control, for estimating ⇡ ⇡ ⇡⇤

Initialize, for all s 2 S, a 2 A(s):
Q(s, a) arbitrary
C(s, a) 0
⇡(s) argmaxa Q(St, a) (with ties broken consistently)

Repeat forever:
b any soft policy
Generate an episode using b:

S0, A0, R1, . . . , ST�1, AT�1, RT , ST

G 0
W  1
For t = T � 1, T � 2, . . . downto 0:

G �G + Rt+1

C(St, At) C(St, At) + W
Q(St, At) Q(St, At) + W

C(St,At)
[G�Q(St, At)]

⇡(St) argmaxa Q(St, a) (with ties broken consistently)
If At 6= ⇡(St) then ExitForLoop
W  W 1

b(At|St)

Target policy is greedy
and deterministic

Behavior policy is soft, 
typically #-greedy



Discounting-aware Importance Sampling (motivation)

❐ So far we have weighted returns without taking into 
account that they are a discounted sum

❐ This can’t be the best one can do!
❐ For example, suppose ! = 0

! Then G0 will be weighted by

! But it really need only be weighted by

! Which would have much smaller variance 

24

⇢0:T�1 =
⇡(A0|S0)

b(A0|S0)

⇡(A1|S1)

b(A1|S1)
· · · ⇡(AT�1|ST�1)

b(AT�1|ST�1)

⇢0:1 =
⇡(A0|S0)

b(A0|S0)



❐ Define the flat partial return:

❐ Then
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two steps. The partial returns here are called flat partial returns :

Ḡt:h
.
= Rt+1

+ Rt+2

+ · · · + Rh, 0  t < h  T,

where “flat” denotes the absence of discounting, and “partial” denotes that these
returns do not extend all the way to termination but instead stop at h, called the
horizon (and T is the time of termination of the episode). The conventional full
return Gt can be viewed as a sum of flat partial returns as suggested above as
follows:

Gt
.
= Rt+1

+ �Rt+2

+ �2Rt+3

+ · · · + �T�t�1RT

= (1 � �)Rt+1

+ (1 � �)� (Rt+1

+ Rt+2

)

+ (1 � �)�2 (Rt+1

+ Rt+2

+ Rt+3

)

...

+ (1 � �)�T�t�2 (Rt+1

+ Rt+2

+ · · · + RT�1

)

+ �T�t�1 (Rt+1

+ Rt+2

+ · · · + RT )

= (1 � �)
T�1X

h=t+1

�h�t�1Ḡt:h + �T�t�1Ḡt:T .

Now we need to scale the flat partial returns by an importance sampling ratio that
is similarly truncated. As Ḡt:h only involves rewards up to a horizon h, we only need
the ratio of the probabilities up to h. We define an ordinary importance-sampling
estimator, analogous to (5.4), as

V (s)
.
=

P
t2T(s)

⇣
(1 � �)

PT (t)�1

h=t+1

�h�t�1⇢t:h�1

Ḡt:h + �T (t)�t�1⇢t:T (t)�1

Ḡt:T (t)

⌘

|T(s)| ,

(5.8)

and a weighted importance-sampling estimator, analogous to (5.5), as

V (s)
.
=

P
t2T(s)

⇣
(1 � �)

PT (t)�1

h=t+1

�h�t�1⇢t:h�1

Ḡt:h + �T (t)�t�1⇢t:T (t)�1

Ḡt:T (t)

⌘

P
t2T(s)

⇣
(1 � �)

PT (t)�1

h=t+1

�h�t�1⇢t:h�1

+ �T (t)�t�1⇢t:T (t)�1

⌘ .

(5.9)

We call these two estimators discounting-aware importance sampling estimators.
They take into account the discount rate but have no e↵ect (are the same as the
o↵-policy estimators from Section 5.5) if � = 1.

