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The Unsymmetric Eigenvalue Problem

Properties and Decompositions

Let A be an n× n matrix. A nonzero vector x is called an eigenvector of A if there exists a scalar
λ such that

Ax = λx.

The scalar λ is called an eigenvalue of A, and we say that x is an eigenvector of A corresponding
to λ. We see that an eigenvector of A is a vector for which matrix-vector multiplication with A is
equivalent to scalar multiplication by λ.

We say that a nonzero vector y is a left eigenvector of A if there exists a scalar λ such that

λyH = yHA.

The superscript H refers to the Hermitian transpose, which includes transposition and complex
conjugation. That is, for any matrix A, AH = AT . An eigenvector of A, as defined above, is
sometimes called a right eigenvector of A, to distinguish from a left eigenvector. It can be seen
that if y is a left eigenvector of A with eigenvalue λ, then y is also a right eigenvector of AH , with
eigenvalue λ.

Because x is nonzero, it follows that if x is an eigenvector of A, then the matrix A − λI is
singular, where λ is the corresponding eigenvalue. Therefore, λ satisfies the equation

det(A− λI) = 0.

The expression det(A−λI) is a polynomial of degree n in λ, and therefore is called the characteristic
polynomial of A (eigenvalues are sometimes called characteristic values). It follows from the fact
that the eigenvalues of A are the roots of the characteristic polynomial that A has n eigenvalues,
which can repeat, and can also be complex, even if A is real. However, if A is real, any complex
eigenvalues must occur in complex-conjugate pairs.

The set of eigenvalues of A is called the spectrum of A, and denoted by λ(A). This terminology
explains why the magnitude of the largest eigenvalues is called the spectral radius of A. The trace
of A, denoted by tr(A), is the sum of the diagonal elements of A. It is also equal to the sum of the
eigenvalues of A. Furthermore, det(A) is equal to the product of the eigenvalues of A.

Example A 2× 2 matrix

A =

[
a b
c d

]
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has trace tr(A) = a+ d and determinant det(A) = ad− bc. Its characteristic polynomial is

det(A−λI) =

∣∣∣∣ a− λ b
c d− λ

∣∣∣∣ = (a−λ)(d−λ)−bc = λ2−(a+d)λ+(ad−bc) = λ2−tr(A)λ+det(A).

From the quadratic formula, the eigenvalues are

λ1 =
a+ d

2
+

√
(a− d)2 + 4bc

2
, λ2 =

a+ d

2
−
√

(a− d)2 + 4bc

2
.

It can be verified directly that the sum of these eigenvalues is equal to tr(A), and that their product
is equal to det(A). 2

A subspace W of Rn is called an invariant subspace of A if, for any vector x ∈ W , Ax ∈ W .
Suppose that dim(W ) = k, and let X be an n× k matrix such that range(X) = W . Then, because
each column of X is a vector in W , each column of AX is also a vector in W , and therefore is a
linear combination of the columns of X. It follows that AX = XB, where B is a k × k matrix.

Now, suppose that y is an eigenvector of B, with eigenvalue λ. It follows from By = λy that

XBy = X(By) = X(λy) = λXy,

but we also have
XBy = (XB)y = AXy.

Therefore, we have
A(Xy) = λ(Xy),

which implies that λ is also an eigenvalue of A, with corresponding eigenvector Xy. We conclude
that λ(B) ⊆ λ(A).

If k = n, then X is an n × n invertible matrix, and it follows that A and B have the same
eigenvalues. Furthermore, from AX = XB, we now have B = X−1AX. We say that A and B are
similar matrices, and that B is a similarity transformation of A.

Similarity transformations are essential tools in algorithms for computing the eigenvalues of a
matrix A, since the basic idea is to apply a sequence of similarity transformations to A in order to
obtain a new matrix B whose eigenvalues are easily obtained. For example, suppose that B has a
2× 2 block structure

B =

[
B11 B12

0 B22

]
,

where B11 is p× p and B22 is q × q.
Let x =

[
xT1 xT2

]T
be an eigenvector of B, where x1 ∈ Cp and x2 ∈ Cq. Then, for some

scalar λ ∈ λ(B), we have [
B11 B12

0 B22

] [
x1

x2

]
= λ

[
x1

x2

]
.

