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Announcements
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Homework 1 is due this Friday, January 25, at 5:00pm. 

Homework 2 will be released today, and due next Friday at 5. 

Out of town: No lecture next week. And no office hours — sorry! 
If you would like to meet about Homework 2 before Monday, email me.
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Lecture Pace
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Agenda
•  Curse of Dimensionality

•  Subset Selection Methods

•  Shrinkage Methods

-  Ridge Regression 

-  The Lasso
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Slides are online at 
cme250.stanford.edu

http://cme250.stanford.edu
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Roadmap
We’ve covered:

•  Linear regression 

•  Logistic regression 

•  K-nearest neighbors 

•  Dataset splitting 

•  Bias-variance tradeoff
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Coming up:

•  Non-linear supervised algorithms 

•  Cross validation 

•  Missing data 

•  Unsupervised learning
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But first…
In transitioning from linear to non-linear methods, we will consider 
alternative ways to fitting linear regression besides least squares 

Why?

•  Better prediction accuracy 

•  More interpretability

7
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Curse of Dimensionality 
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Curse of Dimensionality
Problems arise when analyzing data in high-dimensional spaces

What is a “high” dimension? 

In a machine learning context, any time p > n, we are in a high-
dimensional setting. Problems with high dimensionality can be 
experienced even when n > p, if p is large. The amount of data you 
need depends on the complexity of your task and algorithm. 

p = dimension of input, n = number of samples

9
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Curse of Dimensionality
The underlying issue is 
that as dimensionality 
increases, the volume 
of the space grows so 
fast that the available 
data becomes sparse. 
It becomes difficult to 
tell how regions of 
feature space 
correspond to the 
response

10
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Curse of Dimensionality
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Sample x1 x2 y

1 0 0 0

2 1 1 0

3 0 1 1

4 1 0 1

x1

x2
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Curse of Dimensionality
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Sample x1 x2 x3 x4 y

1 0 0 1 0 0

2 1 1 0 1 0

3 0 1 1 1 1

4 1 0 0 0 1

Noise dimensionsSignal dimensions
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Curse of Dimensionality
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Sample x3 x4 y

1 1 0 0

2 0 1 0

3 1 1 1

4 0 0 1

x3

x4
Your model might learn…

…decision boundaries that are noise
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Hughes Phenomenon
With a fixed number of 
training samples, the 
predictive power of a 
classifier or regressor 
first increases as 
number of features 
used increases, but 
then decreases

14
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Gene Expression Data
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Thousands of 
genes, often 
not that many 

samples
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Image Data
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Every pixel is 
a feature
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Back to Linear Regression
If n >> p, then the least squares estimates tend to have low variance 
and will generalize well to unseen data. 

If n not much bigger than p, least squares (even with a linear model!) 
will have high variance and can overfit. 

If p > n, there is no longer a unique least squares estimate.

17
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Back to Linear Regression
In some cases, some or many input variables are not even associated 
with the response. They are totally irrelevant to our task. 

We want to remove these variables.

18
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Three Types of Solutions
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Subset Selection Shrinkage Dimension 
Reduction

Identify a subset of 
the p features that 
we think are related 
to the response

Fit a model on all p 
features, but shrink 
their coefficients 
toward zero to 
reduce model 
variance

Project p features 
into a lower 
dimensional space, 
then build a model 
in this lower space
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Three Types of Solutions
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Subset Selection Shrinkage Dimension 
Reduction

Identify a subset of 
the p features that 
we think are related 
to the response

Fit a model on all p 
features, but shrink 
their coefficients 
toward zero to 
reduce model 
variance

Project p features 
into a lower 
dimensional space, 
then build a model 
in this lower space

Future lecture 
(unsupervised)
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Subset Selection 
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Best Subset Selection
TL;DR: Fit a separate least squares regression for each possible 
combination of the p predictors. 

22
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Best Subset Selection
TL;DR: Fit a separate least squares regression for each possible 
combination of the p predictors. 

Algorithm:
1.  Start with a model M0 that has no predictors. 
2.  For k = 1, 2, …, p: 

(a)  Fit all models that contain exactly k predictors. 
(b)  Pick the best model Mk (based on smallest R2 or other metric). 

