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Announcements

Homework 1 is due this Friday, January 25, at 5:00pm.
Homework 2 will be released today, and due next rFriday at 5.

Out of town: No lecture next week. And no office hours — sorry!
It you would like to meet about Homework 2 before Monday, email me.
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| ecture Pace

@ Too fast
@ Too slow
O Fine with me
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Slides are online at

Ag e ﬂ d a cme?250.stanford.edu

e Curse of Dimensionality
e Subset Selection Methods
e Shrinkage Methods

- Ridge Regression

- The Lasso
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Roadmap

We’ve covered: Coming up:

® | Inear regression e Non-linear supervised algorithms
e [ ogistic regression e (Cross validation

o K-nearest neighbors e Missing data

o Dataset splitting e Unsupervised learning

e Bias-variance tradeoft

CME 250: Introduction to Machine Learning, Winter 2019



But first...

In transitioning from linear to non-linear methods, we will consider
alternative ways to fitting linear regression besides least squares

Why?
e Better prediction accuracy

e More interpretability
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Curse of Dimensionality
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Curse of Dimensionality

Problems arise when analyzing data in high-dimensional spaces
What is a "high” dimension”

In @ machine learning context, any time p > n, we are in a high-
dimensional setting. Problems with high dimensionality can be

experienced even when n > p, if p is large. The amount of data you
need depends on the complexity of your task and algorithm.

p = dimension of input, n = number of samples
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Curse of Dimensionality

The underlying issue Is
that as dimensionality

increases, the volume Sn e T B o |

of the space grows so A Y A
fast that the available ol o . ool 1
data becomes sparse. . o e I
t becomes difficultto | | T = __,,,//

tell how regions of BB m %t w0 P om0
feature space

correspond to the

response
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Curse of Dimensionality

X2

CME 250: Introduction to Machine Learning, Winter 2019
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Curse of Dimensionality

Signal dimensions Noise dimensions

CME 250: Introduction to Machine Learning, Winter 2019
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Curse of Dimensionality

Your model might learn...

X4

...decislon boundaries that are noise

CME 250: Introduction to Machine Learning, Winter 2019
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Hugnes Phenomenon
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Gene Expression Data
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not that many
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Image Data

CME 250: Introduction to Machine Learning, Winter 2019

Every pixel Is
a feature
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Back to Linear Regression

If n >> p, then the least squares estimates tend to have low variance
and will generalize well to unseen data.

If n not much bigger than p, least squares (even with a linear model!)
will have high variance and can overfit.

It p > n, there i1s no longer a unigque least squares estimate.

CME 250: Introduction to Machine Learning, Winter 2019
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Back to Linear Regression

In some cases, some or many Input variaples are not even associated
with the response. They are totally irrelevant to our task.

We want to remove these variables.

CME 250: Introduction to Machine Learning, Winter 2019
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Three Types of Solutions

_ Dimension

|[dentity a subset of
the p features that
we think are related
to the response

Fit a model on all p
features, but shrink
thelr coefticients
toward zero to
reduce model
variance

CME 250: Introduction to Machine Learning, Winter 2019

Project p features
iNto a lower
dimensional space,
then build a model
N this lower space
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Three Types of Solutions

— E=

|[dentify a subset of Fit a model on all p

the p features that features, but shrink

we think are related their coefticients

to the response toward zero to
reduce model
variance

CME 250: Introduction to Machine Learning, Winter 2019

Future lecture
(unsupervised)
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Subset Selection

CME 250: Introduction to Machine Learning, Winter 2019
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Best Subset Selection

TL;DR: Fit a separate least squares regression for each possible
combination of the p predictors.

CME 250: Introduction to Machine Learning, Winter 2019
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Best Subset Selection

TL;DR: Fit a separate least squares regression for each possible
combination of the p predictors.

Algorithm:
1. Start with a model My that has no predictors.
2. Fork=1,2,...p:
(a) Fit all models that contain exactly k predictors.
(b) Pick the best model M; (based on smallest R? or other metric).

3. Pick the best model from My, ..., M,using validation set R? or other
metric.

CME 250: Introduction to Machine Learning, Winter 2019
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Best Subset Selection
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FIGURE 6.1, ISL (8th printing 2017)
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Best Subset Selection

Pro: Exhaustive; finds best possible subset of features

Con: As p grows, the number of models to fit grows exponentially
2» models involve subsets of p predictors
E.Q. If p = 10, you have to consider approximately 1,000 models

E.Q. if p = 20, you have to consider over 1,000,000 models!

CME 250: Introduction to Machine Learning, Winter 2019
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Stepwise Selection

TL;DR: Greedily add or remove variables from the p predictors that
give the greatest additional improvement to model fit.

CME 250: Introduction to Machine Learning, Winter 2019
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Forward Stepwise Selection

TL;DR: Greedily add erremeve variables from the p predictors that
give the greatest additional improvement to model fit.