2



If x2 6= 0, then B22x2 = λx2, and λ ∈ λ(B22). But if x2 = 0, then B11x1 = λx1, and λ ∈ λ(B11). It
follows that, λ(B) ⊆ λ(B11) ∪ λ(B22). However, λ(B) and λ(B11) ∪ λ(B22) have the same number
of elements, so the two sets must be equal. Because A and B are similar, we conclude that

λ(A) = λ(B) = λ(B11) ∪ λ(B22).

Therefore, if we can use similarity transformations to reduce A to such a block structure, the
problem of computing the eigenvalues of A decouples into two smaller problems of computing the
eigenvalues of Bii for i = 1, 2. Using an inductive argument, it can be shown that if A is block
upper-triangular, then the eigenvalues of A are equal to the union of the eigenvalues of the diagonal
blocks. If each diagonal block is 1× 1, then it follows that the eigenvalues of any upper-triangular
matrix are the diagonal elements. The same is true of any lower-triangular matrix; in fact, it can
be shown that because det(A) = det(AT ), the eigenvalues of AT are the same as the eigenvalues of
A.

Example The matrix

A =


1 −2 3 −3 4
0 4 −5 6 −5
0 0 6 −7 8
0 0 0 7 0
0 0 0 −8 9


has eigenvalues 1, 4, 6, 7, and 9. This is because A has a block upper-triangular structure

A =

[
A11 A12

0 A22

]
, A11 =

 1 −2 3
0 4 −5
0 0 6

 , A22 =

[
7 0
−8 9

]
.

Because both of these blocks are themselves triangular, their eigenvalues are equal to their diagonal
elements, and the spectrum of A is the union of the spectra of these blocks. 2

Suppose that x is a normalized eigenvector of A, with eigenvalue λ. Furthermore, suppose that
P is a Householder reflection such that Px = e1. Because P is symmetric and orthogonal, P is its
own inverse, so Pe1 = x. It follows that the matrix P TAP , which is a similarity transformation of
A, satisfies

P TAPe1 = P TAx = λP Tx = λPx = λe1.

That is, e1 is an eigenvector of P TAP with eigenvalue λ, and therefore P TAP has the block
structure

P TAP =

[
λ vT

0 B

]
.

Therefore, λ(A) = {λ}∪λ(B), which means that we can now focus on the (n− 1)× (n− 1) matrix
B to find the rest of the eigenvalues of A. This process of reducing the eigenvalue problem for A
to that of B is called deflation.
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Continuing this process, we obtain the Schur Decomposition

A = QHTQ

where T is an upper-triangular matrix whose diagonal elements are the eigenvalues of A, and Q is
a unitary matrix, meaning that QHQ = I. That is, a unitary matrix is the generalization of a real
orthogonal matrix to complex matrices. Every square matrix has a Schur decomposition.

The columns of Q are called Schur vectors. However, for a general matrix A, there is no relation
between Schur vectors of A and eigenvectors of A, as each Schur vector qj satisfies Aqj = AQej =
QTej . That is, Aqj is a linear combination of q1, . . . ,qj . It follows that for j = 1, 2, . . . , n, the
first j Schur vectors q1,q2, . . . ,qj span an invariant subspace of A.

The Schur vectors and eigenvectors of A are the same when A is a normal matrix, which means
that AHA = AAH . Any symmetric or skew-symmetric matrix, for example, is normal. It can be
shown that in this case, the normalized eigenvectors of A form an orthonormal basis for Rn. It
follows that if λ1, λ2, . . . , λn are the eigenvalues of A, with corresponding (orthonormal) eigenvectors
q1,q2, . . . ,qn, then we have

AQ = QD, Q =
[

q1 · · · qn
]
, D = diag(λ1, . . . , λn).

Because Q is a unitary matrix, it follows that

QHAQ = QHQD = D,

and A is similar to a diagonal matrix. We say that A is diagonalizable. Furthermore, because D
can be obtained from A by a similarity transformation involving a unitary matrix, we say that A
is unitarily diagonalizable.

