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Agenda
•  Definition of machine learning, applications

•  Course logistics

•  Machine learning overview

•  K-nearest neighbors (KNN)
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What is machine learning?
“[A] field of study that gives computers the ability to learn without 
being explicitly programmed.” 

- Arthur Samuel (1959) 

“A computer program is said to learn from experience E with some 
class of tasks T and performance measure P if its performance at 
tasks in T, as measured by P, improves with experience E.”  

- Tom M. Mitchell (1997)
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What is machine learning?
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Timeline of Machine Learning
•  1805: Legendre discovers the least squares method, the earliest form of linear 
regression. 

•  1936: Fisher proposes linear discriminant analysis. 
•  1940s: Various authors propose logistic regression. 
•  1951: Minsky and Edmonds build the first neural network machine, the SNARC. 
•  1957: Rosenblatt invents the perceptron, a binary classifier. 
•  1967: The nearest neighbor algorithm is created. 
•  1970s: AI winter caused by pessimism about machine learning effectiveness. 
•  1980s: Breiman, Friedman, Olshen, and Stone introduce CARTs. 
Backpropagation is rediscovered, causing a resurgence in machine learning 
research. 

•  1995: Ho describes random forests; Cortes and Vapnik introduce SVMs. 
•  1997: IBM’s Deep Blue beats Kasparov, the world champion at chess. 
•  2009: ImageNet is created in Fei-Fei Li’s group at Stanford. A catalyst for the 
current AI boom. 

•  2016: Google’s AlphaGo defeats an unhandicapped human professional at Go.
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Machine Learning Applications
Intelligent personal assistants (Alexa, Google Assistant, Siri) 
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Machine Learning Applications
Self-driving cars 
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Machine Learning Applications
Deep learning for oncology 
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Machine Learning Applications
Recommender systems 
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Machine Learning Applications
Legal contract review 
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Machine Learning Applications
Mapping agriculture from satellite imagery 
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Machine Learning Applications
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Data Model
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Course Logistics 
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Course Overview
Goals: 

•  High-level overview of well-known machine learning techniques 

•  Learn how to choose between methods 

•  Practical tips and best practices 

•  Familiarity with terminology
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Intended Audience
•  All disciplines welcome 

•  No background in machine learning is necessary 

-  Course covers a subset of CS 229, STATS 315 

•  Prerequisites 

-  Undergraduate-level statistics and linear algebra 

-  Basic programming experience (Python, R, MATLAB)
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Machine Learning Courses
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Course Schedule
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Week Mon Tue Wed Thu Fri

1 First day of 
quarter

2 Lecture 1 Lecture 2

3 No lecture  
(MLK) Lecture 3 HW 1 due by 

5pm

4 No lecture No lecture HW 2 due by 
5pm

5 Lecture 4 Lecture 5

6 Lecture 6 Lecture 7 HW 3 due by 
5pm

7 No lecture 
(President’s) Lecture 8 HW 4 due by 

5pm
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Course Schedule
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Lecture 1 Lecture 2 Lecture 3 Lecture 4

Overview of 
Machine Learning

Linear and Logistic 
Regression

Regularization and 
Sparsity

Cross-validation and 
Imputation

Lecture 5 Lecture 6 Lecture 7 Lecture 8

Support Vector 
Machines

Classification and 
Regression Trees 

(CART)
Unsupervised 

Methods Neural Networks
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Course Texts
An Introduction to Statistical Learning with 
Applications in R 
by Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani 

The Elements of Statistical Learning  
by Trevor Hastie, Robert Tibshirani, and Jerome Friedman 

* Some of the figures in this presentation are taken from "An Introduction to 
Statistical Learning, With Applications in R" (Springer, 2013) with permission from 
the authors: G. James, D. Witten, T. Hastie and R. Tibshirani 
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Course Requirements
•  Short course, 1 unit 

•  Grading: Satisfactory / No Credit 

•  To receive credit, complete 4 homeworks at passing level (70+%)
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Homework
•  Part 1: Conceptual multiple choice questions (10 pts) 

•  Part 2: Short applied exercises (5-10 pts) 

•  Part 3: Apply method covered in lecture to real dataset (5-10 pts) 

•  Each homework will be worth 25 points 

•  (Satisfactory grade = 70/100 or better)
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Programming
•  Course is not programming intensive, but does require students to 
write some code 

•  Students may use language of their choice for any programming 
exercises (e.g. Python, MATLAB, R) 

•  ISL textbook gives examples in R, a programming language with 
existing libraries for statistical analysis and machine learning 

•  Lecture programming examples will be given in Python, which has 
well-supported data science / machine learning libraries
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Python
•  Python: www.python.org 
•  NumPy: http://www.numpy.org 
•  Pandas: https://pandas.pydata.org 
•  Scikit-learn: http://scikit-learn.org
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R
•  R: www.r-project.org 
•  A variety of packages for 
machine learning
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MATLAB
•  MATLAB: www.mathworks.com/products/matlab.html
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MatrixDS
•  Cloud-based workbench that integrates data project needs in one 
location: www.matrixds.com 
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Online Resources
Website: 
https://cme250.stanford.edu 

Piazza: 
https://piazza.com/stanford/winter2019/cme250 

Gradescope: 
https://www.gradescope.com/courses/33828 
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Machine Learning Overview 
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Problem Set-up
X: input variables (predictors, independent variables, features) 

Y: output variable (response, dependent variable) 

Machine learning: estimate a function f that describes the relationship 
between predictors and response 

Y = f (X) + ε
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How to find f ?
Training dataset containing n samples i = 1, 2, …, n 

Input, output pairs:  (X(1), Y(1)), (X(2), Y(2)), … (X(n), Y(n))

We will use these observations to build our model f.  

