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Lecture 7

1 Finite Element Method

1.1 Geometric Calculation of Strain

This section uses a significant amount of text from Teran et al., Finite Volume Methods for the

Simulation of Skeletal Muscle, 2003, with permission of the author.

A deformable object is characterized by a time dependent map φ from undeformed material
coordinates X to deformed spatial coordinates x. We use a tetrahedron mesh and assume that the
deformation is piecewise linear, which implies φ(X) = FX+b in each tetrahedron. The linear part
F is called the deformation gradient. In practice, obtaining a representation of the undeformed
object in material space can be quite challenging in its own right, as materials are generally only
observed under the pull of gravity and possibly other forces. It is necessary to remove the effects
of such forces to obtain a material configuration.

For simplicity, consider two spatial dimensions where each element is a triangle. Figure 1 depicts
a mapping φ from a triangle in material coordinates to the resulting triangle in spatial coordinate.
We define edge vectors for each triangle as dm1

= X1 − X0, dm2
= X2 − X0, ds1

= x1 − x0, and
ds2

= x2 − x0. Note that ds1
= (FX1 + b) − (FX0 + b) = Fdm1

and likewise ds2
= Fdm2

so
that F maps the edges of the triangle in material coordinates to the edges of the triangle in spatial
coordinates. Thus, if we construct 2 × 2 matrices Dm with columns dm1

and dm2
, and Ds with

columns ds1
and ds2

, then Ds = FDm or F = DsD
−1
m .

The Green strain is defined as G = (FT
F − I)/2. Note that G defined in this way is rotation

invariant, since applying a rotation to the deformed object results in a new transformation φ̂(X) =
RFX + Rb, and Ĝ = ((RF)T (RF) − I)/2 = (FT

F − I)/2 = G. Note that G is missing some
of the information contained in the actual mapping between material and spatial coordinates. In
assuming that φ is piecewise linear, we lose nonlinear effects. By considering F instead of φ, we lose
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Figure 1: Undeformed and deformed triangle edges.
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(a) Cauchy stress for unit cube.
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(b) Cauchy stress in an arbitrary direction.

Figure 2: Cauchy stress tensor σ.

discard translation. Finally, in forming the Green strain G, we lose rotation and reflection. Since
rotation and translation do not affect strain, invariance under them is advantageous. However, we
have still lose reflection and nonlinear effects, which may be undesirable under some circumstances.

Using this definition of F the green strain is G = (D−T
m D

T
s DsD

−1
m −I)/2, which can be rewritten

to obtain

D
T

mGDm =
1

2
(DT

s Ds − D
T

mDm) =
1

2

[(

ds1
· ds1

ds1
· ds2

ds1
· ds2

ds2
· ds2

)

−

(

dm1
· dm1

dm1
· dm2

dm1
· dm2

dm2
· dm2

)]

in order to emphasize that we are simply measuring the change in the dot products of each edge
with itself and the other edge.

The above discussion extends naturally to three spatial dimensions. Here, Dm and Ds are 3×3
matrices with columns equal to the edge vectors of the tetrahedra, and D

T
mGDm is a measure of

the difference between the dot products of each edge with itself and the other two edges. Note that
D

−1
m can be computed and stored for efficiency.

The Green strain is not the only useful measure of strain. Another measure of strain that is
often used is the Cauchy strain ǫ, which is obtained by linearizing the Green strain. This measure
of strain has the advantage that it is linear in the deformation, but it is not rotation invariant.

1.2 Cauchy Stress

The stress an object is experiencing may be described by considering the relationship between
a direction n and the traction (force per unit area) t

(n) applied to the plane cross section with
normal n. Consider a small cube inside a larger volume of material. The surrounding material
applies stress to the cube through its faces, as illustrated in Figure 2(a). Forces in the direction
of n are compressive or expansive forces. Forces orthogonal to n are sheer forces. Let t

(ei) be the
traction applied to the plane of the unit cube with normal ei. Then, we can write these tractions
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Stress Tensor Symbol Area-weighted normal Force Relations

Cauchy σ spatial spatial
First Piola-Kirchhoff P material spatial P = JσF−T

Second Piola-Kirchhoff S material material S = JF
−1

σF
−T

Unknown none spatial material F
−1

σ

Table 1: Four possibilities for stress tensors and their relationship to the Cauchy stress.

