Iterative Solution of Linear Systems

0. Introduction
We consider the problem of solving the system

Ax = b,
where A is a n X n matrix of rank r; usually r = n but in some situations
r = n — 1. We ordinarilly assume that A is symmetric and positive

definite. In some situations, however, we have the following cases

i) A is symmetric and indefinite

ii) A!= AT but 4 +2AT is positive definite

iii) A is positive semi-definite.

The problem of solving a linear system arises in a variety of situations, such

as

1) partial differential equations

2) least squares calculations

3) geodetic calculations.

In addition one frequently deals with non-linear problems which are solved as

a sequence of linear problems. The modern era, for the studies in this field,

goes back to the early 50’s. There were many contributions but the pioneers

were D. Young, M. Hestens and E. Sirefel. Their work is of relevance today,

even though it is now interpreted in a different fashion than was originally

proposed. Indeed, modern computer architectures has encouraged us to

rethink many of the procedures that have been in used and we consider

some of the methods described previously. In this context one interesting

point is the following; for 2D finite element computations direct methods

were very much the vogue but, with more powerful computers, one wishes

to solve 3D problems and here it is necessary to use iterative methods.
Even though we discuss the problems from a matrix analysis point of

view, it is always important to keep in mind the particular application that

is being solved. Thus, if a partial differential equation is under consideration

we should use that as our motivation and derivation.

1. Preliminaires and Motivations
Let us consider the linear system

Ax = b, (1.1)



where entries of A are, here and in the following, real. We rewrite this
system in the form
Mx = Nx + b,

where M — N = A; this is a splitting of A.
Given an arbitrary initial value z° we consider the following simple iteration

MxF Tl = Nx* + b; (1.2)

k

defining e* := x¥ — x we have

Mer+1 = NeF |

hence
ek — Bked

where we have set
B = M™'N

The iteration matrix B plays an important role in the analysis of the con-
vergence of the iterative method (1.2). In fact, defining the spectral radius
of B as the maximum of the modulus of the eigenvalues of B, that is

p(B) = Mar] <= i <= n|>‘z(B)| ’ (13)

we have the following
Theorem 1.1 - For any initial value x°, e’ — 0ask — ooiff p(B) < 1.
When p(B) < 1, we say that B is convergent. If p(B) is small we have a
”fast” rate of convergence; however it is important to keep in mind that the
system (1.2) must be easily solvable. Hence our goal is to choose B so that
the product p(B)x (number of operations per iteration) is small. Concerning
the problems of storage of B we are also interested in the analysis of the
data structure.

We want to compare various choices of B. For this we need several
definitions and theorems.
Definition 1.1 - A matrix A = a;;4,7 = 1,n is said to be an M-matrix
if
i)aj; <= 0fori,j = 1,..,n,i # j
ii) A is nonsingular
iii) (A= 1) >= 0fori,j = 1,...,n.



If A is such that a;; <= Ofori #jand ai > 37— Lo
diagonal dominant ), then A is an M-matrix. In fact let us write A in the
form

laij| ( strictly

A=D-K

where D = d;j 4,5 =1, diy = a;;, dij = 0 for © # j. Since A is strictly
diagonal dominant it is non singular, moreover, from the Gershgorin theorem
(see | | ) p(D~'K < 1 and we have (see | | )

[e.e]
A'=(1I-D'K)™' = > (DT'K)*D™' >=0. O
k=0

Definition 1.2 - A = M — N is said a regular splitting of the matrix A if
M1 exists with M~! >=0and N >=0.

Theorem 1.2 - Let A be such that A~! >= 0 and consider two regular
splittings A = My — N1 = My — Ny with Ny < Ny, then

p(My'Ny) <= p(M'Ny)<1. O

This theorem, due to Varga, gives a monotonicity property: if the values
of N decrease then the convergence is faster. We remark, however, that
decreasing the values of N can give difficulties in solving (1.2).

Theorem 1.3 - Let A be a symmetric positive definite matrix and let
A = M — N where M is non singular; if the matrix Q := M + MT — A is
positive definite then p(M 'N) < 1.0

This theorem yields an easy check for testing convergence for this class of
iterative methods.



2. Sample problem

In this section we consider the problem of solving the linear system
arising from the finite difference approximation of the Poisson’s equation on
a square.

Let Q = (0,1) x (0,1). Given a function f, let u be the solution of the
problem

u=20 on 0N} . (2.1)

For the given discretization parameter N, we consider the following uniform
mesh

{ —Au=f inQ

Fig. 1

where h = ﬁ Setting z; = ih , y; = jh and fi; = f(z,y;) for
i,j =0,...,N + 1 we can find an approximation v;; of u(x;,y;) solving the
equations

Avgj — Vi 15 — Vig1j — Vi1 — Vige1 = W2 fij Vi, j=1,..,N
o (2.2)
Vo, = UN+41,j = V0o =ViNy1 =0 Vi,7=0,..,N+1.

These relations can be written as a linear system as follows. We define

V15 f1j g1
V25 f2j 82
vi= | | &=k | T forij=1..Ng=
UNj Inj 8N
o —41_41—01(')' g B -0 .0
V2 0 ) —-I B-10 0
v = ,B = 7A = )
, R | 0 _'I ;,I
vy 0 . .0-14



Then the unknown vector v is the solution of the linear system
Av = g; (2.3)

A is a square matrix of order N2. This system can be solved as follows. For
j = 1,..., N we have

—vj1 + Bv; — vj = gj, (2.4)
since B is symmetric we can diagonalize it by an orthogonal transform:
B = Q LAMBDA QT .
From (2.4) we obtain
—vj_1 + Q LAMBDA QTV]' - Vjy1 = gj for j =1,.,N,
and hence
—Q"vj_1+ LAMBDAQ"v; —Q"v;y1 = Q"g; j = 1,..,N.
Now setting ¥; = QTVj and g; = Qng for 5 = 0,...,N + 1, we obtain
~Vij1 + ANVi; — Vijp1 = Gij for 4,5 = 1,..,N, (2.5)

where \; are the eigenvalues of B. These equations can be written as

N —-10. . 0 i1 Ji1
-1 X —-1. . 0 i Jio
0 = ' fori =1,..,N.
.. .. =1 . .
0 . . .-1X bin gin

(2.6)

These systems can be easily solved since the matrices are tridiagonal. Then

one can obtain the vectors v; for j = 1,..., N. Finally the solution of (2.3)
is given by

v, = Qv for j = 1,..,N. (2.7)

We remark that the eigenvalues \; are given by
s

)\i:4+QCOSN+1,

for i = 1,.,N



and the elements of the matrix Q are

1 ) iJm ..
Gij = ”N 1 sin ¥ 51 ,7 = 1,.,N

Hence the vectors Qng and QV; can be computed using the Fast Fourier
Transform (FFT). Summarizing, this method for solving (2.3) is composed
of three steps:

1) compute g§; = Q'gj for j = 1,..,N using FFT with, for any i,
2N logy N operation.

2) Solve the systems (2.6) for ¢ = 1,.., N with, for any i, N operations.

3) Compute v; = Qv; for j = 1,..,N using FFT with, for any j,
2N log, N operations.

Note that this method can be used (with minor modifications) for solving
the finite difference approximation of the Helmoltz equation, say.

— Au + ou = f where o = constant > 0.

