
cme250 hw1 solutions

January 21, 2019

In [1]: import numpy as np

import pandas as pd

from sklearn.linear_model import LinearRegression

import matplotlib.pyplot as plt

import seaborn as sns

%matplotlib inline

1 Part 2. Applied Exercise

1.1 Question 1.

1.1.1 (a)

In [2]: # generate x values by sampling n observations from the interval [0,10]

n = 100

x = np.random.rand(n) * 10

In [3]: # generate y values by using deterministic relationship between x and y and adding noise

y = 0.03 * x**3 - 0.3 * x**2 + 0.3 * x + np.random.randn(n)

In [4]: plt.plot(x, y, ’o’)

plt.show()

1

1.1.2 (b)

In [13]: def fit_LinearRegression(n, nruns, nfeats, verbose=True):

"""

Fit a linear regression model using sklearn for nruns and nfeats.

Parameters:

n (int): sample size of random dataset to generate

nruns (int): number of random datasets to generate and models to fit

nfeats (int): order of model to fit; e.g. y = beta_0 * x is a 1st order model

verbose (bool): whether to show plot and print R2 statistics

Returns:

R2s (array[float]): an (nruns,)-dimensional array of R2s of model fits

"""

R2s = np.zeros(nruns)

for run in range(nruns):

x = np.random.rand(n) * 10

y = 0.03 * x**3 - 0.3 * x**2 + 0.3 * x + np.random.randn(n)

X = np.zeros((n, nfeats))

for i in range(nfeats):

X[:,i] = x**(i+1)

lr = LinearRegression()

lr.fit(X, y)

R2s[run] = lr.score(X, y)

if verbose and run == 0:

x_line = np.arange(0,10.1,0.01)

X_line = np.zeros((len(x_line), nfeats))

for i in range(nfeats):

X_line[:,i] = x_line**(i+1)

y_hat = lr.predict(X_line)

plt.plot(x, y, ’o’)

plt.plot(x_line, y_hat)

plt.show()

if verbose:

print("R2: {:0.2f} +/- {:0.2f}".format(np.mean(R2s), np.std(R2s)))

return R2s

In [15]: _ = fit_LinearRegression(n=100, nruns=10, nfeats=1, verbose=True)

2

R2: 0.01 +/- 0.01

1.1.3 (c)

In [16]: _ = fit_LinearRegression(n=100, nruns=10, nfeats=3, verbose=True)

3

R2: 0.64 +/- 0.05

1.1.4 (d)

In [17]: _ = fit_LinearRegression(n=100, nruns=10, nfeats=10, verbose=True)

R2: 0.65 +/- 0.06

1.1.5 (e)

The 1st order model in part (b) has the highest bias. It makes a strong assumption about the functional
relationship between y and x (linear). It is the least flexible model and is prone to underfitting.

The 10th order model in part (d) has the highest variance. It is the most flexible model, and as such is
the most vulnerable to overfitting to noise (i.e. error/epsilon) rather than signal.

Since we know the generating process for y is a cubic function of x plus some irreducible noise, we know
that the model from part (c), a linear regression on x, x2, x3, will generalize best to unseen data.

2 Part 3. Young People Survey

2.1 Question 2.

2.1.1 (a)

In [2]: # use pandas to read in .csv file

path = ’../data/responses.csv’

df = pd.read_csv(path)

In [21]: # let’s take a look at our dataframe!

df.head()

4

Out[21]: Music Slow songs or fast songs Dance Folk Country Classical music \
0 5.0 3.0 2.0 1.0 2.0 2.0

1 4.0 4.0 2.0 1.0 1.0 1.0

2 5.0 5.0 2.0 2.0 3.0 4.0

3 5.0 3.0 2.0 1.0 1.0 1.0

4 5.0 3.0 4.0 3.0 2.0 4.0

Musical Pop Rock Metal or Hardrock ... Age \
0 1.0 5.0 5.0 1.0 ... 20.0

1 2.0 3.0 5.0 4.0 ... 19.0

2 5.0 3.0 5.0 3.0 ... 20.0

3 1.0 2.0 2.0 1.0 ... 22.0

4 3.0 5.0 3.0 1.0 ... 20.0

Height Weight Number of siblings Gender Left - right handed \
0 163.0 48.0 1.0 female right handed

1 163.0 58.0 2.0 female right handed

2 176.0 67.0 2.0 female right handed

3 172.0 59.0 1.0 female right handed

4 170.0 59.0 1.0 female right handed

Education Only child Village - town House - block of flats

0 college/bachelor degree no village block of flats

1 college/bachelor degree no city block of flats

2 secondary school no city block of flats

3 college/bachelor degree yes city house/bungalow

4 secondary school no village house/bungalow

[5 rows x 150 columns]

In [22]: # dataframe dimensions

df.shape

Out[22]: (1010, 150)

In [3]: # drop any rows with NaNs. in this case, default dropna parameters are fine

df = df.dropna()

df.shape

Out[3]: (674, 150)

Looks like we lost about 33% of our samples to missing data!

