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ORDER STARS AND STABILITY THEOREMS 

G. WANNER, E, HAIRER and S. P. NORSETT 

Abstract. 

This paper clears up to the following three conjectures: 
1. The conjecture of Ehle [1] on the A-acceptability of Pad6 approximations to e ~, 

which is true; 
2. The conjecture of Norsett [5] on the zeros of the "E-polynomial", which is false; 
3. The conjecture of Daniel and Moore [2] on the highest attainable order of certain A- 

stable multistep methods, which is true, generalizing the well-known Theorem of 
Dahlquist. 

We further give necessary as well as sufficient conditions for A-stable (acceptable) 
rational approximations, bounds for the highest order of"restricted" Pad6 approximations 
and prove the non-existence of A-acceptable restricted Pad6 approximations of order 
greater than 6. 

The method of proof, just looking at "order stars" and counting their "fingers", is very 
natural and geometric and never uses very complicated formulas. 

1. How we came to order stars. 

In the A-stability analysis of many classes of one-step methods, such as implicit 
Runge-Kutta ,  Collocation, Rosenbrock type or multiderivative formulas, for the 
numerical integration of stiff differential equations, there is the question if certain 
rational approximations to the exponential function R(z)=Pk(z) /Qj(z )  are 
bounded by 1 on the entire left half plane Re z < 0. 

In many cases R(z)  is a Pad6 approximation of order k + j  where 

k k(k-  1) z 2 
Pk(Z) 1 + j -~ -Z-+  ( j + k ) ( j + k - 1 )  2! 

j ( j -  1) Z 2 
Q~(z) = 1 -  ~ - ~  z-+ 

( k + j ) ( k + j -  1) 2! ~-t-j  

Norsett  [5] defined the "E-polynomial" 

t - . . . +  
k ( k - 1 )  . . .1  z k 

( j + k ) . . .  ( j + l )  k! 

j ( j - 1 ) . . .  1 z~ 
+'"+-(k-l-j).•. (k+l) j!" 

E(y) = IQ~(iy)12--1Pk(iy)l 2 

in order to study the boundedness IR(iy)l-<_ 1 on the imaginary axis. He conjectured 
that, apart  from a multiple zero at the origin, E (y) has only real single roots• We 
computed the general formula (not easily) 
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where Pk(Z) and Q~(z) are real polynomials of degree k and j respectively. We 
assume that Q~(O)4:0 and that the fraction is reduced, so that Pk and Qj have no 
common zeros. 

Our aim is to study the stability region of R, namely 

(2) D = {z e C ; IR(z)t__<l} . 

One says that R is A-acceptable (and hence the corresponding method is A- 
stable), if 

D D C -  = { z ~ C  ; R e ( z ) < 0 } .  

The main tool of this paper is to study instead the region 

A = {z e C ; Ig(z)l>leZl} = {z ~ C ; IS(z)l>l} (3) 

where 

(4) S(z) = R (z)/e ~ . 

Note that R(z) and S(z) have the same zeros and the same poles. 

PROPOSITION 1. R is A-acceptable i f  and only i f  

(i) A has no intersection with the imaginary axis, and 

(ii) R has no poles in C - .  

PROOF. This follows from the fact that on the imaginary axis, where ]e~t = 1, D 
and A are complementary, and from the maximum principle. | 

Examples of the set A for Pad6 approximations are illustrated in the following 
Figure 1. Looking at these figures, one immediately understands for which reason 
Pad6 approximations are A-acceptable exactly if j-2<=k<=j (see Theorem 7 

below). 
The following Propositions 2, 3, and 4 are very elementary but fundamental for 

the discussion of A. 

PROPOSITION 2. Let  the set B, be defined as B r = {t ~ S 1 ; re a ~ A}. Then there is a 

number r o such that for  r > r o Br is just  an interval in S 1, which for  r --~ c~ tends to 
[lz/2, 31r/2]. So the border 8A possesses only two branches that go to infinity. 