Other techniques can be used to derive fast Poisson’s solvers on a rectan-
gular domain. For instance, making use of the separation of variables the
eigenvalues and the eigenvectors of A can be computed explicitely and the
linear system can be solved by diagonalisation (see | |).

We recall also the cyclic reduction scheme and we refer to Golub Van
Loan | | for its description.

Poisson’s equation on a square is a model problem. Many other prob-
lems can be reduced to solving a sequence of Poisson’s equation on simple
domains, as a square or a rectangle. We consider, for instance, Poisson’s
equation on a T-shape domain.

Fig. 2

Consider a set of mesh point as in figure 2. The finite difference dis-
cretization of the Poisson’s equation gives rise to a linear system whose



matrix is

rB-I1.0 . . . .7
-IB.. . .0
0 T
-I1.B J . . .
A= JT e -1 .0
.
o. . . . .-
L -1 C |
where B, C and J are matrices of size p X p , ¢ X ¢ and p X g respectively,
given by
4 -1 . 0 4 -1 . 0 0
I = I = o
B = R A e 3
0 . —-14 0 . —-14 0
where I, denotes the identity matrix of order p.
The matrix A can be decomposed as follows
Ao O 0 0
A = + J =:A + RST
JT
0 A 0 0
h
where 00 00
0J J O
R = I, 0 and S = 01,
00 00

It can be verified that the 2M x 2M matrix STA™'R + I, is non-singular,
hence we can define

W = (STA7'R + Iy)™'. (2.8)
We note
ST = (STA'R + Ly)WST = STA'RwST + wsT.  (2.9)
Then
(A + RSTY(A™' — A'RWSTA™) = (2.10)

= (I — RWSTA™" + RSTA™' — RSTAT'RWSTAY) =
= (I — RWST — 8T + STA'RWST)A ™).



From (2.9) we deduce
(A — RSTY(AT'RWSTA™Y) =T,
hence we have the relation
A7l = A7V — AT'RWSTAL. (2.11)

This formula suggests a method for solving the linear system arising from
the finite difference discretization of the Poisson’s equation on a T-shape
domain, namely

Av = g (2.12)

The first step of the method consists in solving the system

Au = g, (2.13)

due to the structure of A this system, can be solved efficiently using a
Poisson solver on a square and on a rectangle. Then one compute the vector
RWSTu and find ¢ such that

A¢ = RWSTu; (2.14)

from (2.11) we obtain that u — ¢ is the solution of (2.12).
The matrix W requires p + ¢ fast Poisson solutions, i.e.

AZ = R

since some columns of R are null.

Because of the zero structure of S, not all components of Z need to be
computed. W is called capacitance matrix. We remark that it does not
depend on the data g but only on the domain where the Poisson’s equation
is to be solved. This method has been studied by Widlund and his co-

authors | |; an analogous strategy is based on a splitting of A of the type
(see | )
o. . ..0
!
Ao 0 ST
A = + T ’
0 A R L PR
! 0. . ..0

in this case the capacitance matrices is of order g.



Fast Poisson’s Solvers can be used as black boxes also for solving second
order elliptic problems with non constant coefficients. Let us consider the
following problem

—del . (adelu) = f in Q

U =g on 0N (2.15)
where ) is a rectangular domain and a(z,y) > 0.
The transformation v. = 4/au applied to problem (2.15), gives
—Av + o(z,y)v = f, (2.16)

where f' = f/+/a.

Let us discretize problem (2.16) with usual finite difference schemes over
a uniform mesh. Denote by A the matrix associated with the Laplace’s
operator and by ¥ the (diagonal) matrix associated with the zero order
term.

Define an iterative procedure as follows:

AVFTL ¢ owvE = 1 (2.17)

Then norm of the iteration matrix A~'Y can be easily bounded:

h? h?
-1 _ _ 2
||A 2”2 <= Omazx 72—2(}037‘(‘}}/ = Omazx m const. + O(h ) .
(2.18)
where omee = Maz(zy) e alo(z,y)l-

The estimate (2.18) implies that the rate of convergence of the algorithm
(2.17) is independent of the mesh size. Of course the amount of work for
each iteration depends on the mesh size. In any case, each step makes use
of a Fast Poisson’s Solver and the total amount of work is reasonable.

If o(z,y) is known analitically, one can rewrite the problem in terms of
the Helmoltz operator.



3. Jacobi and Gauss-Seidel Methods
Given a matrix A = @41, = 1,...,n we define the matrices D =
dija,j=1,n,L = ljj4,j=1nand U = w;ji,j=1,n as follows.

{ dz’z’ = Q4 { lij = Qij fO’I'i > ] { Uij = Q45 fO?"i < ]
dij =0 foril=j lij =0 fori <=3 uij = 0 fori >= j.
The Jacobi method is defined by choosing M = Dand N = —(L + U) in
the splitting A = M — N introduced in the first section. More precisely

the solution of the linear system Ax = b is obtained iteratively by solving
the system

x% arbitrarly choosen (3.1)
DxFtl = b — (L + U)xF. :
The iteration matrix associated to the Jacobi method is By = — D=L +

U). About the convergence of the Jacobi method we have the following
criteria.

Theorem 3.1 - If A is a strictly diagonal dominant matrix the Jacobi
method is convergent. O

To give a convergence theorem for matrices which are not strictly diagonal
dominant we need the following

Definition 3.1 - A n x n matrix A is irreducible if it does not exist a
permutation matrix P such thast PTAP is of the form

T A Agg
Prap = | 5t 3|
where Ay is of order p and Agg is of order gand p > 0, ¢ > 0.
In order to verify if a matrix A is irreducible one can look at the graph G(A)
of A. This graph is composed of n knots P, ..., P,, and there exists a directed
path P, — P; if and only if a;; ! = 0. The matrix A is irreducible if and
only if G(A) is connected, this means that for any pair of knots (P}, P;)
there exists a directed path from P; to P;.
Theorem 3.2 - If A is irreducible with

n
lai;| >= Z |aik| foralli = 1,..,n
k=1p:

and if there exists an index 7o such that |a;yi,| > Ezzlk#o |a;,k| then the
Jacobi method is convergent. O

10



It can be verified that the matrix A arising from the O(h?) finite differ-
ence approximation to Poisson’s equation on a square verifies the hypothe-
ses of theorem 3.2. Hence the Jacobi method is convergent. Concerning the
storage problems of the Jacobi method, we remark that two vectors, that
is 2n components, need be stored. However if the matrix is tridiagonal one
need only n+ 2 components stored. To minimize the storage it is important
to look at the structure of A. If for example A is of the form

8]
)
8 8 8

.0 z =z ’
Tz
TTTTTT

one can rearrange rows ands columns of A to yield the structure

TLTXTT
zx 0.
r T . ,
0 x.

and the storage is smaller for Jacobi method. To solve the finite difference
system (2.3) with the Jacobi method we have D = 4l and B; = (A — 4I).
It can be verified that p(By) 1 — ”Thz and, since B is symmetric, we have
IBlla = p(By). To get an error ||e|| <= ¢[|€?||, we must have p* <= e
Hence, £k >= %g—;; that is a number of iterations of the order of #
Suppose now we want to solve Poisson’s equation on a T-shaped region €.
We can study the

Fig. 3
convergence of the Jacobi method on {}y by embedding 2 in a larger

rectangular domain 2. Denoting By and B the iteration matrices for the
two domains, theorem 1.2 implies p(Bjo) <= p(By) < 1.