5.9 *Per-reward Importance Sampling

There is one more way in which the structure of the return as a sum of rewards can
be taken into account in o↵-policy importance sampling, a way that may be able to
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Ḡt:T (t)

⌘

P
t2T(s)

⇣
(1 � �)

PT (t)�1

h=t+1

�h�t�1⇢t:h�1

+ �T (t)�t�1⇢t:T (t)�1

⌘ .

(5.9)
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❐ Define the flat partial return:

❐ Then

❐ Ordinary discounting-aware IS:

❐ Weighted discounting-aware IS:
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�h�t�1Ḡt:h + �T�t�1Ḡt:T
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Now we need to scale the flat partial returns by an importance sampling ratio that
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❐ Another way of reducing variance, even if ! = 1
❐ Uses the fact that the return is a sum of rewards

❐ where

❐ Per-reward ordinary IS:
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28

⇢t:T�1Rt+k =
⇡(At|St)

b(At|St)

⇡(At+1|St+1)

b(At+1|St+1)
· · · ⇡(At+k|St+k)

b(At+k|St+k)
· · · ⇡(AT�1|ST�1)

b(AT�1|ST�1)
Rt+k.

| {z }
G̃t

∴

⇢t:T�1Gt = ⇢t:T�1Rt+1 + · · ·+ �k�1⇢t:T�1Rt+k + · · ·+ �T�t�1⇢t:T�1RT

∴
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reduce variance even in the absence of discounting (that is, even if � = 1). In the
o↵-policy estimators (5.4) and (5.5), each term of the sum in the numerator is itself
a sum:

⇢t:T�1

Gt = ⇢t:T�1

�
Rt+1

+ �Rt+2

+ · · · + �T�t�1RT

�

= ⇢t:T�1

Rt+1

+ �⇢t:T�1

Rt+2

+ · · · + �T�t�1⇢t:T�1

RT . (5.10)

The o↵-policy estimators rely on the expected values of these terms; let us see if we
can write them in a simpler way. Note that each sub-term of (5.10) is a product of
a random reward and a random importance-sampling ratio. For example, the first
sub-term can be written, using (5.3), as

⇢t:T�1

Rt+1

=
⇡(At|St)

b(At|St)

⇡(At+1

|St+1

)

b(At+1

|St+1

)

⇡(At+2

|St+2

)

b(At+2

|St+2

)
· · · ⇡(AT�1

|ST�1

)

b(AT�1

|ST�1

)
Rt+1

.

Now notice that, of all these factors, only the first and the last (the reward) are
correlated; all the other ratios are independent random variables whose expected
value is one:

E

⇡(Ak|Sk)

b(Ak|Sk)

�
.
=

X

a

b(a|Sk)
⇡(a|Sk)

b(a|Sk)
=

X

a

⇡(a|Sk) = 1. (5.11)

Thus, because the expectation of the product of independent random variables is the
product of their expectations, all the ratios except the first drop out in expectation,
leaving just

E[⇢t:T�1

Rt+1

] = E[⇢t:tRt+1

] .

If we repeat this analysis for the kth term of (5.10), we get

E[⇢t:T�1

Rt+k] = E[⇢t:t+k�1

Rt+k] .

It follows then that the expectation of our original term (5.10) can be written

E[⇢t:T�1

Gt] = E
h
G̃t

i
,

where

G̃t = ⇢t:tRt+1

+ �⇢t:t+1

Rt+2

+ �2⇢t:t+2

Rt+3

+ · · · + �T�t�1⇢t:T�1

RT .

We call this idea per-reward importance sampling. It follows immediately that there
is an alternate importance-sampling estimator, with the same unbiased expectation
as the ordinary-importance-sampling estimator (5.4), using G̃t:

V (s)
.
=

P
t2T(s) G̃t

|T(s)| , (5.12)

which we might expect to sometimes be of lower variance.

Is there a per-reward version of weighted importance sampling? This is less clear.
So far, all the estimators that have been proposed for this that we know of are not
consistent (that is, they do not converge to the true value with infinite data).

