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Machine Learning Methods

Do you have labeled data?

Supervised Unsupervised

What do you want to predict? Do you want to group the data?

Category Quantity

Classification Regression Clustering Dimensionality reduction

Logistic Linear Ridge
: SVM : :
Regression Regression | Regression

Neural
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Deep Learning Resources

UM S N Textbook: Deep Learning. lan
[\l DEEP LEARNING E= Goodfellow, Yoshua Bengio, and

lan Goodfellow, Yoshua Bengio,

XY CRe” T |
¥y . and Aaron Courville A AarOn COU rVI | ‘e
VI e SN RN VN 117 AR 770 o WO L

Courses: CS 230, CS 231n, CS
224n

Online: Deep learning tutorial,
notes on CNNs
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The Success of Deep Learning

PUBLIC RELEASE: 19-JUN-2018

Deep Learning: A Next-Generation N —— Machlne |ea rn|ng may be a game_
Big-Data Approach for Hydrology An Al-Generated Artwork Just Sold changer for climate prediction

- Ll ,
_ e L _ for $432,500 at Christie’s COLUMBIA UNIVERSITY SCHOOL OF ENGINEERING AND APPLIED SCIENCE
What can Artificial Intelligence offer hydrologic research? Could deep learning one
day become part of hydrology itself? Far from being the sole creation of an Al, ‘T’ v ! & ‘_1 S PRINT & E-MAIL
'Edmond de Belamy' was the result of months T T
Wi [ubumpeet - -
Foraiast Climat, e of work by three people using a machine
o D"‘"‘?"f.j (rocipfiation learning algorithm from 2014.

Artificial intsiigence predicts Alzhelmer's years befors diagncsis Machine Learning to Help Optimize Traffic and Reduce How Deep Learning Solves
Noverie 6, 2018, Ralogical Socey o orh Ao Pollution Retail Forecasting Challenges

@ Yuan Shen i
NVIDIA NVIDIA BRANDVOICE

Berkeley Lab researchers use algorithms for smart and sustainable mobility solutions

News Release Julie Chao (510) 486-6491 * OCTOBER 28, 2018

e
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Feedforward Neural
Networks
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Supervised Learning

Algorithms that learn to associate some input X with some output Y.

e Linear regression: f(&) = Bo+ ) Bz,
=1
- | N 1
e |ogistic regression: f(Z) = NS S
e Support vector machine: = fo+ ) _ K (Z,7Y)
€S
o M
e Decision tree: f(Z) = Z em - 1{Z € Ry}
m=1
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L Inear Regression to Neural Networks

Linear models:
e (500d: easy to fit, interpretable, low variance
e Bad: limited to linear functions (high bias)

SVMs:
o Use explicitly chosen kernels to model relationships beyond linear

Neural networks:
e [ earnthe kernels that best transform input to achieve output
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Feedforward Neural Network

Goal: To approximate some function f*. In the case of a model for
classification or regression, want to learn y = f*(x) to map from an input
x to a category or real value y. Also known as multilayer perceptron.

A teedforward network defines a mapping y = f(x ; 6) and learns the
values of parameters 6 that result in the best approximation of .
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Feedforward Neural Network

Feedforward: because information A
flows from x through the computations
iINnvolved In fto the output y.

Input Layer
Neural: because loosely inspired by SPX
our understanding of the nervous Hidden Layer QQQ @
system. N

Output Layer C ) ()

Network: because typically
composes together many ditferent
functions.

CME 250: Introduction to Machine Learning, Winter 2019
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Neural Network Layers

Example: We have 3 functions f, @),

X
and f®. Connected in a chain, they l '

form a neural network O ( f@ ( f(D(x))).

Input Layer
In the case of the 3-layer network, £ SPXK
. . N
s called the first layer, f® the second  Hidden Layer Qt‘,‘ ®
layer, and f©® the third layer. b:"‘«‘

Output Layer € ) ()
The number of layers is the depth of o

the model.
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Neural Network Layers

When we train a neural network, we X
want to drive f to be close to f*. l ' ' '

Of course, we don't know f*; we just

Input Layer

have training data (x @, y ®). For each }‘(QA
x @, we want the value from the Hidden Layer Qt‘,‘ o f (x)
output layer of the network to match }"’\14
y (), Output Layer C) €) €) C
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Neural Network Layers

Behavior of intermediate layers is not
directly specitied by the training data,
so we call these layers hidden layers.

Representing hidden layers as vectors,
maximal dimension = width of model.