Even if A is not a normal matrix, it may be diagonalizable, meaning that there exists an
invertible matrix P such that P−1AP = D, where D is a diagonal matrix. If this is the case, then,
because AP = PD, the columns of P are eigenvectors of A, and the rows of P−1 are eigenvectors
of AT (as well as the left eigenvectors of A, if P is real).

By definition, an eigenvalue of A corresponds to at least one eigenvector. Because any nonzero
scalar multiple of an eigenvector is also an eigenvector, corresponding to the same eigenvalue,
an eigenvalue actually corresponds to an eigenspace, which is the span of any set of eigenvectors
corresponding to the same eigenvalue, and this eigenspace must have a dimension of at least one.
Any invariant subspace of a diagonalizable matrix A is a union of eigenspaces.

Now, suppose that λ1 and λ2 are distinct eigenvalues, with corresponding eigenvectors x1 and
x2, respectively. Furthermore, suppose that x1 and x2 are linearly dependent. This means that
they must be parallel; that is, there exists a nonzero constant c such that x2 = cx1. However, this
implies that Ax2 = λ2x2 and Ax2 = cAx1 = cλ1x1 = λ1x2. However, because λ1 6= λ2, this is a
contradiction. Therefore, x1 and x2 must be linearly independent.

More generally, it can be shown, using an inductive argument, that a set of k eigenvectors
corresponding to k distinct eigenvalues must be linearly independent. Suppose that x1, . . . ,xk are
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eigenvectors of A, with distinct eigenvalues λ1, . . . , λk. Trivially, x1 is linearly independent. Using
induction, we assume that we have shown that x1, . . . ,xk−1 are linearly independent, and show
that x1, . . . ,xk must be linearly independent as well. If they are not, then there must be constants
c1, . . . , ck−1, not all zero, such that

xk = c1x1 + c2x2 + · · ·+ ck−1xk−1.

Multiplying both sides by A yields

Axk = c1λ1x1 + c2λ2x2 + · · ·+ ck−1λk−1xk−1,

because Axi = λixi for i = 1, 2, . . . , k − 1. However, because both sides are equal to xk, and
Axk = λkxk, we also have

Axk = c1λkx1 + c2λkx2 + · · ·+ ck−1λkxk−1.

It follows that

c1(λk − λ1)x1 + c2(λk − λ2)x2 + · · ·+ ck−1(λk − λk−1)xk−1 = 0.

However, because the eigenvalues λ1, . . . , λk are distinct, and not all of the coefficients c1, . . . , ck−1
are zero, this means that we have a nontrivial linear combination of linearly independent vectors be-
ing equal to the zero vector, which is a contradiction. We conclude that eigenvectors corresponding
to distinct eigenvalues are linearly independent.

It follows that if A has n distinct eigenvalues, then it has a set of n linearly independent
eigenvectors. If X is a matrix whose columns are these eigenvectors, then AX = XD, where D is
a diagonal matrix of the eigenvectors, and because the columns of X are linearly independent, X
is invertible, and therefore X−1AX = D, and A is diagonalizable.

Now, suppose that the eigenvalues of A are not distinct; that is, the characteristic polynomial
has repeated roots. Then an eigenvalue with multiplicity m does not necessarily correspond to m
linearly independent eigenvectors. The algebraic multiplicity of an eigenvalue λ is the number of
times that λ occurs as a root of the characteristic polynomial. The geometric multiplicity of λ is
the dimension of the eigenspace corresponding to λ, which is equal to the maximal size of a set of
linearly independent eigenvectors corresponding to λ. The geometric multiplicity of an eigenvalue
λ is always less than or equal to the algebraic multiplicity. When it is strictly less, then we say
that the eigenvalue is defective. When both multiplicities are equal to one, then we say that the
eigenvalue is simple.

The Jordan canonical form of an n × n matrix A is a decomposition that yields information
about the eigenspaces of A. It has the form

A = XJX−1
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where J has the block diagonal structure

J =


J1 0 · · · 0

0 J2
. . .

...
...

. . .
. . . 0

0 · · · 0 Jp

 .
Each diagonal block Jp is a Jordan block that has the form

Ji =


λi 1

λi
. . .