11



For the finite difference approximation to Poisson’s equation on a square
one can also use a block Jacobi method. In this case the matrix A of the
system (2.1) is splitted as

A=M - N

where
B...0 4 -1 . 0

M = ’ ) and B = -1 _'1
0...B 0o . -114

The block Jacobi method converges faster that the usual Jacobi one even
though the asymptotic behavior is equivalent. Note that at each stage a
tridiagonal system must be solved.

The Gauss-Seidel method is defined using the splitting

A=M - N

where
M =D+ L and N = —-U

The iteration matrix is given by
Bgs = — (D + L)7'U,

for each iteration one implicitly solves a linear system with a triangular
matrix. If A is positive definite, the convergence of the Gauss-Seidel method
follows from theorem 1.3. In fact the matrix Q = M + M7 — Ais positive
definite since

Q=M+ M ~A=D+L+D+LT -A=D>=0.

Note that the Gauss-Seidel method requires only one vector to be stored.
We can be more specific about the implementation and the study of the

convergence of the Gauss-Seidel scheme for an important class of matrices.

Suppose the matrix A has the following property, introduced by Young (cf.

)

Definition 3.2 - A matrix A has Property (A) if there exists a permutation

matrix II such that

(3.2)

mAnr = [DlF] ,

FT D,

12



where D;,71 = 1,2 are diagonal matrices. O
Note that if a matrices is written in the form (3.2), each iteration of the
Gauss-Seidel scheme can be parallelized in the following way: splitting the
unknown vector v. = (v, vo)T, first solve in parallel D;v¥ * 1 = b — Fvk,
then ngg Tl =—p - FTVIIC + 1 again parallelizing on the components.
Let us see some examples of matrices with Property (A).
i) Let A arise from the second order finite difference approximation of the
second derivative on a uniform mesh. If we order the points in the natural
order from the left to the right, A is a tridiagonal symmetric matrix. Instead,
if we reorder the points putting first all the odd points and then all the even
ones, we obtain a matrix of the form (3.2)
1 3 5 °~ 2 4 6 .
-1
2 -1-1
2 gt
-1 -1 2

-1-1 2,

ii) If A is the matrix associated with the 5-points discretization of the Pois-
son’s equation, we obtain the parallelizable form (3.2) ordering the points
in a checkerboard fashion.

fig. 4

First, all the Red points are collected together, then all the Black points.This
ordering will be refered as the Red/Black ordering.

Almost all the matrices arising from partial differential equations have
either point Property (A) or block Property (A). This latter property is
given as follows.

Definition 3.3 - A has block - Property (A) if there exists a permutation
matrix II such that

, (3.3)

mAT? = [Dl F]

FT D,

13



where D;,© = 1,2 are block-diagonal matrix.

iii) If A is the matrix associated with the 9-points discretization of the
Poisson’s equation, A has the form (3.3) by ordering first all the odd lines,
and then all the even lines.

fig. 5

iv) Let A be the matrix associated with the 13-points formula for the
biharmonic problem

fig. 6

A takes the form

AtrBiCp 0
0 Ay By (o
4= gf ABZ' C, — 2
1 Llg41 Bn—l
An

That is, to enforce Property (A) we need to invert two lines at a time. Of
course, one takes advantage of the structure of each matrix. Note that the
A;’s are a b-diagonal mtrices, while the B;’s are tridiagonal. It is better to
reorder the unknowns in order to get a 9-diagonal matrix.

We will prove a comparison theorem between the Jacobi and the Gauss-
Seidel methods in the case of a matrix A with Property-(A).
Now suppose A takes the form

o [50]

FT'I

which corresponds to (3.2) where a rescaling has been introduced. Then,

14



the Jacobi iteration matrix By is as follows:
By = —-DY(L +U) = [_O _F]

The Gauss-Seidel iteration matrix Bgg is

. S I0 _ 0F
_ B I 0 0F L 0 F
- —FTr 00 - 0-—FTF
Notice that
B2 — FFT 0
T 0 FF"

Therefore we can state the following theorem.
Theorem 3.3 - If the matrix A has property (A), then

p(Bas) = p(B7) .

This means, of course, that if the methods converge, the Gauss-Seidel scheme
obtains the same accuracy as the Jacobi one in roughly half the number of
iterations.

If A is associated with the 5-points discretization of the Poisson equation,

then 12
p(By) = 1 — WT + 0(h*)

p(Bgs) = 1 — 7°h* + 0(h*)

In order to reach convergence, the number of iterations is in both cases
asymptotically of the order of 1/h?( N?). Together with Theorem 3.3,
there are many theorems comparing Jacobi and Gauss-Seidel methods. We
refer to Varga | | for an extensive discussion of them.

15



4. Acceleration algorithms
In this section we want to introduce parametrizations into the algorithm
and define accelaration devices. Consider the simple algorithm:

0

X given
k+1 __ k k
X = x" + (077§ S (4 1)
where )
rF = b — AxF .

k

The vector r® is the residual at the k-th step and ay4; an acceleration

parameter.
Notice that r¥ = A(x — x*) = AeF, therefore

el = x — xFt = (I — a4 ,4)er. (4.2)
Thus, applying recursively (4.2), we obtain
e" = (I — AT — ap_1A)...(I — a1A)e’ . (4.3)

The expression (4.3) emphasizes that the error e at the k-th step is obtained
by applying to the initial error €° a polynomial of degree k in A, say py(A),
with the property pg(0) = 1.

pr(A) takes the form:

Pk(A) = H?:O(l - aj)\) .

According to different choices of the set of parameters, or, equivalently, of
the polynomial pg (), we can define a large class of algorithms.

The simplest choice is to set oy = « for any k. The corresponding pg ()
reads pi(A\) = (1 — a\)k. Now suppose A has eigenvalues

O<M<=..< X\,
We wish to choose @& that minimizes the maz », |1 — a);| , namely
minger maz x;, |1 —aXi| = maz 5, |1 — &\ (4.4)

Set vi(a) = 1—a;. We see that the method converges as long as |71 (a1)| <
1,ie. 0 < a<2/A;. It is clear from figure 7 that & satisfies

1—éaX, = — (1 — aX). (4.5)

16



fig. 7

Therefore 5
H = — = 4.6
TN T (46)

We can compute explicitely the spectral radius p of the iteration matrix
I — aA:
>\n - /\1 _ Kk — 1

An—l-)\l_h‘,—l-l’

p = |1 = ar| = (4.7)
where Kk = ’)\\—T is the condition number of A.
The scheme is convergent, but it could be very slow if k is big. Moreover
the definition of the optimal & requires the knowledge of the estrem eigen-
values of A and this can be analitically impossible and/or computationally
prohibitive, due to the high-cost in many cases.

A more general procedure is defined if we seek pp(\) with pg(0) = 1
which minimizes maxy, <x<x, |Px())| and k arbitrary.
The solution of this minimization problem exploits the properties of the
Chebyshev polynomials. pg(\) is found to be:

?