in terms of the basis as

t
(e1) = σ11e1 + σ21e2 + σ31e3 t

(e2) = σ12e1 + σ22e2 + σ32e3 t
(e3) = σ13e1 + σ23e2 + σ33e3

That is, t
(ei) = σei. This defines a 3 × 3 tensor σ called the Cauchy stress tensor. This definition

of σ is given in terms of the axis-aligned normal directions ei.
We can extend the Cauchy stress tensor’s application to an arbitrary direction by considering

a tetrahedron as situated in Figure 2(b). We begin by computing the areas for the four faces.
Assume the shaded face has area a. The areas of the other three faces can then be expressed as
(n · e1)a, (n · e2)a, and (n · e3)a. The tractions for the three orthogonal faces are t

(−e1) = −σe1,
t
(−e2) = −σe2, and t

(−e3) = −σe3. The traction of the shaded triangle is t
(n). Because the total

force on the tetrahedron should cancel out (assuming the object is in equilibrium), the sum of the
forces on the faces (traction times area) should sum to zero

at(n)
− (n · e1)aσe1 − (n · e2)aσe2 − (n · e3)aσe3 = 0.

Dividing off a and rewriting the dot products using transposes yields

t
(n) = σe1(e

T

1 n) + σe2(e
T

2 n) + σe3(e
T

3 n).

Factoring and simplifying finishes off the derivation

t
(n) = σ(e1e

T

1 + e2e
T

2 + e3e
T

3 )n = σIn = σn.

In particular, the traction on a plane with unit normal n is t
(n) = σn.

Two important identities are obtained by considering the Cauchy stress along with conservation
of momentum. The first is sometimes called the Cauchy equation of motion and is derived from
conservation of linear momentum. The second is symmetry, which is obtained from the first equation
and conservation of angular momentum.

ρv′
−∇ · σ − ρf = 0 σ = σ

T .

Here, f is the external body force (force per unit mass).
The Cauchy stress defines a linear relationship between a unit normal and a traction. One

may instead think of the Cauchy stress as the relationship between an area-weighted normal for a
surface and the force exerted over that surface.

1.3 Force and Stress

Consider a tetrahedron and choose one of its faces. This face has the (outward-facing) area-weighted
normal da. Using the Cauchy stress, the force exerted on this face is σ da. Here, the area-weighted
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normal and the force are in the moving spatial coordinates of the object being simulated. This is
not the only choice for measuring these quantities. One could instead imagine computing the area-
weighted normal dA in material space from the initial material configuration of the tetrahedron.
Similarly, one could compute the force on that face in the material configuration. This choice of
where to measure the area-weighted normal and resulting force results in the four possible stress
tensors shown in Table 1.

To understand how the stress tensors are related, it is important to understand how quantities
transform between material and spatial coordinates. Force is a regular vector and transforms from
material to spatial coordinates as fs = Ffm. It is easy to assume that the area-weighted normal
may transform similarly, but this is not the case. If we consider the tetrahedron to have edge
vectors dU , dV , and dW in material coordinates, the area-weighted normal is dA = 1/2dU × dV .
Further, the volume of the tetrahedron is 1/6(dU × dV ) · dW , and the transformation rule for
volumes is 1/6(du × dv) · dw = 1/6J(dU × dV ) · dW or dwT da = JdW T dA, where J = det(F)
is the Jacobian. Further, dW is a regular vector, so that dw = FdW . Substituting this in yields
dW T

F
T da = JdW T dA. Because dW does not affect dA and could have been chosen arbitrarily,

we must have F
T da = JdA or da = JF

−T dA.
The First Piola-Kirchhoff stress uses an area-weighted normal measured in material coordinates

and yields a force in spatial coordinates. That is, f = σda = σJF
−T dA = PdA expresses the action

of the first Piola-Kirchhoff stress tensor, so that P = JσF
−T or σ = J−1

PF
T . Note that P is not

symmetric.
The Second Piola-Kirchhoff stress also uses an area-weighted normal measured in material

coordinates but also yields a force in material coordinates. SdA = fm = F
−1

f = F
−1

PdA. From
this we obtain the relations S = F

−1
P = JF

−1
σF

−T , P = FS and σ = J−1
FSF

T . Note that the
symmetry of σ also implies that P is symmetric.

The fourth possibility relates area-weighted normals in world space to force in material space.
This is not a particularly useful combination, since it is both asymmetric and yields a force in
material coordinates, which must be converted to spatial coordinates to be useful. For this reason,
it is not used and is as far as we know unnamed.
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