Each element of hidden layer is a unit.

Functions used to compute hidden
layer values are called activation
functions.

U

Hidden Layer C) €) ) (]
SR

Output Layer C ) ()
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Neural Networks: Examples

A linear 1-layer neural network: \

y = Po + P1x1 + P22 @ I ) MR S

y=Xp @%

A nonlinear 3-layer neural network:

y = P (D (XW1)W3)W3)

https://www.researchgate.net/publication/
316613684 Heterogeneous_s harpness_for_cross -spectra |_face recognition/figures?lo=1
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Universal Approximation Theorem

't might seem that Iin order to approximate arbitrary nonlinear
functions, we have to choose the right model family for that function.

The universal approximation theorem (Hornik et al. 1989; Cybenko,
1989) states that a feedforward network with a linear output layer and
at least 1 hidden layer with any “squashing” activation function (e.g.
sigmoid function) can approximate any function from one finite-
dimensional space to another with any nonzero amount of error,
orovided the network has enough hidden units.

In the worst case, O(27) hidden units are needed.
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Deep Learning

O(2m) hidden units is not computationally feasible.

Instead of making model wider (results guaranteed eventually by
universal approximation theorem), make the model deeper.

In practice, compositions of simple nonlinear functions can
approximate complex nonlinear functions.

CME 250: Introduction to Machine Learning, Winter 2019
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Deep Learning

Simple Neural Network Deep Learning Neural Network
ey A
) /~
""’"‘y s’" ’ 'W ' V \
:"QQ:M:». 0 :@»

i
é\\'l&{@.}\'z.u\ ' m
%’&}% N ::!4;
X 4‘« . \Ww. .m :7
A0
§3
Q\". ‘wf
f

1.
‘H"ﬂ_‘/ I:“x g‘n
.3 h‘aﬁ'\ . (".&. a?‘h. % "’bﬁt‘.‘-‘\‘&\\ ":‘:.
AR
é \.23? ” ‘ "»-\
Nt A2

@ nput Layer () Hidden Layer @ Output Layer

& README.md

Deep Residual Networks with 1K Layers

By Kaiming He, Xiangyu Zhang, Shaoging Ren, Jian Sun.

Microsoft Research Asia (MSRA).
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Bullding Blocks of Neural Networks

e | inear transformations

e Nonlinear transformations
- Activation functions

e Obtaining outputs

- Qutput functions

CME 250: Introduction to Machine Learning, Winter 2019
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| Inear Transtformations

Some main building blocks of teedtforward neural networks is shared
with linear regression: addition and multiplication.

The weights of a neural network are real-valued matrices multiplieo
by the inputs to each layer. They are learned via training.

y = P (D (XW1)W3)W3)

CME 250: Introduction to Machine Learning, Winter 2019

19



Nonlinear Transtformations

The activation functions of hidden layers are simple nonlinear
functions. They are determined when the network architecture is
coded and do not change during training.

y = P (D (XW1)W3)W3)

CME 250: Introduction to Machine Learning, Winter 2019
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Obtaining Outputs

The output layer is usually just a linear transtormation for regression
problems and a linear transformation followed by some “squashing”
function that brings a real value into the interval (0,1) for classification
oroblems.

y = P (D (XW1)W3)W3)

CME 250: Introduction to Machine Learning, Winter 2019
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Activation Functions

Which activation functions are best and the theoretical principles
guiding their design are still an active area of research.

Common activation functions include:
e Logistic sigmoid
e Hyperbolic tangent

e Rectified linear units

CME 250: Introduction to Machine Learning, Winter 2019
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Sigmoid Function

1 B
v
0.5
4 -2 0 ) 4
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Hyperoolic Tangent Function

I B
-1 0 1
X
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Rectified Linear Unit (RelLU

Nonlinearbes
1 [ | [ | | [

- Softplus

4 - — Rectifier
3

x

o 2 - -
1-
0 p— | l | | | | | T
-4 -3 - -1 0 1 2 3 i
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Output Functions

For real-valued outputs, use a linear output function.
=W ' 'h+b |
For binary outputs, use a sigmoid output function. ﬁ

For multi-class outputs, use a softmax output function.
WTh—I—b)k

R 6( Each elementisin (0,1).
Yk = > ~(WThtb), Entire vector sums to 1.
J
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Network Architecture

Architecture: the overall structure ot
the network. How many units it has,
how these units are connected to
each other.