20 = (A1 + ) )

A= A T35

Pe(A) = Ti(

(4.8)

where Ty (1) is the Chebyshev polynomial of degree k defined by the formula

cos(kcos™lp) if |ul <1

Ti(n) = { cosh(kcosh™'p) if p>1" (4.9)

The zeroes of T}, (1) are known. Settinga = A; and b = ), the zeroes of
Pr(A) are
a+b (b—a)

o= + 5 cos (

20 -1 ™
k2

), =1,..,k. (4.10)
Therefore the optimal parameters &; take the simple expression:
G = Y, 1 =1,k . (4.11)

A short manipulation shows that

N

W)’c : (4.12)

eV = 2(

17



where, as in (4.7), K = 52
We point out some disadvantages of this scheme. First, a precise esti-
mate of the extreme eigenvalues is needed and, as already stressed, this can
be a quite a difficult computation in itself.
Second, the parameters are not chosen dynamically, but the algorithm re-
quires the a priori choice of k. One cannot switch to an optimal polynomial
of degree k + 1 within the scheme without restarting the process. Usually
one uses the parameters cyclically.
Finally, we remark that for the k parameters provided, the ordering in for-
mula (4.11) is arbitrary. Unfortunately due to round-off effects, the ordering
of the use of the parameters is very important. The scheme could dramati-
cally blow up if a ”good” ordering is not chosen. This problem was solved
by Lebeshev and Fenogenov | | .

We recall that there are versions of this scheme that do not make use of
the positive definitess of A . De Boor and Rice have considered the use of
Chebyshev polynomials over other sets than that considered here, cfr. | |.

Now we go back to the generic scheme (4.1) and we describe a method
of choice of the ay’s that does not depend upon the knowledge of the eigen-
values of A.

The scheme (4.1) implies:

rftl = rF g ArF (4.13)
We wish to determine the parameter oy; in order to minimize the norm
(e H A= ek FLy (4.14)
We call this quantity F'(ak1), using (4.13) we obtain
Flagi) = (F, A7) — 20411 (cF, %) + of, (A% r") .
The minimum of F'(aj41) is clearly taken in

. _ (rk, rk
LT Ak, oF)

and thus we are led to the Steepest Descent Algorithm

x0  given ,
{ o e I (415)
with
¥ = b - AxV (4.16)

18



and

(e, eb)
Now, note that
k+1 A—1.k+1 2
(I‘ aA r ) -1 — (Tkark) ) (418)
A1) (eF, ) 7, A17)

The relative error (4.18) can be bounded by using the Kantorovich inequality

(x, Ax)(x, A7 1x) - (\/’2 + ﬁ)Q

(x,x)2 2

where Kk = :\\—T .
We obtain
(ckt1, A~1rk+]) k=1
(rk, A—1rk) <= (/ﬁ——l-l)
This inequality implies convergence, but the scheme can be quite slow if k
is big. A preconditioning procedure may be desirable.

(4.19)
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5. Successive overrelaxation

The successive overrelaxation method (S.0.R.) was originally developed
by D. Young. The idea underlying this method is to parametrize the Gauss-
Seidel scheme. If A is a n X n matrix with a; # 0, 2 = 1,...,n and we want
to solve the system Ax = b, the S.O.R. iteration is the following:

P = (1 - w)zk + i(bz - Zaijx;“l - Zaijx;?), fori=1,...,n. (5.1)
i j<i >

w is a real parameter to be choosen, if w = 1 the S.0.R. method coincides
with the Gauss-Seidel method. Writing A in the form A =D+ L+ U (see
section 3), the S.O.R. can be written in matrix form as

xF = (1 — w)x* + wD™ (b — Lx* T — Ux")

or

(I +wD'L)x* = |(1 —w)[ —wD 'Ux* + wD™'b . (5.2)

The iteration matrix is
w:=(D+wL) (1 -w)D - wl) (5.3)

Since we have
det w=(1-w)"<|p( w)I",

a necessary condition for the convergence of the S.O.R. method is that 0 <
w < 2. If A is symmetric positive definite, this is also a sufficient condition,
in fact we have the following

Theorem 5.1 - Let A a n X n symmetric positive definite matrix and
suppose that 0 < w < 2, then the S.O.R. method is convergent.

Proof.

Defining Q := M” + M — A, where M = 1(D + wL), we have

1 1 2
Q=—-D+wl)+ —D+wU)-(D+L+U)=(——-1)D.
w w w
Therefore since A is positive definite, () is positive definite too for 0 < w < 2.
From theorem 1.3 we deduce the convergence. O

Remark 5.1 - A block S.O.R. method can be defined and the same proof
shows the convergence for this method when 0 < w < 2.
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Our aim is now to study which is the best choice of the relaxation param-
eter w. We suppose that the matrix A has the Property (A) (see definition
3.2), and the red/black ordering, that is A can be written in the form

I, F
A = ' (5.4)
FT I,
We write the Singular Value Decomposition (S.V.D.) of F, i.e.
F=UMVT (5.5)
where
U'v =1, v'v =1,
and
P
M= 0 y M1 > p2 2, iy >0, with g >p
0 0 Hr
From (5.4) we deduce
I, 0 _, (1-w)ly —wF
w = ' ' ,
wFT 1, 0 (1-w),
but
I, 0, ] I, 0 ]
wFT I, ~wFT 1,
Hence we obtain from (5.5):
(1-w)l, —wF
w = —
—w(l—w)FT (1 - w)I, + w*FTF
[ 1 - w)yuu? —wUMVT
—w(l—w)VMTUT (1 -w)I, + A2VMTMVT
U 0 [ (1-w)ly, —wM ] vl o
0 Vv —w(l—w)MT (1 -w)I, + W*MTM 0o vt
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This relation shows that the eigenvalues of _w are the eigenvalues of the
matrix.

(1-w)l, —wM
—w(l —w)MT (1 -w)I, + W*M*M
We can now reorder rows and columns of this matrix and write it in a block
diagonal form as follows

(1 — w) is an eigenvalue of  _w, of multiplicity ¢ — p, the other 2p
eigenvalues are those of the matrices

1w —Wi
fori=1..p.
—w(l - w)pi (1 -w) +w’p?
The characteristic polynomials of these matrices are
1I-—w—-XN?2=X2p2=0 fori=1,..,p. (5.6)
Our aim is to minimize, with respect to w , the quantity
p( w) = maz(mazi<i<p| i, |1 — w|) .

We remark that p( _1) = p?, and since for w = 1 we obtain the Gauss-Seidel
method we have p? = p(Bgs) = p*(By) ( see theorem 3.3).

From (5.6) it turns out that setting & = ——2——
14+4/1-p*(By)

w—1 for ¥ <w<2

Pl —W>={ 1—w+ 1w?p?(By) + wp(Bo)y/1-w+ w?p(By)  for0<w<a.

The curve of p(  w) is

fig. 8
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Hence the optimum value for the relaxation parameter w is @ and

SN Y e ()
1+V1-p(B;) =~ 1+/1-p(B))’

We emphasize here that to known the optimal value w one must know the
spectral radius of the Jacobi iteration matrix.

Remark 5.2 - All the eigenvalues of _@ have the same modulus equal to
w-—1.