Algorithm:
1. Start with a model Mpthat has no predictors.
2. Fork=0,1,...p-1:
(a) Consider all p - kK models that add one predictor to Mx.
(b) Pick the best model My.; (based on smallest R? or other metric).

3. Pick the best model from My, ..., M,using validation set R? or other
metric.

CME 250: Introduction to Machine Learning, Winter 2019
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Backward Stepwise Selection

TL;DR: Greedily agdd-er remove variables from the p predictors that
give the greatest additional improvement to model fit.

Algorithm:
1. Start with a model M, that has all predictors.
2. Fork=p,p-1,...,1:
(a) Consider all Kk models that remove one predictor from M.
(b) Pick the best model My.; (based on smallest R? or other metric).

3. Pick the best model from My, ..., M,using validation set R? or other
metric.

CME 250: Introduction to Machine Learning, Winter 2019
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Stepwise Selection

Pro: Computationally feasible

Con: Not guaranteed to get best subset of predictors for final model

CME 250: Introduction to Machine Learning, Winter 2019
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Shrinkage Methods
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Shrinkage Methods

TL;DR: Fit a model containing all p predictors using a technique that
constrains or reqularizes the coetfticient estimates.

Equivalently, the method shrinks coetticient estimates toward zero.

CME 250: Introduction to Machine Learning, Winter 2019
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Shrinkage Methods

TL;DR: Fit a model containing all p predictors using a technique that
constrains or reqularizes the coetfticient estimates.

Equivalently, the method shrinks coetticient estimates toward zero.

Why does this work? Shrinking coetticients reduces the model
variance.

CME 250: Introduction to Machine Learning, Winter 2019
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Multiple Linear Regression

Recall that In linear regression we are trying to minimize the squared
error:

N\

B = argmin ||[Y — X2
B

CME 250: Introduction to Machine Learning, Winter 2019
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RiIdge Regression

Find S values that minimize a “penalized” error:

N\

8 = arg min | Y — X§]
B

INn the case of one feature:

A

B

5+ A

CME 250: Introduction to Machine Learning, Winter 2019

B = argmin(y — (Bo + S1x))* + A(B§ + B7)

34



RiIdge Regression

Find S values that minimize a “penalized” error:

B:argmgn Y—XE §—|—

Penalizes large p values by
penalizing sum of squares

CME 250: Introduction to Machine Learning, Winter 2019
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Ridge Regression 4 =agmin|[Y — X413 + |14l

B

A IS a hyperparameter that needs to be tuned.

When 4 =0, the penalty term has no effect, and ridge regression
oroduces least squares estimates.

As A — o, the Impact of the shrinkage penalty grows. Ridge regression
estimates — 0.

Finding a good value of A4 is crucial to good ridge regression
performance.

CME 250: Introduction to Machine Learning, Winter 2019
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Ridge Regression 4 =agmin|[Y — X413 + |14

B
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FIGURE 6.4, ISL (8th printing 2017)
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Ridge Regression 4 =agmin|[Y — X413 + |14l

B

Why Is this method an improvement over least squares”
Recall the bias-variance tradeoft.

As A — o« the model becomes less flexible. Variance decreases. Bias
INncreases.
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Ridge Regression 4 =agmin|[Y — X413 + |14

nich curve Is bias”?
nich Is variance”

nich 1s overall error on
the test set?

===

B

60
l

As long as we are reducing
more variance than adding
bias, overall error will
decrease.

Mean Squared Error

FIGURE 6.5, ISL (8th printing 2017)
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RiIdge Regression

Pro: Computationally feasible, reduces variance in linear regression

when p > n or n Is not much larger than p, allows for a unique solution
when p > n

Con: Includes all p predictors in final model, does not perform feature
selection (which boosts interpretability) by setting any S to zero

CME 250: Introduction to Machine Learning, Winter 2019
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In Search of Sparsity

y = Po + P11 +ﬂ2\$2 + O3x3 + R@zl +\@§$5 + Pexe
0 0 0

Offers interpretability when p is large

CME 250: Introduction to Machine Learning, Winter 2019

41



lhe Lasso

Find S values that minimize a “penalized” error:

A\

B = argmgnuy — X812+ |6

INn the case of one feature:

N\

f = argmin(y — (Ko + B12))* + A(|Bo| + |B1])

CME 250: Introduction to Machine Learning, Winter 2019
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lhe Lasso

"Least absolute shrinkage and selection operator”

A\

B = argmgi,n 1Y — XB|[5 HAIIB]:

Penalizes sum of absolute values

Tibshirani, Robert. “Regression shrinkage and selection via the lasso.” Journal of the Royal Statistical Society. Series B (Methodological) (1996): 267-288.

CME 250: Introduction to Machine Learning, Winter 2019
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Ridge vS. Lasso Penalty

Quadratic is
harsh here

Quadratic is
kind here

CME 250: Introduction to Machine Learning, Winter 2019



A Detour About Distances

To explain why lasso results in sparse coefficient estimates, we first
need to understand different measures of distance.