λi 1
λi

 , i = 1, 2, . . . , p.

The number of Jordan blocks, p, is equal to the number of linearly independent eigenvectors of A.
The diagonal element of Ji, λi, is an eigenvalue of A. The number of Jordan blocks associated with
λi is equal to the geometric multiplicity of λi. The sum of the sizes of these blocks is equal to the
algebraic multiplicity of λi. If A is diagonalizable, then each Jordan block is 1× 1.

Example Consider a matrix with Jordan canonical form

J =



2 1 0
0 2 1
0 0 2

3 1
0 3

2

 .

The eigenvalues of this matrix are 2, with algebraic multiplicity 4, and 3, with algebraic multiplicity
2. The geometric multiplicity of the eigenvalue 2 is 2, because it is associated with two Jordan
blocks. The geometric multiplicity of the eigenvalue 3 is 1, because it is associated with only one
Jordan block. Therefore, there are a total of three linearly independent eigenvectors, and the matrix
is not diagonalizable. 2

The Jordan canonical form, while very informative about the eigensystem of A, is not practical
to compute using floating-point arithmetic. This is due to the fact that while the eigenvalues of a
matrix are continuous functions of its entries, the Jordan canonical form is not. If two computed
eigenvalues are nearly equal, and their computed corresponding eigenvectors are nearly parallel, we
do not know if they represent two distinct eigenvalues with linearly independent eigenvectors, or a
multiple eigenvalue that could be defective.
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Perturbation Theory

Just as the problem of solving a system of linear equations Ax = b can be sensitive to pertur-
bations in the data, the problem of computing the eigenvalues of a matrix can also be sensitive
to perturbations in the matrix. We will now obtain some results concerning the extent of this
sensitivity.

Suppose that A is obtained by perturbing a diagonal matrix D by a matrix F whose diagonal
entries are zero; that is, A = D + F . If λ is an eigenvalue of A with corresponding eigenvector x,
then we have

(D − λI)x + Fx = 0.

If λ is not equal to any of the diagonal entries of A, then D − λI is nonsingular and we have

x = −(D − λI)−1Fx.

Taking ∞-norms of both sides, we obtain

‖x‖∞ = ‖(D − λI)−1Fx‖∞ ≤ ‖(D − λI)−1F‖∞‖x‖∞,

which yields

‖(D − λI)−1F‖∞ = max
1≤i≤n

n∑
j=1,j 6=i

|fij |
|dii − λ|

≥ 1.

It follows that for some i, 1 ≤ i ≤ n, λ satisfies

|dii − λ| ≤
n∑

j=1,j 6=i
|fij |.

That is, λ lies within one of the Gerschgorin circles in the complex plane, that has center aii and
radius

ri =
n∑

j=1,j 6=i
|aij |.

This is result is known as the Gerschgorin Circle Theorem.

Example The eigenvalues of the matrix

A =

 −5 −1 1
−2 2 −1

1 −3 7


are

λ(A) = {6.4971, 2.7930,−5.2902}.
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The Gerschgorin disks are

D1 = {z ∈ C | |z − 7| ≤ 4}, D2 = {z ∈ C | |z − 2| ≤ 3}, D3 = {z ∈ C | |z + 5| ≤ 2}.

We see that each disk contains one eigenvalue. 2

It is important to note that while there are n eigenvalues and n Gerschgorin disks, it is not
necessarily true that each disk contains an eigenvalue. The Gerschgorin Circle Theorem only states
that all of the eigenvalues are contained within the union of the disks.

Another useful sensitivity result that applies to diagonalizable matrices is the Bauer-Fike The-
orem, which states that if X−1AX = diag(λ1, . . . , λn), and µ is an eigenvalue of a perturbed matrix
A+ E, then

min
λ∈λ(A)

|λ− µ| ≤ κp(X)‖E‖p.

That is, µ is within κp(X)‖E‖p of an eigenvalue of A. It follows that if A is “nearly non-
diagonalizable”, which can be the case if eigenvectors are nearly linearly dependent, then a small
perturbation in A could still cause a large change in the eigenvalues.