⇤Exercise 5.9 Modify the algorithm for o↵-policy Monte Carlo control (page 115)
to use the idea of the truncated weighted-average estimator (5.9). Note that you will
first need to convert this equation to action values. ⇤

E[⇢t:T�1Gt] = E
⇥
⇢t:tRt+1 + · · ·+ �k�1⇢t:t+k�1Rt+k + · · ·+ �T�t�1⇢t:T�1RT

⇤

118 CHAPTER 5. MONTE CARLO METHODS

reduce variance even in the absence of discounting (that is, even if � = 1). In the
o↵-policy estimators (5.4) and (5.5), each term of the sum in the numerator is itself
a sum:

⇢t:T�1

Gt = ⇢t:T�1

�
Rt+1

+ �Rt+2

+ · · · + �T�t�1RT

�

= ⇢t:T�1

Rt+1

+ �⇢t:T�1

Rt+2

+ · · · + �T�t�1⇢t:T�1

RT . (5.10)

The o↵-policy estimators rely on the expected values of these terms; let us see if we
can write them in a simpler way. Note that each sub-term of (5.10) is a product of
a random reward and a random importance-sampling ratio. For example, the first
sub-term can be written, using (5.3), as

⇢t:T�1

Rt+1

=
⇡(At|St)

b(At|St)

⇡(At+1

|St+1

)

b(At+1

|St+1

)

⇡(At+2

|St+2

)

b(At+2

|St+2

)
· · · ⇡(AT�1

|ST�1

)

b(AT�1

|ST�1

)
Rt+1

.

Now notice that, of all these factors, only the first and the last (the reward) are
correlated; all the other ratios are independent random variables whose expected
value is one:

E

⇡(Ak|Sk)

b(Ak|Sk)

�
.
=

X

a

b(a|Sk)
⇡(a|Sk)

b(a|Sk)
=

X

a

⇡(a|Sk) = 1. (5.11)

Thus, because the expectation of the product of independent random variables is the
product of their expectations, all the ratios except the first drop out in expectation,
leaving just

E[⇢t:T�1

Rt+1

] = E[⇢t:tRt+1

] .

If we repeat this analysis for the kth term of (5.10), we get

E[⇢t:T�1

Rt+k] = E[⇢t:t+k�1

Rt+k] .

It follows then that the expectation of our original term (5.10) can be written

E[⇢t:T�1

Gt] = E
h
G̃t

i
,

where

G̃t = ⇢t:tRt+1

+ �⇢t:t+1

Rt+2

+ �2⇢t:t+2

Rt+3

+ · · · + �T�t�1⇢t:T�1

RT .

We call this idea per-reward importance sampling. It follows immediately that there
is an alternate importance-sampling estimator, with the same unbiased expectation
as the ordinary-importance-sampling estimator (5.4), using G̃t:

V (s)
.
=

P
t2T(s) G̃t

|T(s)| , (5.12)

which we might expect to sometimes be of lower variance.

Is there a per-reward version of weighted importance sampling? This is less clear.
So far, all the estimators that have been proposed for this that we know of are not
consistent (that is, they do not converge to the true value with infinite data).

⇤Exercise 5.9 Modify the algorithm for o↵-policy Monte Carlo control (page 115)
to use the idea of the truncated weighted-average estimator (5.9). Note that you will
first need to convert this equation to action values. ⇤
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Summary

❐ MC has several advantages over DP:
! Can learn directly from interaction with environment
! No need for full models
! Less harmed by violating Markov property (later in book)

❐ MC methods provide an alternate policy evaluation process
❐ One issue to watch for: maintaining sufficient exploration

! exploring starts, soft policies
❐ Introduced distinction between on-policy and off-policy methods
❐ Introduced importance sampling for off-policy learning
❐ Introduced distinction between ordinary and weighted IS
❐ Introduced two return-specific ideas for reducing IS variance

! discounting-aware and per-reward IS