Y = f (X) + ε

Algorithms vary in how they use this data and in the assumptions they 
place on f.
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Prediction vs. Inference
Prediction: 

•  Predict response Y given inputs X. 

Inference: 

•  Understand the relationship between Y and individual predictors Xi. 
Do not want a black-box model.
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Choosing an ML Algorithm
Which algorithm you use for a task will depend on: 

•  The type of problem you are trying to solve 

•  The type of data you have access to 

Note that it’s possible to have data ill-suited for the problem of 
interest. In this case, algorithms won’t save you.
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Two Categories of Learning
Supervised learning:

Unsupervised learning:
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Two Categories of Learning
Supervised learning:

•  Builds a statistical model to predict an output from inputs 

Unsupervised learning:

35



CME 250: Introduction to Machine Learning, Winter 2019

Two Categories of Learning
Supervised learning:

•  Builds a statistical model to predict an output from inputs 

Unsupervised learning:

•  Learns structure from data without supervising output
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Supervised Learning
Training data contains both the input variables and the associated 
response 

➡  Mathematically, X(i) and associated Y(i) are available to learning 
algorithm for training 

Goal: generalize to new data
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Unsupervised Learning
Training data contains measurements for each observation, but no 
associated response of interest 

➡  Mathematically, X(i) are available but Y(i) are not 

Goal: understand relationships between variables or among 
observations
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Two Types of Supervised Learning
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Two Types of Supervised Learning
Classification
•  Output is qualitative (categorical) 
•  E.g. predict whether a credit card transaction 
is fraudulent
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Two Types of Supervised Learning
Classification
•  Output is qualitative (categorical) 
•  E.g. predict whether a credit card transaction 
is fraudulent 

Regression
•  Output is quantitative (continuous or ordered) 
•  E.g. predict the value of a stock tomorrow
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Classification and Regression
Classification can often be formulated as a regression problem 

•  For a two-class (binary) problem: “What is the probability that 
observation belongs to class 1?” Probability lies in [0,1] 

•  Some methods work well on both types of problems (e.g. neural 
networks) 
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Two Types of Unsupervised Learning
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Two Types of Unsupervised Learning
Clustering
•  Partition data into subsets that share common 
characteristics

44



CME 250: Introduction to Machine Learning, Winter 2019

Two Types of Unsupervised Learning
Clustering
•  Partition data into subsets that share common 
characteristics 

Dimensionality reduction
•  Create new features from original inputs that 
retain important information
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Choosing an ML Algorithm

46

Do you have 
labeled data?

Supervised Unsupervised

Yes No
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Choosing an ML Algorithm
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Do you have 
labeled data?

Supervised Unsupervised

Yes No

What do you want 
to predict?

Classification Regression

Category Quantity
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Choosing an ML Algorithm
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Do you have 
labeled data?

Supervised Unsupervised

Yes No

What do you want 
to predict?

Classification Regression

Category Quantity

Do you want to 
group the data?

Clustering Dimensionality 
reduction

Yes No
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Sparsity and 
regularization

https://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/
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Supervised Algorithm #1: 
K-Nearest Neighbors
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K-Nearest Neighbor (KNN) Classifier
A classification algorithm that labels observations based on “nearby” 
examples with known labels.
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K-Nearest Neighbor (KNN) Classifier
Many classifiers build a model of 

Pr(Y | X)

KNN classifier predicts that the class for observation X is the class 
most common among its k nearest neighbors in the training set 

Pr(X belongs to class Y) ≈ (# k nearest neighbors of X in class Y) ÷ k
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K-Nearest Neighbor (KNN) Classifier
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Suppose k = 3. 

To classify x in this example, we find its 
3 nearest neighbors. 

Two of them are blue, and one is 
yellow. 

Therefore a KNN classifier with k = 3 
assigns x to the blue class.

FIGURE 2.14, ISL (8th printing 2017)
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K-Nearest Neighbor (KNN) Classifier
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The classifier partitions the feature 
space into decision regions, each with 
a class label. 

Decision boundaries separate decision 
regions.

FIGURE 2.14, ISL (8th printing 2017)
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How to choose k?
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The decision regions depend on the value of k. 

FIGURE 2.15, ISL (8th printing 2017) FIGURE 2.16, ISL (8th printing 2017)
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How to choose k?
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In machine learning terminology, k is a hyperparameter. 

A hyperparameter is set before the learning process begins. We will 
learn how to tune hyperparameters in a later lecture. 
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How to choose k?
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k small 
•  More flexible decision boundary, 
but more likely to overfit 

k large 
•  Less flexible decision boundary, 

but less likely to overfit 

Overfitting occurs when we 
learn random noise in 
training data rather than 
underlying trend

FIGURE 2.16, ISL (8th printing 2017)
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How to choose k?
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FIGURE 2.17, ISL (8th printing 2017)
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K-Nearest Neighbor Summary
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Advantages:
•  Simple to implement 
•  Few tuning parameters (k, distance metric) 
•  Flexible, classes do not have to be linearly separable 
Disadvantages:
•  Computationally expensive   ( O(nd) where d is input dimension) 
•  Sensitive to imbalanced datasets 
•  Sensitive to irrelevant inputs
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“Best” Machine Learning Algorithm
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Bad news: No algorithm is the best
•  No machine learning algorithm will perform well on every task 
Good news: All of them are the best
•  Each machine learning algorithm will perform well on some task 
“No free lunch” theorem
•  Wolpert (1996): All algorithms perform equally when averaged over 
all possible problems
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Trade-offs and Decisions
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•  Bias vs. variance
•  Accuracy vs. interpretability
•  Accuracy vs. scalability
•  Domain-knowledge vs. data-driven
•  More data vs. better algorithm
•  Accuracy vs. fairness