It would be desirable to have a concrete measure of the sensitivity of an eigenvalue, just as we
have the condition number for a system of linear equations. To that end, we assume that λ is a
simple eigenvalue of an n×n matrix A that has Jordan canonical form J = X−1AX. Then, λ = Jii
for some i, and xi, the ith column of X, is a corresponding right eigenvector.

If we define Y = X−H = (X−1)H , then yi is a left eigenvector of A corresponding to λ. From
Y HX = I, it follows that yHx = 1. We now let A, λ, and x be functions of a parameter ε that
satisfy

A(ε)x(ε) = λ(ε)x(ε), A(ε) = A+ εF, ‖F‖2 = 1.

Differentiating with respect to ε, and evaluating at ε = 0, yields

Fx +Ax′(0) = λx′(0) + λ′(0)x.

Taking the inner product of both sides with y yields

yHFx + yHAx′(0) = λyHx′(0) + λ′(0)yHx.

Because y is a left eigenvector corresponding to λ, and yHx = 1, we have

yHFx + λyHx′(0) = λyHx′(0) + λ′(0).

We conclude that

|λ′(0)| = |yHFx| ≤ ‖y‖2‖F‖2‖x‖2 ≤ ‖y‖2‖x‖2.

However, because θ, the angle between x and y, is given by

cos θ =
yHx

‖y‖2‖x‖2
=

1

‖y‖2‖x‖2
,
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it follows that

|λ′(0)| ≤ 1

| cos θ|
.

We define 1/| cos θ| to be the condition number of the simple eigenvalue λ. We require λ to be
simple because otherwise, the angle between the left and right eigenvectors is not unique, because
the eigenvectors themselves are not unique.

It should be noted that the condition number is also defined by 1/|yHx|, where x and y are
normalized so that ‖x‖2 = ‖y‖2 = 1, but either way, the condition number is equal to 1/| cos θ|. The
interpretation of the condition number is that an O(ε) perturbation in A can cause an O(ε/| cos θ|)
perturbation in the eigenvalue λ. Therefore, if x and y are nearly orthogonal, a large change in the
eigenvalue can occur. Furthermore, if the condition number is large, then A is close to a matrix
with a multiple eigenvalue.

Example The matrix

A =

 3.1482 −0.2017 −0.5363
0.4196 0.5171 1.0888
0.3658 −1.7169 3.3361


has a simple eigenvalue λ = 1.9833 with left and right eigenvectors

x =
[

0.4150 0.6160 0.6696
]T
, y =

[
−7.9435 83.0701 −70.0066

]T
such that yHx = 1. It follows that the condition number of this eigenvalue is ‖x‖2‖y‖2 = 108.925.
In fact, the nearby matrix

B =

 3.1477 −0.2023 −0.5366
0.4187 0.5169 1.0883
0.3654 −1.7176 3.3354


has a double eigenvalue that is equal to 2. 2

We now consider the sensitivity of repeated eigenvalues. First, it is important to note that while
the eigenvalues of a matrix A are continuous functions of the entries of A, they are not necessarily
differentiable functions of the entries. To see this, we consider the matrix

A =

[
1 a
ε 1

]
,

where a > 0. Computing its characteristic polynomial det(A−λI) = λ2−2λ+1−aε and computings
its roots yields the eigenvalues λ = 1 ±

√
aε. Differentiating these eigenvalues with respect to ε

yields
dλ

dε
= ±

√
a

ε
,
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which is undefined at ε = 0. In general, an O(ε) perturbation in A causes an O(ε1/p) perturbation in
an eigenvalue associated with a p×p Jordan block, meaning that the “more defective” an eigenvalue
is, the more sensitive it is.

We now consider the sensitivity of eigenvectors, or, more generally, invariant subspaces of a
matrix A, such as a subspace spanned by the first k Schur vectors, which are the first k columns in
a matrix Q such that QHAQ is upper triangular. Suppose that an n × n matrix A has the Schur
decomposition

A = QTQH , Q =
[
Q1 Q2

]
, T =

[
T11 T12
0 T22

]
,

where Q1 is n× r and T11 is r × r. We define the separation between the matrices T11 and T22 by

sep(T11, T22) = min
X 6=0

‖T11X −XT22‖F
‖X‖F

.