PROOF. Since e x increases quicker and e -x decreases quicker than any rational 
function, for t fixed, 

lim ~ ~ if 
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j=5,  k=5 j=6,  k=4 

j = 7 ,  k = 4  j = 1 0 ,  k = 0  

Figure 1. Order stars for Pad6 approximations. 

Thus  the b o u n d a r y  t3A has  at  least two intersect ions  with the circle z = re *t, r > r o. 
In o rde r  to show tha t  this  circle has  at most  two intersect ions,  we compu te  for 

[R(rei~)t=erC°st the derivat ive 

d ( (erCOSt)2 - lR (reit)12) = 2re2rcost(-sin t - Re (iei' R' (rei')'~'~ 
dt R(re") ]} " 
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Since IR'/R[ ~ 0 for r ~ c~, this derivative is < 0 for 0 < t < n and > 0 for n < t 
< 2n for large values of  r. Hence there can only be two crossing points. • 

The  next Propos i t ion  relates the shape of A to the order  of  approximat ion .  
One  says that  R is an approximation of  order p, if there exists a constant  c ~ 0 so 

that  

(5) eZ-R(z)  = CzP+l +O(z p+2) for z---~ 0 .  

PROPOSITION 3. R is an approximation of  order p if and only if for z - *  0 A 
consists of  p + l  sectors of  width n / ( p + l ) ,  separated by p + l  sectors of  the 
complement of  A, each of  the same width. 

PROOF. By (3) z=re it lies in A iff [R(reit)e-rC°s~l > 1. We insert (5) to obta in  for 

r ~ 0 the condi t ion 

which leads to 

[1-Ce-rC°Strp+ lei(p+ l)t[ > 1 

C R e  (e itp+x)t) = C c o s  ( p + l ) t  < 0 . 

This is satisfied in consecutive intervals of length n/(p+ 1). • 
F o r  this reason we use the name order star for the set A. We further call fngers 

the connected componen t s  of  each of these sectors. I f  m sectors join together  to 
one finger, we call it a finger of  multiplicity m. The analogous  sets for the 
complement  CA we call dual fingers and dual fingers of  multiplicity m. 

PROPOSITION 4. Each bounded finger of  multiplicity m contains at least m poles of  
R (counted with their multiplicity); each bounded dual finger of  multiplicity m 
contains at least m zeros of  R. 

PROOF. Let c(t), to<=t<=tl, be a paramet r iza t ion  of the positively oriented 
bounda ry  of a finger F, a = (c'1 (t),c'2(t)) a tangent  vector, n = ( c ~ ( t ) , - c ]  (t)) an 
outside normal  vector. We write S(z)=r(x,y)e i~tx,y) ( z=x+iy)  and since the 
modulus  of S increases inside F, we have t3(logr)/On<O. N o w  the C a u c h y -  
Riemann differential equat ions in polar -coord ina te- form 

~(logr__~) = ~q~. ~( logr)  _ ~tp 

c3x t3y ' c~y c~x 

(see e.g. [13-1, p. 67) imply c3qg/da<O. Thus  the argument  of S decreases a long c. 

The  difference between the number  of  zeros and the number  of  poles inside c is 

1 f c S ' ( z ) .  Z - P  = ~ni - - ~  az = number  of  ro ta t ions  of  arg  (S) along c .  
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If F is an m-fold finger, the boundary returns m times to the origin, thus at least m 
times arg (S) has the same direction, so the number of rotations is at least - m and 
P > m  (see Fig. 2 where m = 3). 

For  dual fingers the argumentation is the same starting from t3(logr)/dn >0. 

| 

C 

Figure 2. 

3. Stability theorems for rational functions. 

THEOREM 5. If R(z)=Pk(z)/Q~(z ) is A-acceptable and an approximation to e z of 
order p, then 

p < 2j and p < 2 k + 2 .  

