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Agenda
•  Clustering methods

•  K-means clustering

•  Hierarchical clustering

•  Dimensionality reduction

•  PCA
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Machine Learning Methods
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Do you have labeled data?

Supervised Unsupervised

Yes No

What do you want to predict?

Classification Regression

Category Quantity

KNN Linear 
Regression

Logistic 
Regression SVM Ridge 

Regression LassoCART

Do you want to group the data?

Clustering Dimensionality reduction

Yes No

K-means Hierarchical PCA
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Unsupervised Learning
Recall: A set of statistical tools for data that only has features/input 
available, but no response. 

In other words, we have X’s but no labels y. 

Goal: Discover interesting patterns/properties of the data. 

•  E.g. for visualizing or interpreting high-dimensional data.
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Unsupervised Learning
Example applications: 

•  Given tissue samples from n 
patients with breast cancer, identify 
unknown subtypes of breast cancer. 

•  Gene expression experiments have 
thousands of variables. Represent the 
data using a smaller set of features 
for visualization and interpretation.
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Unsupervised Learning
Example applications: 

•  Document clustering: identify sets 
of documents about the same topic. 

•  Given high-dimensional facial 
images, find a compact 
representation as inputs for a facial 
recognition classifier.
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Challenges of Unsupervised Learning
Why is unsupervised learning challenging? 

•  Exploratory data analysis — goal is not always clearly defined 

•  Difficult to assess performance — “right answer” unknown 

•  Working with high-dimensional data
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Types of Unsupervised Learning
Two approaches: 

•  Cluster analysis 

-  For identifying homogenous subgroups of samples 

•  Dimensionality reduction 

-  For finding a low-dimensional representation to characterize and 
visualize the data
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Cluster Analysis 
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Clustering
A set of methods for finding 
subgroups within the dataset. 

•  Observations should share 
common characteristics within the 
same group, but differ across 
groups. 

•  Groupings are determined from 
attributes of the data itself — 
differs from classification.
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https://medium.com/square-corner-blog/so-you-have-some-clusters-now-what-abfd297a575b 

https://medium.com/square-corner-blog/so-you-have-some-clusters-now-what-abfd297a575b
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Clustering vs. Classification
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Classification

12

Class A Class B

?
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Clustering
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Dataset

Cluster A

Cluster B

Cluster C

Cluster D
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Clustering
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http://cs.joensuu.fi/sipu/datasets/ 

http://cs.joensuu.fi/sipu/datasets/
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Types of Clustering
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•  Centroid-based clustering 

•  Hierarchical clustering 

•  Model-based clustering 
-  Each cluster is represented by a parametric distribution 
-  Dataset is a mixture of distributions 

•  Hard vs. soft/fuzzy clustering 
-  Hard: observations divided into distinct clusters 
-  Soft: observations may belong to more than one cluster
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K-means Clustering
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Groups data into K clusters that 
satisfy two properties. 

1.  Each observation belongs to at 
least one of the K clusters. 

2.  Clusters are non-overlapping. 
No observation belongs to more 
than one cluster.
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K-means Clustering

17

A good clustering is one for which 
the within-cluster variation is as 
small as possible. 

Denote each cluster by Ck, and let 
W(Ck) be a measure of the within-
cluster variation. 

K-means aims to solve
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K-means Clustering
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How to measure within-cluster variation? 

The most common choice is squared Euclidean distance. 

 

Which means overall we solve
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K-means Clustering
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It turns out that this optimization problem is difficult to solve, as it is 
discrete and there are nearly Kn ways to split n samples into K clusters. 

In practice, use an iterative algorithm that finds a local minimum to this 
optimization.
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K-means Clustering Algorithm
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1.  Initialize each observation to a cluster by randomly assigning a 
cluster, from 1 to K, to each observation.  

2.  Iterate until the cluster assignments stop changing: 

a.  For each of the K clusters, compute the cluster centroid. The k-th 
cluster centroid is the vector of the p feature means for the 
observations in the k-th cluster. 

b.  Assign each observation to the cluster whose centroid is closest 
(using Euclidean distance as the metric).
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K-means Clustering Iterations
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FIGURE 10.6, ISL (8th printing 2017)
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K-means Clustering Iterations
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FIGURE 10.6, ISL (8th printing 2017)
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K-means Clustering Animation
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K-means Clustering Properties
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It can be shown that the value of 
the objective function will never 
increase at each iteration of k-
means. 

Since the algorithm finds local 
minima, however, it will result in 
different clusters with different 
initializations.

FIGURE 10.7, ISL (8th printing 2017)
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K-means Pros and Cons
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Pros:

•  Easy to implement and understand 

Cons:

•  Not robust to data perturbations and different initializations 

•  Treats each feature equally, not robust to noise features or different 
scales of features — looks for in spherical clusters in feature space 

•  Need to define K before running algorithm
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Another K-means Example
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Hierarchical Clustering
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Cluster based on distances 
between observations. 

Represented as a tree hierarchy 
(dendrogram) rather than a 
partition of data. 

