

1 of 19

CS101 Instructor: Ashley Taylor
Spring 2018 June 8, 2018

Final Exam

NAME (LAST, FIRST): ___

SUNET: __@stanford.edu

Problem 1 2 3 4 5 6 TOTAL

Score

 21 9 12 30 20 25 117

Instructions:

● The time for this exam is 3 hours, 180 minutes total. There are 117 points total, so
you should spend a little more than 1.5 minutes per point, though your pacing may
be different on different problems.

● You are only allowed a pencil, pen, and eraser. Any other materials are strictly
prohibited. You may not use any digital devices other than a clock for timing. You
may ask the proctors for blank scratch paper.

● A reference sheet is included as the last page. You may detach it for your reference
during the exam.

● For coding problems, we will forgive minor syntax errors (such as missing
semicolons, etc.).

● For any problems involving calculations, we will accept an expression (that could be
plugged into a calculator) in lieu of the numerical answer.

● Problem 4b is overweighted by points compared to the time it will take. That might
be a good place to start.

Please sign before beginning the exam:

I agree to abide by the spirit and letter of the Honor Code, and to follow the instructions
above.

__ ______________________________

(Signature) (Date)

2 of 19

1. Course Themes

a) (6 points) Name two different examples of shared resources in computer science.
For each example, describe how that resource is managed.

A non-CS example of a shared resource would be the washing machines in your
dorm, which are managed by RAs (who have authority to instruct the users on how
to use them) and the mailing list (which uses public shame to encourage the desired
behavior).

b) (4 points) Describe one area in computer science where standardization is
effectively implemented, and describe why standardization was necessary. Describe
another area where standardization was not completely implemented; what is the
impact of the lack of standardization in that case?

3 of 19

c) (8 points) In class, we discussed layers of abstraction in regard to two different
systems. What are these two systems? For each system, which layer is the most
abstract, which layer is the least abstract, and describe the purpose of one of the
layers.

d) (3 points) What is a graph? What are two different graphs we described in class?

4 of 19

2. Web and the Internet

a) (2 points) Why do changes to CSS through Google Chrome inspector, as we did in
class, only affect how the website looks on your computer, but not on everyone
else's computer?

b) (4 points) Describe the three frontend components. How do they work together to
display webpages?

c) (3 points) Name 3 factors that influence the ordering of search results in Google?

5 of 19

3. Security

a) (4 points) What is public-key encryption? Describe two uses for public-key
encryption.

b) (2 points) What is the difference between security and privacy?

6 of 19

c) (2 points) What is a password manager? How does it make your passwords
stronger?

d) (4 points) Describe two different kinds of attacks (or “hacks”). How can either
computer scientists or users protect against each type?

7 of 19

4. Potpourri

a) (3 points) Describe a dark pattern. How could you as a user subvert this pattern?

b) (10 points) What is a checksum? In what context is it used, and why is it necessary?
Note: this question is overweighted by points compared to how long it will take you
to complete. 3-4 sentences should suffice.

8 of 19

c) (5 points) Describe how the code you write is understood by a computer. What steps

are involved?

d) (2 points) What is the analogous element in JavaScript to a single cell in a
spreadsheet? Name one other similarity between spreadsheets and JavaScript.

9 of 19

e) (4 points) Describe the P vs. NP question. Name two implications if P equals NP?

f) (4 points) Describe two types of data that are stored in computers. How is each type
stored?

10 of 19

g) (2 points) What is a design change you would make to the CS101 website?