It can be shown that an O(ε) perturbation in A causes a O(ε/sep(T11, T22)) perturbation in the
invariant subspace Q1.

We now consider the case where r = 1, meaning that Q1 is actually a vector q1, that is also an
eigenvector, and T11 is the corresponding eigenvalue, λ. Then, we have

sep(λ, T22) = min
X 6=0

‖λX −XT22‖F
‖X‖F

= min
‖y‖2=1

‖yH(T22− λI)‖2

= min
‖y‖2=1

‖(T22− λI)Hy‖2

= σmin((T22 − λI)H)

= σmin(T22 − λI),

since the Frobenius norm of a vector is equivalent to the vector 2-norm. Because the smallest
singular value indicates the distance to a singular matrix, sep(λ, T22) provides a measure of the
separation of λ from the other eigenvalues of A. It follows that eigenvectors are more sensitive to
perturbation if the corresponding eigenvalues are clustered near one another. That is, eigenvectors
associated with nearby eigenvalues are “wobbly”.

It should be emphasized that there is no direct relationship between the sensitivity of an eigen-
value and the sensitivity of its corresponding invariant subspace. The sensitivity of a simple eigen-
value depends on the angle between its left and right eigenvectors, while the sensitivity of an
invariant subspace depends on the clustering of the eigenvalues. Therefore, a sensitive eigenvalue,
that is nearly defective, can be associated with an insensitive invariant subspace, if it is distant
from other eigenvalues, while an insensitive eigenvalue can have a sensitive invariant subspace if it
is very close to other eigenvalues.
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The Symmetric Eigenvalue Problem

Properties and Decompositions

The eigenvalue problem for a real, symmetric matrix A, or a complex, Hermitian matrix A, for which
A = AH , is a considerable simplification of the eigenvalue problem for a general matrix. Consider
the Schur decomposition A = QTQH , where T is upper-triangular. Then, if A is Hermitian, it
follows that T = TH . But because T is upper-triangular, it follows that T must be diagonal. That
is, any symmetric real matrix, or Hermitian complex matrix, is unitarily diagonalizable, as stated
previously because A is normal. What’s more, because the Hermitian transpose includes complex
conjugation, T must equal its complex conjugate, which implies that the eigenvalues of A are real,
even if A itself is complex.

Because the eigenvalues are real, we can order them. By convention, we prescribe that if A is
an n× n symmetric matrix, then it has eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λn.

Furthermore, by the Courant-Fischer Minimax Theorem, each of these eigenvalues has the following
characterization:

λk = max
dim(S)=k

min
y∈S,y 6=0

yHAy

yHy
.

That is, the kth largest eigenvalue of A is equal to the maximum, over all k-dimensional subspaces
of Cn, of the minimum value of the Rayleigh quotient

r(y) =
yHAy

yHy
, y 6= 0,

on each subspace. It follows that λ1, the largest eigenvalue, is the absolute maximum value of the
Rayleigh quotient on all of Cn, while λn, the smallest eigenvalue, is the absolute minimum value.
In fact, by computing the gradient of r(y), it can be shown that every eigenvector of A is a critical
point of r(y), with the corresponding eigenvalue being the value of r(y) at that critical point.

Perturbation Theory

In the symmetric case, the Gerschgorin circles become Gerschgorin intervals, because the eigenval-
ues of a symmetric matrix are real.

Example The eigenvalues of the 3× 3 symmetric matrix

A =

 −10 −3 2
−3 4 −2

2 −2 14


11



are
λ(A) = {14.6515, 4.0638,−10.7153}.

The Gerschgorin intervals are

D1 = {x ∈ R | |x− 14| ≤ 4}, D2 = {x ∈ R | |x− 4| ≤ 5}, D3 = {x ∈ R | |x+ 10| ≤ 5}.

We see that each intervals contains one eigenvalue. 2

The characterization of the eigenvalues of a symmetric matrix as constrained maxima of the
Rayleigh quotient lead to the following results about the eigenvalues of a perturbed symmetric
matrix. As the eigenvalues are real, and therefore can be ordered, we denote by λi(A) the ith
largest eigenvalue of A.