2.1.2 (b)

In [14]: y = df[’Education’]

X = df.loc[:, df.columns != ’Education’]

2.1.3 (c)

In [16]: # print columns that are categorical

for column in X.columns:

if X[column].dtype == type(object):

print("{}: {}".format(column, np.unique(X[column])))

5

Smoking: [’current smoker’ ’former smoker’ ’never smoked’ ’tried smoking’]

Alcohol: [’drink a lot’ ’never’ ’social drinker’]

Punctuality: [’i am always on time’ ’i am often early’ ’i am often running late’]

Lying: [’everytime it suits me’ ’never’ ’only to avoid hurting someone’

’sometimes’]

Internet usage: [’few hours a day’ ’less than an hour a day’ ’most of the day’]

Gender: [’female’ ’male’]

Left - right handed: [’left handed’ ’right handed’]

Only child: [’no’ ’yes’]

Village - town: [’city’ ’village’]

House - block of flats: [’block of flats’ ’house/bungalow’]

Since many of the categorical variables are in fact ordered (e.g. Drinking: Never - Social drinker - Drink a
lot), one could make a case for encoding these variables using integers (0, 1, 2) rather than one-hot encoding.
However, if you think the difference between e.g. never drinking and social drinking vs. social drinking and
drinking a lot is not the same, it makes more sense (at least if we are using a linear model) to use one-hot
encoding. Either answer will be accepted here.

One-hot encoding

In [17]: # select columns with categorical labels (type=object) and encode them as one-hot values

cat = X.select_dtypes(include=object).columns

X_onehot = pd.get_dummies(X, prefix=cat, columns=cat, drop_first=True)

In [18]: # notice gender, handedness, only child, village, and house are now one-hot

X_onehot.head()

Out[18]: Music Slow songs or fast songs Dance Folk Country Classical music \
0 5.0 3.0 2.0 1.0 2.0 2.0

1 4.0 4.0 2.0 1.0 1.0 1.0

2 5.0 5.0 2.0 2.0 3.0 4.0

4 5.0 3.0 4.0 3.0 2.0 4.0

5 5.0 3.0 2.0 3.0 2.0 3.0

Musical Pop Rock Metal or Hardrock \
0 1.0 5.0 5.0 1.0

1 2.0 3.0 5.0 4.0

2 5.0 3.0 5.0 3.0

4 3.0 5.0 3.0 1.0

5 3.0 2.0 5.0 5.0

... Lying never \
0 ... 1

1 ... 0

2 ... 0

4 ... 0

5 ... 0

Lying only to avoid hurting someone Lying sometimes \
0 0 0

1 0 1

2 0 1

4 0 0

5 1 0

6

Internet usage less than an hour a day Internet usage most of the day \
0 0 0

1 0 0

2 0 0

4 0 0

5 0 0

Gender male Left - right handed right handed Only child yes \
0 0 1 0

1 0 1 0

2 0 1 0

4 0 1 0

5 1 1 0

Village - town village House - block of flats house/bungalow

0 1 0

1 0 0

2 0 0

4 1 1

5 0 0

[5 rows x 156 columns]

In [19]: # we’ve created 16 one-hot columns from the 10 previous categorical ones

X_onehot.shape

Out[19]: (674, 156)

Note that sklearn can handle a response variable that is categorical without transforming it into a numeric
encoding, so we won’t do anything to the y vector here.

Ordered numerical encoding

In [20]: # first cast categorical columns into category type

X_ordered = X.copy()

X_ordered[cat] = X[cat].astype(’category’)

In [24]: # currently the categories are not ordered

X_ordered[’Lying’].cat.ordered

Out[24]: False

In [30]: # if we encode the categories using default settings, pandas will order them alphabetically

since alphabetical order is not the logical order, we define the following order manually

ordered_cats = [[’never smoked’, ’tried smoking’, ’former smoker’, ’current smoker’],

[’never’, ’social drinker’, ’drink a lot’],

[’i am often running late’, ’i am always on time’, ’i am often early’],

[’never’, ’only to avoid hurting someone’, ’sometimes’, ’everytime it suits me’],

[’less than an hour a day’, ’few hours a day’, ’most of the day’]]

for i, col in enumerate([’Smoking’, ’Alcohol’, ’Punctuality’, ’Lying’, ’Internet usage’]):

X_ordered[col] = X_ordered[col].cat.reorder_categories(ordered_cats[i], ordered=True)

In [31]: # finally, create the correctly ordered codes

for col in cat:

X_ordered[col] = X_ordered[col].cat.codes

7

Now our data is ready to be input to a machine learning algorithm! Stay tuned for Homework
2.

8

	Part 2. Applied Exercise
	Question 1.
	(a)
	(b)
	(c)
	(d)
	(e)

	Part 3. Young People Survey
	Question 2.
	(a)
	(b)
	(c)