3.  Pick the best model from M0, …, Mp using validation set R2 or other 
metric.

23
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Best Subset Selection

24

FIGURE 6.1, ISL (8th printing 2017)

This will go down 
eventually as 

dimension gets 
too high
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Best Subset Selection
Pro: Exhaustive; finds best possible subset of features 

Con: As p grows, the number of models to fit grows exponentially 

2p models involve subsets of p predictors 

E.g. if p = 10, you have to consider approximately 1,000 models 

E.g. if p = 20, you have to consider over 1,000,000 models!

25
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Stepwise Selection
TL;DR: Greedily add or remove variables from the p predictors that 
give the greatest additional improvement to model fit. 

26
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Forward Stepwise Selection
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TL;DR: Greedily add or remove variables from the p predictors that 
give the greatest additional improvement to model fit. 

Algorithm:
1.  Start with a model M0 that has no predictors. 
2.  For k = 0, 1, …, p - 1: 

(a)  Consider all p - k models that add one predictor to Mk. 
(b)  Pick the best model Mk+1 (based on smallest R2 or other metric). 

3.  Pick the best model from M0, …, Mp using validation set R2 or other 
metric.
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Backward Stepwise Selection
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TL;DR: Greedily add or remove variables from the p predictors that 
give the greatest additional improvement to model fit. 

Algorithm:
1.  Start with a model Mp that has all predictors. 
2.  For k = p, p - 1, …, 1: 

(a)  Consider all k models that remove one predictor from Mk. 
(b)  Pick the best model Mk-1 (based on smallest R2 or other metric). 

3.  Pick the best model from M0, …, Mp using validation set R2 or other 
metric.
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Stepwise Selection
Pro: Computationally feasible 

Con: Not guaranteed to get best subset of predictors for final model

29
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Shrinkage Methods 

30
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Shrinkage Methods
TL;DR: Fit a model containing all p predictors using a technique that 
constrains or regularizes the coefficient estimates. 

Equivalently, the method shrinks coefficient estimates toward zero. 

31
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Shrinkage Methods
TL;DR: Fit a model containing all p predictors using a technique that 
constrains or regularizes the coefficient estimates. 

Equivalently, the method shrinks coefficient estimates toward zero. 

Why does this work? Shrinking coefficients reduces the model 
variance.

32
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Multiple Linear Regression
Recall that in linear regression we are trying to minimize the squared 
error:

33
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Ridge Regression
Find β values that minimize a “penalized” error: 

In the case of one feature:

34



CME 250: Introduction to Machine Learning, Winter 2019

Ridge Regression
Find β values that minimize a “penalized” error:

35

Penalizes large β values by 
penalizing sum of squares 
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Ridge Regression
λ is a hyperparameter that needs to be tuned. 

When λ = 0, the penalty term has no effect, and ridge regression 
produces least squares estimates. 

As λ → ∞, the impact of the shrinkage penalty grows. Ridge regression 
estimates → 0. 

Finding a good value of λ is crucial to good ridge regression 
performance.

36
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Ridge Regression
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FIGURE 6.4, ISL (8th printing 2017)
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Ridge Regression
Why is this method an improvement over least squares? 

Recall the bias-variance tradeoff. 

As λ → ∞, the model becomes less flexible. Variance decreases. Bias 
increases.

38
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Ridge Regression
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FIGURE 6.5, ISL (8th printing 2017)

As long as we are reducing 
more variance than adding 
bias, overall error will 
decrease.