Theorem (Wielandt-Hoffman) If A and A+ E are n× n symmetric matrices, then

n∑
i=1

(λi(A+ E)− λi(A))2 ≤ ‖E‖2F .

It is also possible to bound the distance between individual eigenvalues of A and A+ E.

Theorem If A and A+ E are n× n symmetric matrices, then

λn(E) ≤ λk(A+ E)− λk(A) ≤ λ1(E).

Furthermore,
|λk(A+ E)− λk(A)| ≤ ‖E‖2.

The second inequality in the above theorem follows directly from the first, as the 2-norm of the
symmetric matrix E, being equal to its spectral radius, must be equal to the larger of the absolute
value of λ1(E) or λn(E).

Theorem (Interlacing Property) If A is an n×n symmetric matrix, and Ar is the r× r leading
principal minor of A, then, for r = 1, 2, . . . , n− 1,

λr+1(Ar+1) ≤ λr(Ar) ≤ λr(Ar+1) ≤ · · · ≤ λ2(Ar+1) ≤ λ1(Ar) ≤ λ1(Ar+1).

For a symmetric matrix, or even a more general normal matrix, the left eigenvectors and right
eigenvectors are the same, from which it follows that every simple eigenvalue is “perfectly condi-
tioned”; that is, the condition number 1/| cos θ| is equal to 1 because θ = 0 in this case. However,
the same results concerning the sensitivity of invariant subspaces from the nonsymmetric case apply
in the symmetric case as well: such sensitivity increases as the eigenvalues become more clustered,
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even though there is no chance of a defective eigenvalue. This is because for a nondefective, re-
peated eigenvalue, there are infinitely many possible bases of the corresponding invariant subspace.
Therefore, as the eigenvalues approach one another, the eigenvectors become more sensitive to small
perturbations, for any matrix.

Let Q be an n× r matrix with orthonormal columns, meaning that QT1Q1 = Ir. If it spans an
invariant subspace of an n×n symmetric matrix A, then AQ1 = Q1S, where S = QT1AQ1. On the
other hand, if range(Q1) is not an invariant subspace, but the matrix

AQ1 −Q1S = E1

is small for any given r × r symmetric matrix S, then the columns of Q1 define an approximate
invariant subspace.

It turns out that ‖E1‖F is minimized by choosing S = QT1AQ1. Furthermore, we have

‖AQ1 − S1S‖F = ‖P⊥1 AQ1‖F ,

where P⊥1 = I −Q1Q
T
1 is the orthogonal projection into (range(Q1))

⊥, and there exist eigenvalues
µ1, . . . , µr ∈ λ(A) such that

|µk − λk(S)| ≤
√

2‖E1‖2, k = 1, . . . , r.

That is, r eigenvalues of A are close to the eigenvalues of S, which are known as Ritz values,
while the corresponding eigenvectors are called Ritz vectors. If (θk,yk) is an eigenvalue-eigenvector
pair, or an eigenpair of S, then, because S is defined by S = QT1AQ1, it is also known as a Ritz
pair. Furthermore, as θk is an approximate eigenvalue of A, Q1yk is an approximate corresponding
eigenvector.

To see this, let σk (not to be confused with singular values) be an eigenvalue of S, with eigen-
vector yk. We multiply both sides of the equation Syk = σkyk by Q1:

Q1Syk = σkQ1yk.

Then, we use the relation AQ1 −Q1S = E1 to obtain

(AQ1 − E1)yk = σkQ1yk.

Rearranging yields
A(Q1yk) = σk(Q1yk) + E1yk.

If we let xk = Q1yk, then we conclude

Axk = σkxk + E1yk.

Therefore, ‖E1‖ is small in some norm, Q1yk is nearly an eigenvector.
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Power Iterations

The Power Method, when applied to a symmetric matrix to obtain its largest eigenvalue, is more
effective than for a general matrix: its rate of convergence |λ2/λ1|2, meaning that it generally
converges twice as rapidly.