In the case of the finite difference approximation to Poisson’s equation
p(By) = cos mh. Hence we have
2 1 —sin7h

w=-——"" and Q) =————=1—h+0(r?. 5.7

1+sin7h Pl -5) 1+ sinwh +0(r7) (57)

With respect to the Jacobi method the number of iterations required for

obtaining a prescribed error reduction are here reduced of an order of mag-

nitude. This theory applies to red-black ordering of the finite difference

matrix (see section 4), however (5.7) holds true also for other ordering as
the natural one and the zebra one, i.e.

fig. 9
We remark that the Jordan form of _& is not diagonal. This implies

that || _&F|ls kp*~( _®) and the error can increase at least for the first
iterations (see fig. 10).

fig. 10

Let us now introduce a variant of the S.O.R. method, called Symmetric

Successive Overrelaxation method (S.S.0.R.). Given an initial value x° we
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define the iterations

aiiyiﬂl =wbi — X< a,-jy;;-:ll = Dj>i aijl'i) Il‘ (1 - w)aiz? . fori=1,..n
aiia:i+ = w(b; — Yj<i aijijr —Yjsi aijxj’L )+ (1— w)aiiyi“L fori=1,.,n.
(5.8)

We assume that A is symmetric positive definite and that a; = 1. The
S.S.0.R. method can be written in matrix form as

y*t = w(b — Ly**! — Ux*) + (1 — w)x*
xk+l — w(b _ Lyk+1 _ lec—l—l) + (1 _ w)yk-i—l ’

hence we have
XM —x = (T4 wU) (1 = w)I —wL)(I +wL) Y1 — w)I — wlU)(x* - x)
The iteration matrix is

w=T+wU) (1 —w)I -wL)(I+wL) (1 -w)I —wl) .

Since the matrices ( (1 —w)I —wL ) and (I +wL) have the same eigenspaces,
they commute and we have

(1 =) —wh)(I+wL) ' =T +wL) (1 -wlI-wl).
This implies that the iteration matrix can be written in the form
w=T4wl) (I +wLl) (1 - w) —wL)((1 —w)I —wU) . (5.9)
Moreover we have
(I+wU) w(I+wU)™! = (I+wL) " (1-w) —wL)(1-w)—-wU)(I4+wU) L.
We now remark that since U7 = L we have
(I+wL) (1 —w) —wL) =|((1 —w)I —wU)(I +wU)T,

hece defining
Gy = (I +wL) (1 —wL)
we have
(I+wU) w+wU)™*=G,GY.

This relation prove that _w is similar to a symmetric positive semi definite
matrix and hence its eigenvalues are real and non negative. Let us consider
the eigenvalue problem

WZ = )\zZ . (5.10)
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Using (5.9) we can write this system in the form
(1-—wl—-wl)((1-—wI-wl)z=\I+wL)(I+wl)z,
hence we obtain

27 (1 — w)I — wL)((1 — w)I — wl)z _

A= 2l (I + wL)(I + wU)z
2 (1-w)? - w(l —w)(L+U)+w?lU)z
2zl (I + wL)(I + wU)z B
2" T+ w(L+U) +w?LU + (w? = 2w)I + (w? — 2w)(L+ U))z
B 2l (I + wL)(I + wU)z
This relation gives
7! Az
=1 -2 .
A +lw—2w 2z (I + wU)(I + wl)z
Since T4
z' Az
>
A>0 and T+ w1+ wlz >0

we deduce that the eigenvalues of _w are less than 1 iff 0 < w < 2. We
have proved the following
Theorem 5.2 - The eigenvalues of the iteration matrix of the S.S.0O.R.
method are real and non negative; moreover, the method converges iff w is
in the interval: 0 < w < 2.

The choice of the optimal relaxation parameter & for the S.S.O.R. method
is a difficult task. D. Young has proved that if |L||s < 2, then @ is given
by

2
T VAT B (510)

By plotting the spectral radius of _w against w one obtains the curve of
fig. 11. Notice that p( _w) is not very sensitive to an over ( or under )
estimate of @ .

fig. 11
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For the finite difference approximation to Poisson’s equation with red /black
ordering the condition ||L|s < 3 is not verified. In this case @ = 1, hence
there is no advantage in using the S.S.0.R. method for this ordering .

The condition || L||; < 1 is however fulfilled for the natural ordering and
here the value (5.10) of @ seems to work relatively well in practice.
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6. Acceleration Schemes and Conjugate Gradient
We wish to introduce other techniques for accelerating convergence. So
far, we have defined many methods of the form:

xFtl = BxF + M b (6.1)
Remark that the exact solution x of Problem (1.1) verifies
x=Bx+M'b. (6.2)

The convergence of the scheme (6.1) may be quite slow in many situations.
In order to accelerate the convergence, we define a new process by taking
suitable averages of the sequence x! [ =0,....k :

k k
y* = Zaklxl , with Zakl =1. (6.3)
=0 =0

Note that if agr = 1 and ag; = 0 k # [, then we are back to the original
scheme.

We are interested in studying the error y* — x. Recalling that x! — x =
B'(x" — x), we see that

k
v —x=3 auB'(x* —x) = pp(B)(x* - z) (6.4)
1=0

As in (4.3), the error y* — x is obtained by applying a polynomial of B of
degree k to the initial error x° — x. Such a polynomial p;()\) takes the form

k
pe(A) = aX, with (1) =1.
1=0

From (6.4), we deduce
Iy* = x| <= |lpe(B)[l2x" — x| - (6.5)
Now we assume B symmetric with eigenvalues \; < ... < A\,,. Then
1Pk (B)ll2 = maz x; Ipe(Ai) -

Again, we seek the optimal polynomial pi()), with px(1) = 1, that min-
imizes the mawy, <ax<x, |pr(A)|- This leads to the Chebyshev polynomials
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again. We can use the three term recurrence formula that defines the Cheby-
shev polynomials:
To(z) =1,Ti(2) = =
T;H_l(z) = 2ZTk(Z) - Tk_l(z)
For the sake of simplicity, the assumption y := A; = —\,, will be introduced.

Since the scheme (6.1) is assumed convergent, we have |u| < 1. The pg(A)’s
take the form

(6.6)

3

—~~
=[>

N

(6.7)

ks
ol
>
Nl
I
=
==

in order to satisfy the constraint pg(1) = 1.
The py’s also satisfy a three term recurrence formula derived from (6.6)
and (6.7):

Tkm%)pkﬂ(z) - %Tk(%)pm) - Tk_lg)pk_l(z) . (68)

By exploiting (6.8), from (6.4), we obtain

k+1 0 2Tk(i) k
y' U mx=pp(B)(x —x) = —— 37 By’ —x) — (6.9)
111 (5)
1
Ti-1Ga) (ke
o, %)
Tiv1(3)
Now, by using (6.2), adding and subtracting y*~!, we have

2T} (& T—1(L) 4+ Tpy1 (2
b _x = 7]9(“3 (By* + M~'b) — k1) 1k+1(“) y*1 (6.10)
(T (D)) T (D)
B -2
Tt ()
Then, by using again the recurrence (6.6), we obtain
yk—|—1 — wk+1(Byk + Mflb _ ykfl) _‘_yk:fl , (611)
where "
2T, (L
m
Wt = —— B (6.12)
WTr1(;)
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From the splitting A = M — N, we have B = I — M~ A. Therefore (6.11)
becomes

Y = w2 +y* -y + ¥ (6.13)
with
b — AyF) . (6.14)

Ty (5;) Tesa(y)
hence
1
Wkt = ——a— - (6.15)
— By

Summarizing, we obtained the Chebyshev semi-iterative algorithm associ-
ated with (6.1):

y0 given ;
yt =2 +y° , with Mz° = b — Ay°
yh+l = wk+1(zk +yk— yk—l) k-1

with (6.16)
Mz* =rF =b — Ay* and
1
= = 1
\ WE+1 1—%2wk , W1

Naturally, the relative error will be as discussed earlier (see (6.5)):

ly* — x| const.
T <= . 6.17
Iy =l =7 (D) (617

(The const. is equal to ||Q||2]|@ |2 where Q consists of the eigenvectors of
B).