Which curve is bias? 
Which is variance? 
Which is overall error on 
the test set?
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Ridge Regression
Pro: Computationally feasible, reduces variance in linear regression 
when p > n or n is not much larger than p, allows for a unique solution 
when p > n 

Con: Includes all p predictors in final model, does not perform feature 
selection (which boosts interpretability) by setting any β to zero

40
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In Search of Sparsity

41

0 0 0

Offers interpretability when p is large
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The Lasso
Find β values that minimize a “penalized” error: 

In the case of one feature:

42
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“Least absolute shrinkage and selection operator”

The Lasso

43

Penalizes sum of absolute values 

Tibshirani, Robert. “Regression shrinkage and selection via the lasso.” Journal of the Royal Statistical Society. Series B (Methodological) (1996): 267-288.
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Ridge vs. Lasso Penalty

44

Quadratic is 
harsh here

Quadratic is 
kind here
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A Detour About Distances
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To explain why lasso results in sparse coefficient estimates, we first 
need to understand different measures of distance.
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Different Measures of Distance
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We are familiar with Euclidean, or L2, distance.

A vector’s 
Euclidean distance 

from the origin
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Different Measures of Distance
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Another distance metric is Manhattan, or L1, distance.

A vector’s  
L1 distance from 

the origin
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Different Measures of Distance
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A distance measure must satisfy the triangle inequality. 
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Distance Measures Are Called Norms
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A norm assigns a positive length to a vector. 

“L1-norm”

“L2-norm”

“p-norm”

“∞-norm”
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Norms

50

Hastie, Travor et al. The Elements of Statistical Learning. Vol. 2. No. 1. New York: Springer, 2009
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Norms and Sparsity
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FIGURE 6.7, ISL (8th printing 2017)

L1 penalty says: “Find the best 
model whose coefficients are 
inside this diamond.” (Lasso)

L2 penalty says: “Find the best 
model whose coefficients are 
inside this circle.” (Ridge)
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Norms and Sparsity
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Norms with sharper corners 
on the axes yield sparser 
solutions.
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Lasso vs. Ridge Penalty
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FIGURE 6.7, ISL (8th printing 2017)
Lasso finds coefficients that are 
exactly zero.
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Why not use a p-norm with p<1?
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By the logic “pointier norms = sparser coefficients”, why not use an 
even pointier norm, i.e. p-norm with 0 < p < 1?
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Convexity
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Applied mathematicians have figured out efficient 
ways to maximize and minimize convex functions. 

L2 and L1 norms are both convex. 

A p-norm with 0 < p <1 is not convex.

convex convex convex concave concave

Popular Stanford course: EE 364
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The Lasso
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FIGURE 6.6, ISL (8th printing 2017)FIGURE 6.4, ISL (8th printing 2017)

Ridge Regression Lasso
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The Lasso
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FIGURE 6.5, ISL (8th printing 2017)

Like ridge, lasso 
reduces model 
variance as λ 
increases.

FIGURE 6.8, ISL (8th printing 2017)

Ridge Regression Lasso
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Ridge vs. Lasso: Which is better?
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Neither is universally better than the other. 

Ridge regression will perform better when the response is a function of 
many predictors, all with coefficients roughly of similar magnitude. 

Lasso will perform better when a small number of predictors have 
substantial coefficients, and the remaining are small or equal zero.
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The Lasso
Pro: Computationally feasible, reduces variance in linear regression 
when p > n or n is not much larger than p, allows for a unique solution 
when p > n, performs feature selection (offers interpretability) 

Con: Not as good as ridge when all predictors have significant and 
roughly similarly sized coefficients

59
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Bayesian Prior for Ridge & Lasso
We can view ridge regression and the lasso through a Bayesian lens. 

Bayesian probability is an interpretation of the concept of probability. 
Instead of a fixed frequency, probability is interpreted to represent a 
state of knowledge or as quantification of a personal belief.

60
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Bayesian Prior for Ridge & Lasso
A prior distribution expresses one's belief about a quantity before 
evidence is taken into account. 

For model coefficients, a Bayesian viewpoint says that β has a prior 
Pr(β).

61
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Bayesian Prior for Ridge & Lasso
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Ridge Regression Lasso

FIGURE 6.11, ISL (8th printing 2017)

Normal 
distribution

Laplace 
distribution
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Elastic Net
Elastic Net = Ridge + Lasso

63
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Shrinkage Methods in sklearn
from sklearn.linear_model import LogisticRegression

ridge = LogisticRegression(penalty=’l2’, C=1.0)

lasso = LogisticRegression(penalty=‘l1’, C=1.0)

64