Let A be an n×n symmetric matrix. Even more rapid convergence can be obtained if we consider
a variation of the Power Method. Inverse Iteration is the Power Method applied to (A − µI)−1.
The algorithm is as follows:

Choose x0 so that ‖x0‖2 = 1
for k = 0, 1, 2, . . . do

Solve (A− µI)zk = xk for zk
xk+1 = zk/‖zk‖2

end

Let A have eigenvalues λ1, . . . , λn. Then, the eigenvalues of (A− µI)−1 matrix are 1/(λi − µ),
for i− 1, 2, . . . , n. Therefore, this method finds the eigenvalue that is closest to µ.

Now, suppose that we vary µ from iteration to iteration, by setting it equal to the Rayleigh
quotient

r(x) =
xHAx

xHx
,

of which the eigenvalues of A are constrained extrema. We then obtain Rayleigh Quotient Iteration:

Choose a vector x0, ‖x0‖2 = 1
for k = 0, 1, 2, . . . do

µk = xHk Axk
Solve (A− µkI)zk = xk for zk
xk+1 = zk/‖zk‖2

end

When this method converges, it converges cubically to an eigenvalue-eigenvector pair. To see
this, consider the diagonal 2× 2 matrix

A =

[
λ1 0
0 λ2

]
, λ1 > λ2.

This matrix has eigenvalues λ1 and λ2, with eigenvectors e1 and e2. Suppose that xk =
[
ck sk

]T
,

where c2k + s2k = 1. Then we have

µk = r(xk) =
[
ck sk

] [ λ1 0
0 λ2

] [
ck
sk

]
= λ1c

2
k + λ2s

2
k.
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From

A− µkI =

[
λ1 − (λ1c

2
k + λ2s

2
k) 0

0 λ2 − (λ1c
2
k + λ2s

2
k)

]
= (λ1 − λ2)

[
s2k 0
0 −c2k

]
,

we obtain

zk =
1

λ1 − λ2

[
ck/s

2
k

−sk/c2k

]
=

1

c2ks
2
k(λ1 − λ2

[
c3k
−s3k

]
.

Normalizing yields

xk+1 =
1√

c6k + s6k

[
c3k
−s3k

]
,

which indicates cubic convergence to a vector that is parallel to e1 or e2, provided |ck| 6= |sk|.
It should be noted that Inverse Iteration is also useful for a general (unsymmetric) matrix A, for

finding selected eigenvectors after computing the Schur decomposition A = QTQH , which reveals
the eigenvalues of A, but not the eigenvectors. Then, a computed eigenvalue can be used as the
shift µ, causing rapid convergence to a corresponding eigenvector. In fact, in practice a single
iteration is sufficient. However, when no such information about eigenvalues is available, Inverse
Iteration is far more practical for a symmetric matrix than an unsymmetric matrix, due to the
superior convergence of the Power Method in the symmetric case.

Reduction to Tridiagonal Form

A symmetric Hessenberg matrix is tridiagonal. Therefore, the same kind of Householder reflections
that can be used to reduce a general matrix to Hessenberg form can be used to reduce a symmetric
matrix A to a tridiagonal matrix T . However, the symmetry of A can be exploited to reduce the
number of operations needed to apply each Householder reflection on the left and right of A.

It can be verified by examining the structure of the matrices involved, and the rows and columns
influenced by Givens rotations, that if T is a symmetric tridiagonal matrix, and T = QR is its QR
factorization, then Q is upper Hessenberg, and R is upper-bidiagonal (meaning that it is upper-
triangular, with upper bandwidth 1, so that all entries below the main diagonal and above the
superdiagonal are zero). Furthermore, T̃ = RQ is also tridiagonal.

Because each Givens rotation only affects O(1) nonzero elements of a tridiagonal matrix T , it
follows that it only takes O(n) operations to compute the QR factorization of a tridiagonal matrix,
and to multiply the factors in reverse order. However, to compute the eigenvectors of A as well as
the eigenvalues, it is necessary to compute the product of all of the Givens rotations, which still
takes O(n2) operations.

The Implicit Q Theorem applies to symmetric matrices as well, meaning that if two orthogonal
similarity transformations reduce a matrix A to unreduced tridiagonal form, and they have the same
first column, then they are essentially equal, as are the tridiagonal matrices that they produce.
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