11 of 19

5. Code Reading/Comprehension

a) (8 points) Below is the code from edge detection as we talked about in class. Edit it
so that edges are colored blue and non-edge pixels are colored yellow. Additionally,
we will add the constraint that an edge cannot be on the left border of the image, so
all left border pixels should be considered non-edges. You can cross out or add code
as necessary, but please use arrows to clearly indicate your edits. Hint: you don’t
need to edit any of the first four lines of code.

image = new SimpleImage("striped-fish-green.jpg");

back = new SimpleImage("yosemite.jpg");

back.setSameSize(image);

back.setZoom(0.5);

for (pixel : back) {

 pixel.setRGB(255, 255, 255);

}

for (pixel : image) {

 for (neighbor : image.getNeighbors(pixel)) {

 red = neighbor.getRed();

 green = neighbor.getGreen();

 blue = neighbor.getBlue();

 if (!pixel.isSimilarTo(red, green, blue, 20)) {

 backPixel = back.getPixel(pixel.getX(), pixel.getY());

 backPixel.setRGB(255, 255, 255);

 }

 }

}

print(back);

12 of 19

b) (6 points) Below is a snippet of code with several bugs. It attempts to increase
contrast in red by rescaling the red values (for example, if an image only had red
values between 50 and 100, we could increase the separation by scaling the pixels
with a red value of 50 to 0, those with a red value of 100 to 255, and the rest would
be in between). Identify and correct one syntax error and two logic errors, clearly
identifying which is which:

image = new SimpleImage("5b.jpg");

maxRed = 0;

minRed = 0;

for (pixel : image) {

 if (pixel.getRed() < maxRed) {

 maxRed = pixel.getRed();

 } else if (pixel.getRed() < minRed) {

 minRed = pixel.getRed();

 }

for (pixel : image) {

 pixel.setRed(getRed() - minRed * 255 / (maxRed - minRed));

}

print(image);

13 of 19

c) (6 points) Below are the first two rows of a sample spreadsheet. Describe how you

would determine which team has the highest average number of players per year
(note: you do not need to use any commands, though you may do so if those would
help you explain). Your description should be detailed enough that a novice Excel
user could determine which functions in which order they should use.

Year Team Number of Players Number of Points

2001 Giants 31 139

...

14 of 19

6. Code Writing

a) (6 points) Color the 3x3 square at the bottom-left corner of an image yellow. Your
solution must use a for loop.

img = new SimpleImage("6a.png");

print(img);

15 of 19

b) (7 points) We learned about steganography, a way of hiding messages in plain sight.
You will write code to unveil a hidden image inside another image.

One way of hiding an image is to slightly modify the green value of a pixel - an odd
green pixel in the original image corresponds to a black pixel in the hidden image,
and an even green value in the original image corresponds to a white pixel in the
hidden image. You should write code that converts the original image to the hidden
image.

You can use the code building block isOdd(value), which is true if value is odd.

img = new SimpleImage("6b.png");

print(img);

16 of 19

c) (7 points) Make the following image entirely grayscale, except for a purple diagonal
offset by a height of 2 (from the bottom left corner to the top right). For example,
the pixels marked by an X below should be purple:

 x
 x
x

img = new SimpleImage("6c.png");

print(img);

17 of 19

d) (5 points) Write code to flip an image horizontally, as shown in the example below.
Note: this question is underweighted by points compared to how long it will take
you to complete. You should work on it last.

example.png expected output

red green blue blue green red

blue white red red white blue

green blue black black blue green

img = new SimpleImage("6d.png");

print(img);

18 of 19

This page is intentionally left blank.

19 of 19

pixel.getX()

pixel.getY()

pixel.getRed()

pixel.getGreen()

pixel.getBlue()

pixel.setRGB(red, green, blue)

pixel.isSimilarTo(red, green, blue, threshold)

image = new SimpleImage("image.png")

image.countNeighbors(pixel)

image.getHeight()

image.getWidth()

image.getPixel(row, column)

for (pixel : image) {

 // your code here

}

for (neighbor : image.getNeighbors(pixel)) {

 // your code here

}

if (condition) {

 // your code here

} else {

 // your code here

}

&& => and

|| => or

! => not

!= => is not equal

== => is equal

1TB = 1000GB

1GB = 1000MB

1MB = 1000KB

1KB = 1000 bytes

Bit: 0 is "off", 1 is "on"