PROOF. By Proposition 3 at least [(p + 1)/2] fingers of A start in the left half 
plane C-  (see Fig. 3 where p +  1 = 11). These fingers cannot cross the imaginary 
axis (Prop. 1) and cannot be bounded (Prop. 4). So (Prop. 2) they all must 
collapse and include at least [(p + 1)/2] - 1 bounded dual fingers. So Prop. 4 gives 
that the total number of zeros of R satisfies k > I-(p + 1)/2] - 1 or p < 2k + 2. 

The other inequality, which follows trivially from p <  k + j  and k ~ j  could be 
proved similarly (see Theorem 12). II 

v 

Figure 3. 

Let us next give a simple proof of a result similar to that of Crouzeix and Ruamps 
[11]. 
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THEOREM 6. Suppose that for R(z)=Pk(z)/Q~(z ) 
(i) p>2j - -2 ;  
(ii) lim2-~ IR(z)l-< 1; 
(iii) the coefficients of Q have alternating signs. 
Then R is A-acceptable. 

PROOF. It follows from (ii) that k__<j. Now the polynomial of degree 2j which is 
even because of symmetry 

E(y) = IQ j(iy)[ 2 -tPk(iy)l z = (IQI + [PI)(IQI- IPI) 

satisfies E(y)= O(y p+ 1) because of (5). Thus (i) gives us E(y)= Ky 2~ and (ii) implies 
K > 0, so the order star can nowhere meet the imaginary axis. 

At least [ (p+ 1)/21 fingers of A start in the right half plane C ÷ and must be 
bounded (Prop. 2). Hence there must be at least [ (p+ 1)/2] poles of S in C +. 

Since from (i) [(p + 1)/2] > j - 1 ,  there can be ~ at most one (and hence real) pole 
of S in C- ,  which is impossible because of (iii). I 

THEOREM 7. ("Theorem and Conjecture of Ehle"). Any Padb approximation R(z) 
=PR(Z)/Q~(z) to the exponential function is A-acceptable if and only if 

j - 2 < = k < = j .  

PROOF. Since Pad6 approximations have optimal order p=k+j,  this is an 
immediate consequence of Theorems 5 and 6. I 

4. The attainable order with real and multiple singularities. 

For the treatment of large stiff systems it is preferable to use rat ional  
approximations for which the denominator can be factorized into real linear. 
factors, since then the evaluation of Yn+l = (Q~(A))-IPk(A)Yn can be decomposed 
into a sequence of real linear equations. Another reason for the interest in these 
types of approximations is the fact that they are related to Rosenbrock type 
methods as well as semi-implicit or singly-implicit Runge-Kutta methods. 

Let us give the following extension of a result of Norsett and Wolfbrandt [6, 
14]. 

THEOREM 8. Let R (z)= Pk(z)/Qj(z) be such that Q~(z) has only m complex different 
zeros. I f  in addition Q2(z) possesses real zeros, then the order p satisfies 

p _-< , k + m + l  . 

I f  Q~(z) has no real zeros at all, then we have 

p < k + m .  
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PROOF. At most  )~ = m + 2 of  the p + 1 dual fingers can be infinite (see Fig. 4). If  
there are no real singularities, 2 = m +  1. So at least p +  1 -  2 dual fingers are 
bounded  and hence (Prop. 4) the number  of  zeros k must  satisfy k > p + 1 - 2. This 
gives the stated estimates. II 

R 

Figure 4. 

5. A-acceptability of restricted Pad~ approximations. 

In this section we study the particular class of approximat ions  

(7) R(z) = (m~fo ( -  l)kL~k-")(1/7)(Tz)')/(1-Tz) k 

which are of order  k for all 7 ~ R (see Norset t  [9] Corol lary 2.1 ; L k denotes the 

kth Laguerre polynomial).  Here the denominator  has just a k-fold zero. This makes 

them very useful for large sparse matrices. 
Since the error constant  for this approximat ion is 

(8) C = ( - 1 )  k+l 7 1 '  
- - l ~ k +  1 

R has maximal order k + 1 (see Theorem 8), when 

1 1 1 
(9) 7 = 7v, Lk+l[ ~'--/ = 0 ,  ' - -  < - -  < . . .  < - - ,  v = l , . . . , k .  