Since |p] < 1, then Tk(i) = cosh(kcosh ! 1). Hence the error estimate
(6.17) shows that the scheme (6.16) converges faster than the original scheme
(6.1) and the convergence rate grows rapidly as u decreases.

As in the Chebyshev scheme described in Section 4, the parameters wy play
an important role and are sensitive to the value of y. Here, however, the
number of iterations need not be prescribed a priori. Note that 1 < w; < 2
and the sequence of wy’s decreases. Moreover it is possible to prove that it

2 = of the SOR iterations (whenever

to th timal @ =
converges to the optimal & = —— o5
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@ is definable see Section 5). We can say that the semi-iterative scheme is
similar to SOR, except that here wy;1 is changed at each iteration.

Note that this method applies whenever the starting iteration matrix B has
real eigenvalues. This is not the case for the SOR matrix and the SOR
scheme cannot be coupled with this semi-iterative procedure. This is one of
the motivation of the introduction of the SSOR algorithm.

Finally, let us see how once more Property (A) can be very helpful from the
computational point of view. For instance, consider as starting algorithm

(6.1) the Jacobi method. Then, with A = [ LI

T ] , consider the iteration

. 0 —-F
matrix B = [ _FT ]
. . y1 +Fys ]
Splitt = , h that Ay = , th
plitting y = (y1,y2) in such a way that Ay [ FTy, +ys e

algorithm (6.16) reads as follows:

[ yi!

k+1
, |

_ + Wit
] e

1
k+1
2

(6.18)

b, — Fyk —y%!
by, — Flyk —yb?

Yy

Formula (6.18) shows that for any k, y?**! depends only on y2*~! and y3*,

while y2* depends only on y%k_l and ygk_Q. So it is sufficcient to compute
yi**! and y3*.
In the case of a matrix with Property (A) the Chebyshev semi-iterative

algorithm converges as rapidly as the SOR algorithm.

30



Two key points are to be stressed here.

First, a good estimate of the eigenvalues is needed and since, as already
pointed out, this information may not be available, methods that do not
make use of it are desirable.

Second, in the above description we assumed that the problem Mz =r
in (6.16) is solved exactly. We can ask if this step can be skipped and
only the approximate solution provided. In many cases, such as in domain
decomposition algorithms, the exact solution of Mz = r is too costly.

Now, let us consider a class of algorithms that overcome the first point.
Consider a scheme formally similar to algorithm (6.16):

x{ assigned
ol =x0 4+ pz’ , M2° =b - Ax" (6.19)
X = 31 b (p? + xF — %P1

with

MzF =rF =b - Ax* . (6.20)
Here the matrix M is supposed to be symmetric positive definite.
The parameters wg11 , o will be chosen dynamically in order to enforce the
M-orthogonality among all the z¥’s. Since M is positive definite this imply
that the z*’s are linearly independent and after at most n steps ( n being
the rank of M) the residual must be zero. Of course, this property of finite
termination holds in the absence of rounding errors. It turns out that it is
enough to impose the two relations:

(2, MzF*t1) = 0 (6.21)

and
(281, Mz**) =0, (6.22)

A short production argument on k£ will show that (6.21) and (6.22) imply:
(22, Mz") =0 Vjl=0,..k+1j#I (6.23)

In fact, for k=2 the statement (6.23) is obviously satisfied. Suppose (6.23)
verified for 5,1 =0, ..., k.
Due to (6.21) and (6.22), we have only to show that

(2T Mz/) =0 Vj<k-2.

From (6.19) and (6.20) we obtain

k+1

rf =% w1 (ap Az 4 rF T — R,
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and hence
2F T = 2F — w1 (g M AR 4 2P — 2R (6.24)

Then, by using the induction assumption we have:
(281, M2)) = —wpay(AzF,27) = —wpoy (25, Az?),§ <k —2. (6.25)

From ( 6.24) we know that Az’ is a linear combination of Mz/~!, MzJ and
Mz/* therefore by applying again the induction hypothesis to (6.25), we
obtain the thesis.

Now, let us determine the ay’s and wy’s that enforce (6.21) and (6.22)
respectively.

By using the expression (6.24) of z**!

we have:
(2, MzF 1) = (2, M2F 1) — w1 oy (25, AZF)+ (6.26)
+(z*, MzF1) — (2%, M2¥)|
So (6.21) is fulfilled when

(2*, Ma*)

ER (6.27)

ap —

since (z¥, MzF~1) = 0, thanks to (6.23). Analogously, we see that (6.22) is
satisfied when

(zkfl’Mzkfl)
_ _ 2
Wil ap(zh—1, Azk) + (zk—1, MzF—1) (6.28)
_ 1
= 21 Agk

Now, we give a recursive formula for wg,; which can be more efficiently
used. Recall (6.23) and the relationship:
Mz* = Mz*7? — wp(ap_1A42"1 + M2F72 — Mz*1) .
Then we obtain
k M k
(251, Adk) = (2, 42 ) = -2
W —1

hence (6.28) provides:

1823 (Zka Mzk) 1 -1
=(1- — 6.29
Wg+1 ( Qo1 (zk_l, Mzk_l) wk) ( )
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Finally we can state the following algorithm:
x? given
x! = x% + oz ,

(Z_O’MZO) (6.30)

1— g (Zk’Mzk) 1 -1
1 (Zk_l,MZk_l) W °

xFH = xF g (ogs? +xF —x

W41 =
kfl)

This method is called Preconditioned Conjugate Gradient and the symmetric
positive definite matrix M is called Preconditioner.

Note that if M = I and wgy1 = 1 the scheme coincides with the Steepest
Descent algorithm described at the end of Section 4. Actually, if M # I it
is the preconditioned version of that scheme.

So far, we have based our discussion about the Conjugate Gradient algo-
rithm on orthogonality and it does make it easier to derive the formulas. The
usual presentation is somewhat different and starts from the minimization
of a quadratic functional. We shall outline it and in order to simplify the
formulas, we shall set M = I. We know that solving the system (1.1) with
A symmetric positive definite is equivalent to minimizing the functional

d(z) = %(Ax,x) — (b, x). (6.31)

We successively minimize ¢ along a set of directions p',...,p* . Namely, we
choose v;, that minimizes ¢(x* + yp*), that is

(p*,r*)
Yo = 7% A
(p¥, Ap*)

where r¥ = b — Ax*.
With this choice, if x**1 = x* + 4, p*, it can be shown that

(p*,r*)?

$e) = 9) - 5 B (6:32)
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We are left with the problem of choosing the p*’s. We do so by imposing:
(', Ap’) =0 fori#j.