CME 250: Introduction to Machine Learning, Winter 2019
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Different Measures of Distance

We are tamiliar with Euclidean, or L2, distance.

Euclidean Distance A vector’s
(%2, 12) Fuclidean distance

y from the origin
Y2 — Y1 _
T 9

W

V(T — 22)%2 + (y1 — y2)?
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Different Measures of Distance

Another distance metric Is Manhattan, or L1, distance.

A vector’s
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Different Measures of Distance

A distance measure must satisty the triangle inequality.

Z=X+Y

CME 250: Introduction to Machine Learning, Winter 2019
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Distance Measures Are Called Norms

A norm assigns a positive length to a vector. W,
|$ 1 = |Z1] T |T2 “L1-norm”

(0

x |2 — 513% + CU% ‘L2-norm’ <> .

1
|#llp = (1P + [227)7 orom

| X oo — INaX (|2131 o | L2 ) “oo-norm’
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Norms

FIGURE 3.12. C(Contours of constant wvalue of
D 85| for given values of q.

Hastie, Travor et al. The Elements of Statistical Learning. Vol. 2. No. 1. New York: Springer, 2009

CME 250: Introduction to Machine Learning, Winter 2019
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Norms and Sparsity

L1 penalty says: "F
. model whose coe
INside this diamor

INside this circle.”

FIGURE 6.7, ISL (8th printing 2017)
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q°

INd the best

clents are
(Lasso)

L2 penalty says: “FIind the best
model whose coefficients are

(Ridge)

51



Norms and Sparsity

Norms with sharper corners
on the axes yield sparser
solutions.

CME 250: Introduction to Machine Learning, Winter 2019
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| asso vs. Ridge Penalty

A\

B = argmgnHY - XI5 + AllB]x

N\

B = argm[;n 1Y — X324 || 8]3

. asso finds coefficients that are
exactly zero.

FIGURE 6.7, ISL (8th printing 2017)
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Why not use a p-norm with p<1?

! O ‘ + gl

p=0C O<p<l p=>0

By the logic “pointier norms = sparser coefficients”, why not use an
even pointier norm, i.e. p-normwith 0O < p < 17

CME 250: Introduction to Machine Learning, Winter 2019
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Convexity

convex convex convex concave concave

Popular Stanford course: EE 364

Stephen Boyd and

K Lieven Vandenberghe
O 0 + 7

convex

Applied mathematicians have figured out efficient Optimization
ways to maximize and minimize convex functions.

L2 and L1 norms are both convex.

A p-norm with O < p <1 Is not convex.
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lhe Lasso

Standardized Coefficients
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1he Lasso B = argmin ||Y — XA]12 + A ]12

B

Ridge Regression Lasso

Mean Squared Error
Mean Squared Error
30

O —
l | ' | I I | I I I | I I [
1e-01 1e+01 1e+03 0.02 0.10 050 2.00 10.00 50.00
A A
FIGURE 6.5, ISL (8th printing 2017) FIGURE 6.8, ISL (8th printing 2017)
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Like ridge, lasso
reduces model
variance as A
INCreases.
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Ridge vs. Lasso: Which is better?

Neither Is universally better than the other.

Ridge regression will perform better when the response is a function of
many predictors, all with coefficients roughly of similar magnitude.

asso will perform better when a small number of predictors have
substantial coetticients, and the remaining are small or equal zero.

CME 250: Introduction to Machine Learning, Winter 2019
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lhe Lasso

Pro: Computationally feasible, reduces variance in linear regression
when p > n or n Is not much larger than p, allows for a unique solution
when p > n, performs feature selection (offers interpretability)

Con: Not as good as ridge when all predictors have significant and
roughly similarly sized coefficients

CME 250: Introduction to Machine Learning, Winter 2019
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Bayesian Prior for Ridge & Lasso

We can view ridge regression and the lasso through a Bayesian lens.

Bayesian probability Is an interpretation of the concept of probability.
Instead of a fixed frequency, probability Is interpreted to represent a
state of knowledge or as quantification of a personal beliet.
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Bayesian Prior for Ridge & Lasso

A prior distribution expresses one's beliet about a quantity before
evidence Is taken Iinto account.

For model coefficients, a Bayesian viewpoint says that f has a prior

Pr(p).

CME 250: Introduction to Machine Learning, Winter 2019
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Bayesian Prior for Ridge & Lasso

Ridge Regression Lasso
N N |
o o |
© - © 4
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;Bj }8]

FIGURE 6.11, ISL (8th printing 2017)
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Flastic Net

Elastic Net = Ridge + Lasso

A — —
2

B =argmin||Y — XJ||5 + A2||0
B

CME 250: Introduction to Machine Learning, Winter 2019
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Shrinkage Methods in sklearn

from sklearn.linear model import LoglisticRegression

ridge LoglisticRegression(penalty='12’', C=1.0)

lasso LogisticRegression(penalty=‘11’, C=1.0)

CME 250: Introduction to Machine Learning, Winter 2019
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