' \ 7 ~ /  71 72 7k 

Figure 5 shows the order stars of these optimal approximat ions  for the case k = 3. 
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7=71 7=73 7 = 7 2  

Figure 5. 

PROPOSITION 9. The order star for the restricted Padb approximation (7) with y as 
in (9) contains just one bounded finger of multiplicity k -  v + 1. 

PROOF. Since there is only one k-fold singularity, all bounded  fingers, say m, 

must  collapse to one m-fold finger. Thus  k of  the k + 2 dual  fingers must  be finite 
and each contains one zero of Pk(Z) (Prop.  4). So the order  star  is uniquely 
determined once we know how many  zeros of PR(Z) lie to the right of the two 
infinite branches of 0A (Compare  with Fig. 5 where this number ,  f rom left to right, 
is equal to 2, 1, and 0). 

We write PR(Z) by putt ing 7z=w and 1/7=fl as 

(10) L~ (/~)w ~ + L~ (/~)w ~- 1 + L~' (/~)w k - 2 + . . . .  0 .  

When fl increases say from 1/Tv to 1/7~ + 1, all w's depend cont inuously  o n  fl if Lk(fl) 
4:0 and the zeros cannot  change their posi t ion vis-~t-vis 0A. F r o m  propert ies  of 
o r thogona l  polynomials  there is exactly one ~ in this interval where Lk(fl) has a 
single zero and thus exactly one solution of (10), say wx, tends to infinity. To  study 
its behavior  near  j~ we write Lk(fl) = (fl -- "fl)L'k('fl) and neglect lower order terms in 
(10). Because L~,(~)4:0 this leads to w 1 ~ 1/(j~-fl) ,  showing that  for increasing fl, 
one zero of Pk(Z) tends at  the right to + ~ and comes back at the left f rom - ~ .  
So m has deCreased by one and there is a constant  M such that  m = M - v  (v 
= 1 . . . . .  k). Finally the overall inequality 1 < m < k (Prop.  4) gives M = k + 1. II 

Figure  6 illustrates how the order  star  for k = 3 changes when 7' varies f rom 7'1 

to 72- 

THEOREM 10. The restricted Padb approximation (7) with optimal order (9) can 
only be A-acceptable if  

q __< v _<_ q + l  for k = 2 q + l  

q = v for k = 2 q .  
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~!ii..,':.--:~.:..i 

' ~ : : 2  

5 

Figure 6. 

3 

PROOF. k + 2 fingers start at the origin. According to proposition 9, k - v + 1 go 
to the right, v+  1 go to the left. At most [(k+3)/2]  fingers can start in C + or in 
C- .  So if not 

E k 2 3 ]  ~ k - v + l  and [ k 2 3 ]  > v + l  

some fingers must cross the imaginary axis and R cannot be A-acceptable. II 

LEMMA. The approximation (7) and (9) can only be A-acceptable if 

k > 

1 i f v = l  
5 ~ f v = 2  
9 if v=3 

6 v - 1 0  if v ~ 4 .  

PROOF. From (7) we have lim,_,~lR(z)l=lLk(1/Vv)[. So it is necessary that 
[Lk(1/~,O[ < 1. For small values of k the stated bounds are obtained by numerical 
computations (see Norsett [9a], p. A.7). For large values we use Hilb's asymptotic 
formula (see Szeg6 [12], page 193) 

eX/2 
Lk(X) -- (n)1/2 (xk)l/4 (cos (2 (xk) 1/2 - r~/4) + (xk)- 1/20 (1)) 

which gives for the vth extremum point of Lk+ 1 the approximation 

x~ = (n2 (v + 1/4)2)/4(k + 1). 
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By inserting this into the above formula for Lk+ 1 and using Lk+ l(Tv-t)= Lk(.1:~-1), 
some modifications show that ILk(Xv)l > 1, if not 

k+ 1 >__ ,~2~v+ 1/4)V(alog (~Cv+ 1/4)/2)). 