This choice leads to the following scheme:

0

X" given
0 0
r' =b— Ax
pl =10 (6.33)
fork=1,...,n—1.
k=1 Ark
pk = r* _(}_kﬂklglc—l
_ _(@r
Tk = (pF,ApF)
XK+l = xk oy, pk

rh+l — pk o Apk

We return now to the first formulation (6.30) and we derive some prop-
erties of the method.
Since A = M — N and we have derived (6.24) we obtain

Zk+1 — Zk*l o C(Jk;+1(a]c(I _ M*lN)Zk o Zk + zk*l) ,
which implies (by induction argument):
2"l = (I - KP,(K))z" , (6.34)

where K = M ' A and P (K) is a polynomial of degree k in K.
Furthermore, together with (6.34), a simple induction argument shows:

xF = x0 — P (K)2° . (6.35)
Now, we introduce the error norm:
E(xk'H) = (A(le'1 — x),ack"'1 —x) = (6.36)
= (b, A7 IpkY,
Suppose we have another process which generates a polynomial Q(K) so

that
X =20+ Qu(K)2°

x0=x0, (6.37)
24 = (1 - KQu(K))2 .
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We can state the following theorem:

Theorem 6.1 - Amongst all methods of the form (6.37), the Precondi-
tioned Conjugate Gradient method generates the unique polynomial which
minimizes the error E(x*) defined by (6.36).

The proof is basically algebraic and is given for instance in | |.

Note that (6.35) shows that the error in the Conjugate Gradient scheme
takes into account the distribution of initial error and one may take advan-
tage of that property.

The C.G. has been constructed in order to achieve termination of the al-
gorithm in at most n steps if exact arithmetic operations are performed.
By exploiting Theorem 6.1, in some cases we can be more precise. Since
K = M 'A is a symmetric positive definite matrix, then it can be diago-

nalized as
K =QLAMBDAQ ' .

Suppose now K has distinct eigenvalues Ay, ..., A\gq. Then the minimal poly-
nomial is

T (1= A/ )
So we have .
Xi
By taking Qx(K) in (6.37) such that I — KQy(K) =TI¥_, (I — )\%K) k <d,
Theorem 6.1 and (6.38) imply Q4 = P; , where Py is defined by (6.34).
Using again (6.38), we obtain z% = 0 , and hence r¢ = 0. In other words,
the Conjugate Gradient method must converge in at most d iterations if K
has d distinct eigenvalues.
This property can be quite useful in practice, since in some significant situ-
ation we are able to build up operators with d distinct eigenvalues.
For instance, let us consider again the 5-point finite difference approximation
to Poisson’s equation on a T-shaped domain (see section 2 ).

mé_,(I—- —K)=0. (6.38)
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insert figure

The domain is decoupled in two rectangles R; , Ry, where R; includes
the interface I. With obvious notation, the matrix A appears to be:

A ..
A = J ,

T

A

where J is a p x ¢ matrix, with p < ¢ (see notation of Section 2 ). So, if we
choose

[ A1 O
M = ,
[ 0 A
then, the corresponding N is
_ .
N = -/
_qT
L I 0

and the rank of N is at most 2p. Recallingthat K = M 'A=I-M N, K
has at most 2p+1 distinct eigenvalues and the Conjugate Gradient converges
in at most 2p + 1 iterations.

So far, we have consider the Conjugate Gradient method as a direct
method, but due to roundoff errors it is usually regarded as an iterative
scheme. So the question about the rate of convergence is an important
question. The result of optimality of Theorem 6.1 allows to derive the fol-
lowing error estimate for the E(x*) defined in (6.36):

E(x*) VeE-—1
E(x9%) = 4(\/E—I- 1)2]c
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where £ = Apaz (K)/Amin (K) is the condition number of the preconditioned
matrix K = M1 A.

It can be shown the C.G. algorithm is strictly related to the Lanczos
process for the orthonormalization of a matrix. In fact, by using (6.24) and
K = M~'A, we obtain

k k—1 k k+1
w10 Kz® = (1 —wpy1)z" t + wp1z” — 2",
and hence
KzF = bk_lzk_l + akzk + C}CZIH_1 , (640)
_ l-wgp _ _ 1
where b,_1 = ooy POk = 1/ar and cp = orirar Denote by Z the

matrix whose k-column is the vectors z* , that is
Z =12°..,2" 1|,
and by J the following matrix

ag Co
by a1

Cn—2
bn—2 an_1

Then, the relationship (6.40) takes the compact form:
KZ=2J (6.41)

Now, recalling that (z°, Mz’) = 0 Vi # j, and assuming ||z]| # 0 i =
0,...,n — 1, we obtain that Z is not singular.
Them, (6.41) implies the following:

Z7'KZ=17. (6.42)

So the eigenvalues of J are the same than the eigenvalues of K. Due to
the simple structure of J, we are able to compute the eigenvalues of K.
The main cost of the process of course comes from the computations of the
coefficients. The Kaniel-Paige theory on the Lanczos procedure indicates
that the eigenvalues of

C
a 0
ap C1
b
J; 0

b1 a
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are good approximations to those of the original matrix J, so that a trun-
cated process may be sufficient.

Finally, we stress two key points to be kept in mind in order to improve
the performances of the C.G. algorithm. First, the goal is minimizing the
condition number k(M ~!A), subjected to minimize the amount of work.
Second, a good distribution of the eigenvalues is to be seeked. Let us see
some possible choices of preconditioners.

1. M = D, that is the underlying iterative scheme is the Jacobi method. It
has been shown by Forsythe-Strauss that if A has Property (A4), D is the
best choice of preconditioner amongst all the diagonal matrices.

2. M = (D + wL)D7Y(D + wU). This choice leads to acceleration of the
SSOR scheme. Note that C.G. cannot be coupled with the SOR iterations,
since the corresponding matrix M = (D + wL) is not symmetric.

3. Incomplete Cholesky Factorization. The matrix A is splitted as A =
LLT + R (with the usual notation, M = LLY and N = —R), where L is a
lower-triangular matrix and R is some sort of remainder. Note that if the
Cholesky factorization is performed, then R = 0. Different choices of L can
be made, all of them trying to preserve as much as possible of the structure
of the original matrix, in particular some sparsity structure. Meijerink and
Vandervost | | proposed a matrix L with the same band structure of A, which
leads to a condition number k(M ~!A) of the same order of the condition
number k(A), but improves the distribution of the eigenvalues. Concus,
Golub and Meurant proposed a matrix L with the same block-structure as
A.

If R is searched such that Re = 0, with e = (1,1,...,1), then the associated
incomplete factorization produces a condition number x(M ! A) with order
of magnitude half of the order of the condition number x(A). (see | |).

4. Let the matrix A be associated with finite difference approximation of
the biharmonic problem on a rectangular domain.

Bjpistad described the biharmonic matrix approximation which behaves like
the square of the laplacian matrix plus a low rank modification near the
boundary.

