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Introduction




Background

@ Kennedy, Eberhart, Shi 1995.
@ Observations from nature.
e Swarm Intelligence

@ Moves particles in search-space, searching for a
"roost".




e Cost (or fitness) function f: R" — R.
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e Cost (or fitness) function f: R" — R.

@ Goal: minimize (or maximize) f over all possible
positions in the search space, defined by upper and
lower boundaries.

e Parameters w, ¢, and ¢4, chosen by practitioner.

@ Termination criterion.




Algorithm, Initialization

For each particle in the swarm:

e Initialize current position x; with uniform random
vector.
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Algorithm, Initialization

For each particle in the swarm:
e Initialize current position x; with uniform random
vector.
@ Set best position p; to x;.

e If f(x;) < f(g), set g to x;.

e Initialize velocity v; with uniform random vector.




Algorithm, Iteration

Until termination criterion, for each particle in the swarm,
for each dimension, update position and velocity in the
following way:

(Note that | am leaving out indices for dimension, just to
make more readable.)




e To update velocity:
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e Update velocity based on parameters and randomly
selected numbers:

@ Vi =wVi+ ¢plo(pi — Xi) + dglg(g — Xi).




e Update current position:




e Update current position:

@ Xi = X+ V.




e Update current position:
@ Xi = X+ V.

@ Check new f(x;) against particle and swarm, update if
improved.




e Update current position:
@ Xi = X+ V.

@ Check new f(x;) against particle and swarm, update if
improved.

@ Keep going until termination.




Acceleration Coefficients

o Recall:
o Vi=wV,+ ¢pfp(pi — Xj) + ngfg(Q — X,').




Acceleration Coefficients
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Acceleration Coefficients

o Recall:
@ Vi = wVi+ ¢plp(Pi — Xi) + dgle(g — Xi).

@ Cognitive component: models tendency of particles to
return to previous best positions.

@ Social component: quantifies performance relative to
neighbors.




Inertia Weight w

e Craziness

e Memory of the previous direction, prevents drastic
change in directions.

@ Bigger w means more searching ability for whole
swarm (exploration, don’t get trapped in local minima).

@ Smaller w means more searching ability for partial
swarm (exploitation, gets to know local search area
very well).

e Experimental results: fastest convergence when
w € (0.8,1.2).




Topology

e Particles receive information from their neighbors.
e Network of neighborhoods forms a graph.
e Imitates different societies.

e Characterize neighborhoods by connectivity,
clustering.




Types of Topologies

@ Fully Connected Topology (gbest)
@ Square Topology (Von Neumann)
e Ring Topology




Benefits

e Makes few assumptions about the problem.
e Doesn'’t require differentiability (doesn’t use gradient).
e Large spaces of candidate solutions.

e Simple to implement.




Downsides

@ Does not guarantee optimality.

e If maximum velocity too small, will only converge to
local min.

@ Weak theoretical foundation.

@ Biased; solution more easily found if it is on axes.




Convergence

@ Based on experimental studies, relative to other
evolutionary algorithms, PSO has fast convergence
ability but slow fine-tuning ability.

e Linearly decreasing inertia weight leads to better
performance, but lacks global search ability.




Multiobjective/Constrained Optimization

@ Originally, PSO for single objective continuous
problem.

e Without constraints, sometimes particles want to go
outside search space.

e Particles initialized with only feasible solutions
(speeds up search process).

@ Only select feasible solutions as best values.
@ Initialization takes longer.




Pareto Optimality

@ Search for multiple solutions.
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Pareto Optimality

@ Search for multiple solutions.
@ Pick non-dominated solution.
@ Requires decision-maker at the end.

@ Aggregation: sum objective functions together using
weighted aggregation.
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Discrete Domains

e Basic idea: map discrete search space to continuous
space, use a PSO, map result back to discrete space.

@ Binary Particle Swarm Optimization — position is
discrete, velocity is continuous.

e In velocity vector for agent /, v;, v; is probability that
X,'j = 1.




Applications

@ Human tremor analysis.
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Applications

@ Human tremor analysis.

e Biomedical Engineering.

e Electric power and voltage management.
@ Machine scheduling.

e Point Pattern Matching.




Open Shop Scheduling Problem

@ njobs, m machines, each job has to be processed by
each machine at least once (m operations per job).

@ Order irrevelant, processing time can be zero.

e Multi-objective: want to minimize completion time
(makespan), minimize idle machine time.

@ NP-hard

@ To use PSO, decode particle position into an active
schedule.




Permutation-Based PSO for Open Shop Scheduling Problem

@ Randomly generate group of particles represented by
a permutation sequence (ordered list of operations)

e For n-job, m-machine problem, position of a particle is
in mx n matrix.

@ Let 0; be operation of job j that must be processed on
machine i (these are the particle positions).

o Let the objective function be f; ), the earliest time at
which o; can be finished.

e Minimize f, add the corresponding operations to the
schedule.
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