Computing this expression for different value of v, one obtains the above stated 
estimates except for the case v= 1, where the asymptotic formula is not yet 
sufficiently close. • 

THEOREM 11. The restricted Padb approximation (7) with optimal order (9) is A- 
acceptable if and only if 

k= 1 2 3 5 

v= 1 1 1 2 

PROOF. These are the only possible cases left by the two foregoing results. The 
A-acceptability of these remaining cases has been proved in [10]. • 

6. The muitistep case. 

The stability analysis of multistep methods, multistep-multiderivative formulas, 
PC-schemes, composite or cyclic multistep methods, multistep Runge-Kutta 
methods etc. (see e.g. [3, 4, 7, 8]) leads to a characteristic algebraic equation 

(11) Q(z,R) := Qo(z)Rk+Ql(z)Rk-l + . . .  +Qk(Z) = 0 

for the eigenvalues of the resulting difference equation. 
We suppose 

(12) Q(z,R) irreducible, Qo(0)=k0, t~Q (0,1)4:0, degQ~<j (r=0,1 . . . . .  k). 
O K  

For linear multistep methods all Qr(z) are linear, hence in this case j =  1. For 
other classes of methods j indicates the number of used derivatives or stages while 
k is the number of steps involved in the method. For k = 1 we obtain a rational R 
as considered in the foregoing sections. 

For k greater than 1 the solution of (11) becomes a multivalued function. We 
thus introduce the corresponding Riemann surface M on which R becomes 
singlevalued again. With the exception of some pathological cases M can most 
easily be written as 

M = {(z,w) ~ C z ; Q(z,w)=O} 

with the projections 

M R, C (z,w) tR, w 
~ ~T 
C z 

BIT 18 - -  32 
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For each z e C, the inverse ~-  ~ (z) of the covering projection consists in general 

of k points (z, w 0 , . . . ,  (z, Wk) where wl . . . .  , wk are the k solutions of(11). So M is 
an orientable surface consisting locally of k sheets lying above C and interacting in 
a finite number of branch points, i.e. the finite number of points where (11) has 
multiple solutions. (See e.g. [13], chapter V). 

Again we define the stability domain as 

D = {z e C ; [R (~c- 1 (z))l -< 1 for all inverses and < 1 at branch points} 

and call the function R A-acceptable if D contains C- .  
The order star is now a subset of M 

A = {z e M ; [R(z)J>le"~Z)t} = {z e M ; [S(z)[>l} 

where 
S(z) = R(z)/e "tz) for z e M .  

We suppose that the methods considered are consistent, so that for z = 0 R = 1 is a 
solution of (11) and by (12) this solution is simple in a neighborhood of the origin. 
Thus it can be continued in a neighbourhood of 0 to a principal solution RI (z) 
defined on its principal sheet. 

The method is of order p, if there exists a constant C ~¢ 0 such that for the 
principal solution 

(13) eZ-R l ( z )  = CzP+l +O(z p+2) for z---~ 0 .  

This is, because of 

Q(z, e x) = Q(z, e ~)-  Q(z, R,  (z)) = O Q (0,1)Cz p+' + O(z p+2) 
O K  

and (12) equivalent to the usfial definition. 
Now the Propositions 1-4 remain true with the following modifications: 

PROPOSITION 1. R is A-acceptable i f  and only i f  
(i) A has no intersection with n-1 (iR) and A never touches n-x  (iR) in a branch 

point; 
(ii) R has no poles in n - l ( C - ) ,  i.e. Qo(Z) has no zeros in C- .  

The proof is trivial in one direction (the one which is actually used below) and 
uses the maximum principle for Riemann surfaces for the other direction. 