The associated splitting A = M — N leads to a very fast C.G. scheme, thanks
to the low rank of N. Moreover, Fast Poisson’s Solvers are used in order to
invert M. 0(N2logN) operations are needed in order to solve the system.
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We can also take advantage of matrices which have Property (A).2 I;As1 for

the Chebyshev semi-iterative procedure, we can compute only x)lc%
2

(see (6.18)).
It is clear that the new computer architectures will affect the choice of M.
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7. Domain Decomposition Methods

In this section we overview some problems arising from the domain de-
composition techniques for the solution of partial differential equations in
irregular regions. We consider a model problem, that is the finite difference
approximation to Poisson’s equation on a T-shaped domain. However the
theory applies in more general situations. For instance, in combustion prob-
lems one has to solve time dependent equations in domains of the type of
fig. 12 (see | |).

fig. 12
Here the boundary r is time dependent and a domain decomposition

method is suitable. Another case where domain decomposition is useful is
when the mesh is not uniform (see fig. 13).

fig. 13
For instance, in reservoir simulation problems in petroleum engineering

the domain is often decomposed as in fig. 13, where the circles represent
some wells. (see | |). The domain decomposition methods are also exten-
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sively used for fluid dynamics computation, see e.g. | |.
We now come back to the finite difference approximation to Poisson’s equa-
tion on a T-shaped domain.

fig. 14

We decompose the domain in three subdomains (see fig. 14). The third
subdomain contains the interface points between the first and second one.
We have to solve a linear system whose matrix is of the form

Al 0 By

0 As B
BY B; @Q

A= (7.1)

The matrices A1 and A, represent the Poisson’s operator in the domains 1
and 2 respectively, B, represents the relations between the unknowns of the
domains 1 and 3, while By represents the relations between the unknowns
of the domains 2 and 3. Finally, @ is built in order to impose the Poisson’s
equation on the points of the domain 3.

We denote by Ay the matrix which represents the Poisson’s equation on
the union of the domains 2 and 3. Splitting A in the form M — N, two
natural choices of M are the following.

A 0O

M= [0 [12] (7.2)
A 0 0 A1 00

My= | 0 40 0Q 0 (7.3)
0 0 @ 0 0 A,

If Ny = M; — A and N, = My — A, we have Ny > N; and, since A~ > 0,
theorem 1.2 gives p(M; ' N1) < p(M; *Ny). Hence, from the spectral radius
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point of view, M is the better choice. However, this is not the only criterium
for choosing the preconditioner M. Let us consider the more general case:

Aq . By

A = : (7.4)
A, By
Bf B Q

this is the form of the matrix A when r subdomains are considered. A
possible choice for M is
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A ..
M = . (7.5)
A, 0
Note that the system Mz* = r* of the Conjugate Gradient method can be
solved parallelizing on the blocks of M. If the blocks B;,i =1,...,7, have p
columns, the CG method converges in 2p+ 1 iterations, but since M has the
block Property (A) the convergence is actually achieved in @ iterations.
Another idea for solving the system Ax = b, where A is given in (7.4),
is the following.
Let b? = (cf,dT) and xT' = (x;,¢) for i = 1,...,7 and write the linear
system in the form

{ Aix;+Biéi=c¢; 1=1,..,r (7 6)
ST, Blxi+Q¢=d. '
We obtain
X; = Ai_lci — A,L_lef 1=1,..,r
hence ,
> Bl (Alei—A7'Bit) + Q¢ =d
i=1
and .
Q¢ =d-> Bl'A;'(c; — B¢) . (7.7)
i=1

Of course, we would never form the vectors B} A; Y(¢; — B;€) but rather
solve in parallel
Aini = (¢ — Bi&) i=1,.,7.

One can solve (7.7) iteratively, that is find a sequence ¢* through

Q¢! =d - XT:B?AZI(Ci — Bi¢%)

=1

and use the Conjugate Gradient method with the preconditioner M = Q.
This method gives convergence in p iterations, that is the same number of
iteration as for the choice of M given in (7.5). We remark that if we have
some insight with our problem, we might choose some other preconditioners.
For Poisson’s equation, we can approximate the Green’s function by looking
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at the differential equation in semi-infinite strips | |.

Many authors have done extensive works using domain decomposition tech-
niques, we refer for instance to Dryja | | Bramble | |, Pasciak | |, Widlund |
|.

When the Conjugate Gradient method is used, in particular in the frame-
work of a domain decomposition technique, at each stage one must solve the
system

Mz* =1k (7.8)

In many situations this system is solved approximately, that is a vector z*

is obtained from
Mz* =r* + ¢

where
k k
la®ll/lI"]] <6

and ¢ is a prescribed tolerance. For instance (7.8) is solved with an iterative
method and the iterations are stopped when the residual (which is the vector
q") is sufficiently small. The vector q* can be also regarded as the effect of
roundoff errors in solving (7.8). The basic algorithm is now written as

k+1 k—l) .

xF = xF (7t +xF —x
Unfortunately we do not have an analysis of this procedure when the Conju-
gate Gradient method is used. It is possible to analyse the procedure when
the Chebyshev or Richardson method is used (see | |). (The Richardson 2nd

: o 2
order method corresponds to setting wy = w = Yoy for all k£ ). For the

Richardson method, the rate of convergence is dependent upon

pwe  wre?

p=p+ =+ (B4
P=PT 2 4

1
)2
7

where p is the spectral radius of the exact iteration matrix, € is equal to §
times various parameters which depend on the problem under consideration
and w is the acceleration parameter. This analysis is closely connected to
the roundoff analysis of procedures.

44



8. Remarks on the non-symmetric case
In this section we consider the case of a matrix A which is not symmetric.
We shall suppose that the symmetric part of A is positive definite, that is

(x,Ax) >0

for every x # 0.
This situation is not unusual, it occurs for instance in solving the problem

—Au+ouy =f.
Let us split A as A = M — N where

A+ AT A— AT
M:+T and N:—T.

If, for instance, the SOR method is applied to a matrix A of the form

1 S
A= -ST1 ] ’
then M = I and it turns out that we have convergence for 0 < w < @ where
. 2
W=—7=",
1+ 5]l

the optimal choice of the relaxation parameter being
2

o=—"="
1+4/1+ 5|3

If ||S||2 is big, the convergence is very slow. In this simple case it is possible to
overcome the difficulties using a cyclic reduction technique. More precisely
we write the system in the form

M N

(I+87S)y=(I+85")b.

and compute y solving

Since I 4+ ST'S is symmetric positive definite, it is convenient to use an
iterative procedure for this system
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The Conjugate GradiTent method can be generalized to the non-synmmetric
case using M = %. The basic iteration is

A = b (2 4 X T) (g = 1)

where
(zka Mzk) 1 —1

“iit = (UF GRS 3Ty oy

z* is obtained solving Mz* = r* ( where r* is the residual ), but it is often
better to solve the approximate system Mz* = r¥ 4+ q* ( see section 7 ).

If the eigenvalues \; of M 'N are in an ellipse in the complex plane
and Re); > 0, the Chebyshev method can be generalized (see Mantenffel
| |); it is not known how to use the method when this hypothesis is not
fulfilled.

Another idea for the solution of Ax = b when A is not symmetric is to solve
the normal equations
ATAx = ATb . (8.1)

However a better strategy is preconditioning before solving (8.1), that is to
find a preconditioner C' and solve the system
ATCTCAx=ATC"D

using an iterative procedure.

The case when the matrix is symmetric but only positive semidefinite
occours, for instance, in constrained minimization of quadratic forms. In
this case the following linear system must be solved

ool B = el e

where C represents the constraints and A the Lagrange multipliers. An idea
to solve (8.2) is to solve the systems
b
[ ’ ] (8.3)

A C x

—CT el A

for a variety of €’s and then to use an extrapolation method. In this case
setting

M, — [AO]

0 el
it is possible to apply the Conjugate Gradient method to solve (8.3).
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