Example:
ht) = ReLUWW Tx + b(1) input layer

hidden layer 1 hidden layer 2

h® = ReLU(W®@ Th® 4 p2)

i = U(W(3)Th(2) +b®)

CME 250: Introduction to Machine Learning, Winter 2019
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Network Architecture

Nowadays, there are lots of network architectures to choose from. Try
existing ones before customizing for your own application.

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16 @5x5

INPUT
6@28x28
32x32 S2: f. maps C5: layer

6@14x14 I— e O TR

C Bm
- |

‘ ‘ | Full conrkection ‘ Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

CME 250: Introduction to Machine Learning, Winter 2019

28



Gradient-based Learning

How do we actually learn the network weights W7

Linear regression has a closed-form solution. It is also convex and
can be solved via convex optimization.

SVMs are convex and can be solved via convex optimization.
Decision trees are built via greedy algorithm.

Optimizing neural networks is a non-convex problem.

CME 250: Introduction to Machine Learning, Winter 2019
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Gradient Descent

An iterative optimization algorithm for finding
the minimum of a function F(x).

Move In the direction In which F(x) decreases
the most.

Guaranteed to find global minimum of convex
functions, but not non-convex functions.

In practice, local minima of neural network
weights are often pretty good.

CME 250: Introduction to Machine Learning, Winter 2019
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Cost Functions

On what function do we run gradient
descent”? Cost function.

J(0,4,0,)

Intuitively, a cost function measures
how well we are doing In our task of

interest. e

0,

Examples: Regression might use mean
squared error, classification the
maximum likelihood of observing the

training data.
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Cost Function: Example

Suppose the cost function is MSE:

Then tfor the network at right:

h) = ReLUWW Tx + bM)

h®® = ReLUW®Th( 4 p@)

i=WGTh® 4 p®
iInput layer
hidden layer 1 hidden layer 2

]' - /) /)
J(W,b) = — d [y = f(x"; W, b)||?
=1
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Backward Propagation

-
Forword Propagation

Find the direction of maximum
decrease (negative gradient) of
the cost function w.r.t. the
weights, and move the weights In
this direction.

Error Estimation

The process of finding the
gradient of the cost function w.r.t.
the weights Is called backward
propagation, or backprop.

i1
B
\V/
!
Q)

Backward Propagation
e
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Convolutional Neural
Networks (CNN)
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images as Inputs

An Image can be represented as a matrix
of iIntegers or real values.

0 0 0 O
0 0 0 O
0 0 0 0©
0 0 0 O

O O O O O
0O O O O O

o O O O
0O O O O O
O O O O O
0o O O O O

0 0 0 0 O
0 62 146 182 254 254 181 176 139 15
34 186 253 217 208 136 136 136 166 232 99 0
61 242208111 3 0 0 O O 0O 18 32 107 43
15624223 0 0 0 0 ©0 O O 13 191181 6
12126698 3 0 0 0 O O 8 194225 12

0 0
0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 4 0
0

O O O O O O O

It input to a traditional feedforward network,
it can be flattened into a vector and a
weight matrix W multiplied with it to
produce the first hidden layer.

784 pixels

o

0 169253120 3 0 0 128 247 51
111 244 169 19 14 131249117 0
0 59 241235 72 14222966 0 O
0 0 2521825423136 0 0 O

0 0 0 13326322133 0 0 O

0 0 19 237111196217 19 0 O

0 O 174138 0 23 193204 18 O

0 96224 0 O 25 218169 3

0 215138 0 86 263 99

0 21597 O 3 162214 1"
0 21597 0 0 118 253 68
0 0

0
0
0
0
0
0

w

0
0
0
0
0
0
0
0
0

0
0
0
185 157 0 0 40 254 98

0
0
0
0
0
50 24461 0 O 0 112244

0o O O O O

58
0 174251142 59 83 167244 111 O
6 13325325325316961 3 O

0 0 0 0 0 0 0 O O
0 0 0 0 0 0 0 0 O
©c 0 0 0 0 0 0 0 O

Images are high dimensional so this results
N a very wide network.

