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Background

Kennedy, Eberhart, Shi 1995.

Observations from nature.

Swarm Intelligence

Moves particles in search-space, searching for a
"roost".
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Set-Up

Cost (or fitness) function f : Rn → R.

Goal: minimize (or maximize) f over all possible
positions in the search space, defined by upper and
lower boundaries.

Parameters ω, φp and φg, chosen by practitioner.

Termination criterion.
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Algorithm, Initialization

For each particle in the swarm:
Initialize current position xi with uniform random
vector.

Set best position pi to xi .

If f (xi) < f (g), set g to xi .

Initialize velocity vi with uniform random vector.
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Algorithm, Iteration

Until termination criterion, for each particle in the swarm,
for each dimension, update position and velocity in the

following way:

(Note that I am leaving out indices for dimension, just to
make more readable.)
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To update velocity:

Uniformly pick random numbers rp, rg ∈ (0,1).

Update velocity based on parameters and randomly
selected numbers:

vi = ωvi + φprp(pi − xi) + φgrg(g − xi).
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Update current position:

xi = xi + vi .

Check new f (xi) against particle and swarm, update if
improved.

Keep going until termination.
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Acceleration Coefficients

Recall:
vi = ωvi + φprp(pi − xi) + φgrg(g − xi).

Cognitive component: models tendency of particles to
return to previous best positions.

Social component: quantifies performance relative to
neighbors.
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Inertia Weight ω

Craziness
Memory of the previous direction, prevents drastic
change in directions.
Bigger ω means more searching ability for whole
swarm (exploration, don’t get trapped in local minima).
Smaller ω means more searching ability for partial
swarm (exploitation, gets to know local search area
very well).
Experimental results: fastest convergence when
ω ∈ (0.8,1.2).
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Topology

Particles receive information from their neighbors.

Network of neighborhoods forms a graph.

Imitates different societies.

Characterize neighborhoods by connectivity,
clustering.
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Types of Topologies

Fully Connected Topology (gbest)
Square Topology (Von Neumann)
Ring Topology
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Benefits

Makes few assumptions about the problem.

Doesn’t require differentiability (doesn’t use gradient).

Large spaces of candidate solutions.

Simple to implement.
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Downsides

Does not guarantee optimality.

If maximum velocity too small, will only converge to
local min.

Weak theoretical foundation.

Biased; solution more easily found if it is on axes.
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Convergence

Based on experimental studies, relative to other
evolutionary algorithms, PSO has fast convergence
ability but slow fine-tuning ability.
Linearly decreasing inertia weight leads to better
performance, but lacks global search ability.
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Multiobjective/Constrained Optimization

Originally, PSO for single objective continuous
problem.
Without constraints, sometimes particles want to go
outside search space.
Particles initialized with only feasible solutions
(speeds up search process).
Only select feasible solutions as best values.
Initialization takes longer.
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Pareto Optimality

Search for multiple solutions.

Pick non-dominated solution.

Requires decision-maker at the end.

Aggregation: sum objective functions together using
weighted aggregation.
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Discrete Domains

Basic idea: map discrete search space to continuous
space, use a PSO, map result back to discrete space.
Binary Particle Swarm Optimization – position is
discrete, velocity is continuous.
In velocity vector for agent i , vi , vij is probability that
xij = 1.
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Applications

Human tremor analysis.

Biomedical Engineering.

Electric power and voltage management.

Machine scheduling.

Point Pattern Matching.
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Open Shop Scheduling Problem

n jobs, m machines, each job has to be processed by
each machine at least once (m operations per job).
Order irrevelant, processing time can be zero.
Multi-objective: want to minimize completion time
(makespan), minimize idle machine time.
NP-hard
To use PSO, decode particle position into an active
schedule.
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Permutation-Based PSO for Open Shop Scheduling Problem

Randomly generate group of particles represented by
a permutation sequence (ordered list of operations)
For n-job, m-machine problem, position of a particle is
in m x n matrix.
Let oij be operation of job j that must be processed on
machine i (these are the particle positions).
Let the objective function be f(i,j), the earliest time at
which oij can be finished.
Minimize f , add the corresponding operations to the
schedule.
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