Does not require committing to a 
choice of K.

Sørlie, Therese, et al. (2003) "Repeated observation of breast 
tumor subtypes in independent gene expression data sets," PNAS.  
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Dendrograms
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Each leaf in a dendrogram is a sample/
observation. 

As we move up the dendrogram, observations 
that are similar to each other begin to fuse 
into branches. 

Branches then fuse into bigger branches. 

Observations that fuse later (near the top of 
the tree, or root) are more different than 
observations that fuse earlier. FIGURE 10.9, ISL (8th printing 2017)
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Dendrograms
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Note that the horizontal distance between observations on a 
dendrogram is not the appropriate assessment of observation 
similarity. Instead, look at vertical axis where branches are first fused.

FIGURE 10.10, ISL (8th printing 2017)

Not distance metric

Distance 
metric
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Obtaining Clusters
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Clusters are created by 
making a horizontal cut 
across the dendrogram. 
Clusters are the separate 
trees below the cut. 

FIGURE 10.9, ISL (8th printing 2017)
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Building a Dendrogram
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A dendrogram is most commonly built using a bottom-up or 
agglomerative algorithm. 

We start at the leaves and group observations until we reach the root 
containing the entire dataset. 

Like in k-means, we need a measure of similarity. Again, the most 
common is Euclidean distance.
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Hierarchical Clustering Algorithm
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1.  Initialize each observation to its own cluster.  

2.  For i = n, n-1, …, 2: 

a.  Examine all pairwise inter-cluster similarities among the i clusters 
and identify the pair of clusters that are most similar. Fuse these two 
clusters. The dissimilarity between these two clusters indicates the 
height in the dendrogram at which the fusion occurs. 

b.  Compute the new pairwise inter-cluster similarities among the i-1 
remaining clusters.
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Distance Between Groups
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It’s easy to compute Euclidean distance between two observations. 
What is the distance or similarity between two groups or clusters of 
observations? 

Linkage: defines the dissimilarity between two groups of observations. 
Most common types are complete, average, single, and centroid.
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Types of Linkage
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Single linkageComplete linkage Average linkage Centroid linkage
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Hierarchical Clustering Example
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Illustration of the first few steps of 
the hierarchical clustering 
algorithm, with complete linkage 
and Euclidean distance. 

FIGURE 10.11, ISL (8th printing 2017)
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Different Linkage, Different Dendrogram

36

FIGURE 10.12, ISL (8th printing 2017)
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Hierarchical Clustering Pros and Cons
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Pros:

•  Don’t have to choose a value of K (number of clusters) before 
running algorithm 

Cons:

•  Do have to pick where to cut the dendrogram to obtain clusters 

•  Sensitive to similarity measure and type of linkage used
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Dimensionality Reduction 
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Dimensionality Reduction
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Recall the curse of dimensionality when working in high dimensions. 

Dimensionality reduction is the process of reducing the number of 
features under consideration. 

We already saw some examples of this in the lasso and forward/
backward selection algorithms. These methods reduce dimensionality 
by selecting a subset of features. However, they do so using 
supervision — knowing a response y that is of interest.
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Dimensionality Reduction
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Principal Component Analysis
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Look for a low-dimensional representation of the dataset that contains 
as much variation in the dataset as possible. 

E.g. for plotting our data and gaining intuition, if we can obtain a 2D 
representation of the data, then we can plot the observations in this 
low-dimensional space. 

Note that you want to center the data and make the scales of features 
comparable before performing PCA. E.g. if one feature is in kilometers 
and another in meters, the one in kilometers may appear to have lower 
variance when in fact this is due to scaling.
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Principal Components
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The first principal component of a set of features X1, X2,…, Xp is the 
normalized linear combination of the features 

that has the largest variance. “Normalized” refers to                         . 

We refer to                      as the loadings of the first principal 
component. 

The loadings make up the first principal component vector.



CME 250: Introduction to Machine Learning, Winter 2019

Principal Components
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The first principal component loading vector solves the optimization 
problem
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Principal Components
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The second principal component Z2 is the linear combination of 
features that has maximal variance out of all linear combinations that 
are are uncorrelated with Z1. 

Constraining Z2 to be uncorrelated with Z1 is equivalent to constraining 
the direction of        to be orthogonal to      . 
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Principal Component Analysis
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First two principal axes of 
this Gaussian dataset.
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Principal Component Analysis
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Principal Components
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Equivalently, find eigenvectors with the largest eigenvalues of the 
sample covariance matrix. 

By the singular value decomposition (SVD), 
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Principal Components
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Equivalently, find eigenvectors with the largest eigenvalues of the 
sample covariance matrix. 

By the singular value decomposition (SVD), 
The right singular vectors 
are the loadings, or 
principal axes, of the data.
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Principal Components
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Equivalently, find eigenvectors with the largest eigenvalues of the 
sample covariance matrix. 

By the singular value decomposition (SVD), UD is the full principal 
components 
decomposition of X, aka 
the Z’s on previous slides.
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How many principal components?
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Scree plot