O O O O© O O O© O O O© O O O© O O O© O O O O O O O O O O O O
Q@ @& © 00 © © 0 © © 0 ©©§ © 0 € © 0 € € 0 00 0 ©& & 00
Q@ @@ © © © © © © ©© & ©©0© 0 © ©0©© © 009 © O
O O O O© O O O© O O O© O O O© O O O© O O O O O O 0 oo oo oo O
Q@ © © 0 © © 0 © © 0 ©§ 0© 0 0 00 © 0000 ¢ 0 00
Q@ @ © © @@ © 0 © ©© & © 0 © 0 © ©0©©& © 0 ©© © O
O O O O© O O O© O O O© O O O© O O O© O O O O O O 0 oo o oo O
O O O © © O © © O © © © © © O © ©O O O © O O © O © © o O

O O O O O O O O O OO0 0o 0o 0o o o o
O O O O© O O © O O O O O © © O O
O O O O© O O O© O O O O O O O O 0o oo o

0
0
0
0
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Convolutional Neural Networks

A class of deep neural networks with an architecture designed to be
invariant to shifts in the input. Most commonly used in iImage tasks.

New layer types: Convolutional layer, Pooling layer

P

=T

— CAR
— TRUCK

— VAN

|
’ |~ N — BICYCLE
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN coLUNLgTED SOFTMAX
FEATURE LEARNING CLASSIFICATION

CME 250: Introduction to Machine Learning, Winter 2019



Convolutional Layers

A convolutional layer is comprised of filters, which are small matrices.

0 1 1 1 0 1 | 0O 1
0 | 0O 1 1 1 0 1 0
0| 0O 1 1 0 1 | 0 1

[nput Filter /| Kernel
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Convolutional Layers

Instead of taking the product between the entire image and the

weights, a filter convolves with each filter-sized piece of the image.

1x1 1x0 1x1 0 0
o1/ 1[0 |4
0,01/1]1
olol1]1]0
ol1]1]o]0
mage Convolved
Feature

CME 250: Introduction to Machine Learning, Winter 2019
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Convolutional Layers

©
cC D
o Q
S 3
> 5
C >
O
Cnla
VDV
NN RN
I VA W V. W W W W W
cer UV
- EA M W
e A\
553 VAT VAV N\ NN
535 /x //////

Destination pixel

TR
PR

Convolution filter

(Sobel Gx)

TR

Source pixel

39
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Convolutional Layers

Filter 1
Input
— Output
4| 9|l2|5]|8]3
5 (6|2 |4|0]3 [ :
3xX3x3 x4 i Convolut
214 |5|4]|5]2 : ‘

Filter 2 | | +
5|6 |5 4|78 ayer Oul
5 7|7 |9|2]1 B

_ ) 4X4Xx2
5|8 |5|3|8]a4 —

4Xx4 https://indoml.com
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Convolutional Filters

Trainable
Classifier

Low-Level| |Mid-Level| |High-Level
Feature Feature Feature

CME 250: Introduction to Machine Learning, Winter 2019 41



Pooling Layers

Pooling takes the maximum or average of a block of values. It is
reduces the size of the hidden layers, speeds up calculations, and
makes the features more robust.

Max Pooling Avg Pooling
4 | 9| 2 |5 4 | 9| 2 |5
5| 6 | 2 | 4 9 | § S | 6 | 2 | 4 6.0 | 3.3
2 | 4 | 5| 4 6 | 8 2 | 4 |5 )| 4 43 | 53
5| 6 | 8 | 4 5| 6 | 8 | 4
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Pooling Layers

Input Max Pool

Max-pooling
layer output

\/

3X3x3

6x6x3 https://indoml.com

CME 250: Introduction to Machine Learning, Winter 2019
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Example: LeNet-5 (1998

Layer o
Digit image

e

32X32X1

LeNet - 5
CONV 1
CONV 2
avg avg FC
pool pool ® g
5X5 f=2 5XxX5 f: 2
s=1 s=2 s=1 s§s=2 softmax
10 labels
28x28x6 14 X14 X6 10X10Xx16 5X5Xx16 120 84

CME 250: Introduction to Machine Learning, Winter 2019
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-xample: AlexNet (2012

AlexNet
Input: CONV2
..-!—._-.-_!—.—i_ﬁ CONV 1
Sl l“ max max
| :ﬁ Eool Eool
i |H 11 x 11 3x3 5x5 3XxX3
}n $=4 $=2 same S$=2
227x227x3 55X 55X 96 27X27X96 27X 27X 256 13X13X 256
CONV 3 CONV 4 CONV 5
max EC
pool
> —_— > = = —> i) ¥
3x3 3x3 3x3 3x3 ;
same same same $=2 '
13X 13 X 384 13X 13 X 384 13X 13 X 256 6 X 6 X 256 9216 4096 4096 o

https://indoml.com
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—Xamp

le: VGG-16 (2014

224 x 224 x3 224 X224 x64

112 %128

H6[(x 56 X 256

28x28x512 f
X 14 X0 -%' ]Xl}_{"’iﬂgﬁ “]x]“x](:)()()

convolution+ReLU
max pooling
| fully connected+RelLU

1 softmax

CME 250: Introduction to Machine Learning, Winter 2019
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—xample: ResNet (2015

Deeper networks become

harder to train. ResNet

adds “skip connections”

where output
layer Is -
deeper

qll

rTom one
ed to layer
IN the network.

o0
A

\/
A

N/
F

.

