Overview of Cuts

- **Reductions**
- **NP-hard problems**

Global min cut

- \(\binom{n}{2} \) different cuts that realize the global min cut (NP-hard)

S-t min cut

- For fixed s, t, there could exponentially many s-t min cuts
- Min cut (at most) \(\binom{n-1}{2} \) different values

Max cuts (very hard)

- \(\frac{1}{2} \) approximation (randomized)
- \(\frac{1}{2} \) approx. (deterministic)
- 0.878 approx. (SFP relaxation 1995)
- Generalize to submodular functions

Linear Time, Polynomial time?

<table>
<thead>
<tr>
<th>Problem</th>
<th>Time Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal cuts</td>
<td>Linear time</td>
</tr>
<tr>
<td>Maximal cuts</td>
<td>Polynomial time</td>
</tr>
<tr>
<td>Min Cut</td>
<td>Linear time</td>
</tr>
<tr>
<td>Max Cut</td>
<td>Linear time</td>
</tr>
<tr>
<td>Eulerian circuits</td>
<td>Polynomial time</td>
</tr>
<tr>
<td>Hamiltonian circuits</td>
<td>Polynomial time</td>
</tr>
<tr>
<td>Decision problems</td>
<td>Polynomial time</td>
</tr>
</tbody>
</table>

NP-hard problems

- Decision problem: a problem that has a yes/no answer.
- All problems in NP are decision problems.

P and NP

- **P**: The set of decision problems whose "yes" answers can be verified in polynomial time.
- **NP**: The set of decision problems whose "yes" answers can be verified in time bounded by a polynomial function.

Problems that have polynomial time solvers are in P

- **P \subseteq NP**

Tautology

- Problem that is not in NP.

Reductions

- Independent set: Is there an induced subgraph (bundle of nodes with at least \(k \) nodes) with no edge between nodes?
3-SAT: Given a satisfying assignment to a boolean of 3-SAT form:

\[(x_1 \lor x_2 \lor x_3) \land (x_2 \lor x_1 \lor x_3) \land \ldots \]

\[\rightarrow \text{3-Sat can be reduced to } \leq^P \text{ Independent-set.} \]

\[\rightarrow \text{Given an instance of 3-Sat, and a Blackbox for independent-set, solve the instance of 3-Sat in polynomial-time addition work and polynomial number of calls to the Blackbox.} \]

- We create a gadget for each clause.

\[\text{Call Independent-set on this graph, return "yes" if } \exists \text{ independent set of size } k. \]
Proof: \(I \leq VC \Rightarrow \checkmark \text{ exercise} \)

you are left with just node.

If we have independent

set \(s \rightarrow v - s \) is a cover.

exercise.

\(VC \leq \text{ independent set} \)

Independent set \(\leq VC \).