PROPOSITION 2. The same statement now holds on each sheet. The sheets of  M 
outside all finite branch points are either all separated or, if  (5o is itself a branch 
point, some of  them spiral together in the usual way. The formula [R'/R[ -* 0 for 
z --~ co, used in the proof, is best seen from the expansion 

R(z) = ~ a~z -q/" . 
q=qo 
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PROPOSITION 3. It remains true, but this time on the principal sheet only. 

We again sayfingers and multiple fingers for the connected components of these 
sectors in M. 

PROPOSITION 4. It  remains the same. 

For the proof one has to take care that the border of F can be composed of 
several closed loops, since M may be no longer simply connected. So the 
integration of (1/2Hi)Sc S'(z)/S(z)dz has to be extended over all of these loops and 
the sum of the integrals is < - m since in total m times one of these loops visits the 
origin. 

THEOREM 12 ("Conjecture of Daniel and Moore"). l f  R is A-acceptable and 
satisfies (11) and (12), then p < 2j and sign (C) = ( - 1)~ jor p = 2j. 

PROOF. I fR is of order p, at least [ (p+  1)/2] sectors start in C + on the principal 
sheet (Prop. 3, Fig. 7). Its fingers cannot cross n-l( iR) and thus must be bounded 
(Prop. 1 and 2). The total number of poles available on M is j, the degree of Qo(z). 
So by Propositon 4 [ (p+  1)/2] < j  or p<2j. 

The second assertion can be seen from Figure 7 and the fact (see the proof of 
Prop. 3) that the real positive axis (for z small) belongs to A iff C<0.  II 

"-:-:t~;:~5:zt;;z,<5;;.%5~5;::;;;i:' 

p=2 (the Dahlquist case} 

/ 

p=4 

Figure 7. 

p = 6 

THEOREM 13 (Second part of the conjecture). The error constant C of  an A- 
acceptable R of maximal order p = 2j satisfies 

where 

ICI ~ I~1 

= ( -  1) s (j!)2 
(2j)!(2j + 1)! 

is the error constant of Rjj(z), the diagonal Padk approximation of  order 2j. 
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PROOF. Subtracting (5) from (13) we get 

(14) g j j  ( z ) -  g 1 (z) = (C - (g)z 2j + 1 + 0 (z 2j + 2) . 

So we consider R l(z) as approximation of order 2j to Rjj (z )  and look at the 
relative order star 

B = {z ~ M ; IRl(z) l>lRjj(rc(z)) l  } = {z ~ M ; IS(z)l>l} 

where 

S(z)  = R ,  (z)/Rj~(r~(z)) . 

Since IR3~(iy)[ = 1 and RI is A-acceptable, B cannot cross re-1 (iR) and since Rj~ :t: 0 
on C + (see e.g. Fig. 1 or Theorem 7), S(z)  has no more poles on n - l (C+)  than 
R(z) .  

In spite of the fact that the fingers in C + are no longer necessarily bounded, 
Proposition 4 applies as well, since both R 1 and Rj j  are A-acceptable and the 
point c~ is no longer a singularity. 

Suppose now IC[ < I(~1 and, for example, j even. It follows from (14) that for z 
real, small and positive, R j j < R 1 ,  and hence the positive real axis for z small 
belongs to B. We thus have the situation contrary to that in Figure 7, so that now 
j +  1 fingers start in C + requiring j +  1 poles of R1, a contradiction. II 

Remarks. 

1. Several authors have proved parts of this conjecture. Genin [3] arrives at 
different results, since his methods are not stable in the usual sense. He has been 
corrected later by Jeltsch ([4] and other papers). 

2. In the multistep case it is no longer easy to derive similar conditions on the 
number of zeros as in Theorem 5, since here M is in general not simply connected 
so that two collapsing fingers do not necessarily contain a bounded dual finger. A 
counter-example is Gear's 2nd order backward difference formula which leads to 
(3 /2-z)R 2 -  2R  + 1/2 =0. Here R has no zero at all. 

3. The authors wish to acknowledge a long discussion with Mr. B. Kaup on 
Riemann surfaces. 
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