\/
A

N/

'
-
o

A~

=<

A

34-layer residual

34-layer plain
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Example: U-Net (2015)

Max pooling layers gt o
downsample image e || A seamentaton
resolution. To perforrmr

segmentation, upsample T N
back to original |

: > >
resolution.
Nf N '
MR 12 56
o W % "D"D =» conv 3x3, RelL.U
=l ol o : S S copy and cro
' 512 512 1024 512 t Py P
%[t -:D b > > § max pool 2x2
© <y 1024 g 5 B 4 up-conv 2x2
3 l? Il;' | =» conv 1x1
™ (Q\|
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Recurrent Neural Networks
(RNN)
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Sequential Data as Inputs

A sequence is a stream of data (finite or infinite, fixed or variable
length) that are interdependent.

Examples include text, speech, any time series data.

We want a network that “remembers” what it has seen so far when
orocessing the next item of the input.

CME 250: Introduction to Machine Learning, Winter 2019
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Recurrent Neural Networks

At each time step ¢, the RNN takes as input the raw input at r and the
output of the hidden layers at time ¢-1. Not a feedforward network —
their own outputs become inputs again at the next time step.

(o) g
Unfold
fw fw fw fw
@ o) R R - -
Pu Pu Pu Pu
Recurrent Neural Network Feed-Forward Neural Network

https://towardsdatascience.com/recurrent-neural-networks-and-Istm-4b601dd822a5
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Recurrent Neural Networks

bl is fed to next layer

A
O

CME 250: Introduction to Machine Learning, Winter 2019
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Recurrent Neural Networks

Where a feedforward NN maps one input to one output, RNNs can
map one to many, many to one, or many to many.

one to one one to many many to one many to many
! Pt ! -
! ! r 11 P 11

CME 250: Introduction to Machine Learning, Winter 2019
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L ong-Short Term Memory (LSTM)

An architecture that enables RNNs to remember inputs over a long
poeriod of time.

b (h) 6.
—t 1
A o el A
| ] y 7
&) (x) &)
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Implementing Neural
Networks
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Available Software Libraries

Python:

e sklearn Multi-layer perceptron
 [ensortlow

o Keras

e Pylorch

R: neuralnet package, Keras

Matlab: Deep Learning Toolbox O PyTO rCh

CME 250: Introduction to Machine Learning, Winter 2019
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Fxample Code

class AlexNet(nn.Module):

def

__init__(self, num_classes=1000):
super(AlexNet, self).__init__ ()
self.features = nn.Sequential(
nn.
.ReLU(inplace=True),
nn.
nn.
.ReLU(inplace=True),
nn.

nn

nn

nne.
nne.
nne.

nn

nne.
nne.

nn

.MaxPool2d(kernel size=3, stride=2),

O PyTorch

self.avgpool = nn.AdaptiveAvgPool2d((6, 6))

Conv2d(3, 64, kernel_size=11, stride=4, padding=2),

MaxPool2d (kernel size=3, stride=2),
Conv2d (64, 192, kernel_size=5, padding=2),

MaxPool2d (kernel size=3, stride=2),

)
Conv2d (192, 384, kernel_size=3, padding=1),

nn

nn
nn

self.classifier = nn.Sequential(
nn.
nn.
.ReLU(inplace=Tzrue),
nn.
nn.
.ReLU(inplace=Tzrue),

.Linear (4096, num_classes),

Dropout(),
Lineaxr (256 * 6 * 6, 4096),

Dropout(),
Linear (4096, 4096),

def forward(self, x):

ReLU(inplace=True),
Conv2d (384, 256, kernel_size=3, padding=1), x = self.features(x)
.ReLU(inplace=True), x = self.avgpool(x)
Conv2d (256, 256, kernel_size=3, padding=1), X = X.view(x.size(0), 256 * 6 * 6)
ReLU(inplace=True), X = self.classifier(x)

return x

CME 250: Introduction to Machine Learning, Winter 2019
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