GLOBAL MIN CUT (Karger's algorithm).

This class:

s--t min cut, max flow

\rightarrow focus on directed graphs.

For undirected graphs, will follow by adding

and \leftrightarrow (add both directions, with same capacities)

Greedy doesn't work.

Min cut problem

We can add edge.

S--V--U--B

Key: The max flow from s to t is equal to the minimum cut size.

→ **FORD FULKERSON ALGORITHM**
 finds a flow whose value equals some cut size (and is thus optimal)
 that cut is also the minimum cut.

Directed cut?

 Tight duality?

 Linear program

Define residual Graph: R_f

Let f be a legal flow
 (flows are non-negative
 only leave s
 only created at s
 only destroy at t
 flow in = flow out everywhere else)

→ For directed edge $(u,v) \in E$
 if $f_{uv} + \delta_{uv} \leq c_{uv}$
 add edge (v,u) with weight $c_{uv} - f_{uv}$ "forward"
> flow upon termination is equal to cutsize of B.

> Time is the instance when termination already happened.

> only rational weights

(Kleinberg-Tardos reading)

RUN TIME ANALYSIS:

\[
\begin{align*}
0(m) & \text{ Time to create } R_f \\
0(n) & \text{ Time to find path in } R_f
\end{align*}
\]

Repeat C times where C is max-flow

= no. of edges $m + |E|$ size of edge set.

$O(mn)$ \[\approx \begin{array}{c}
(1956) \text{ FF}\end{array}
\]

\[\text{BFS, DFS ?}
\]

In 1972, Edmunds-Karp: $O(nm^2)$ (1972 & Karp shortest path)

Companion to Global min cut

Run it $n-1$ time

\Rightarrow global min-cut $O(n^3m)$

Karger: $O(n^2 \log^3(n))$

In HW

\[\binom{n}{2} \text{ distinct cuts.}\]

there are only $(n-1)$ distinct cuts.

induction: n smaller, using max-flow

\Rightarrow global min cuts nC_2

BIPARTITE GRAPH (Undirected): G is one in which nodes are split in two sets A, B.

\Rightarrow all edges go between $A \times B$.

\Rightarrow No edges on inside A, B.

edges that become saturated are optimal soln.

Nodo are heterogeneous.

Bipartite matching problem: (Max flow to solve).

job 1 person \rightarrow jobs.