CS102: Big Data Tools and Techniques, Discoveries and Pitfalls

Spring 2017 Ethan Chan, Lisa Wang Lecture 12: Classification + Evaluation

Lecture	12:	Classification	+ Evaluation
---------	-----	----------------	--------------

Announcements

- We're trying to get better, VPTL Small Group feedback session at 230pm today
- Assignment 4B have been released
 - "Predicting White or Red wine!"

- Assignment 4A and 4B <u>due May 23rd Tuesday</u>
- Final Project Help, come to Office Hours!

Tools & Techniques

Learning Goals

- Classification (continued)
 - Naive Bayes
 - Support Vector Machines
- Summary of Supervised Learning
- Guide to building Machine Learning models

Naive Bayes

Lecture 12: Classification + Evaluation

Naive Bayes

- Define probability
- Define conditional probability
- Define Bayes Rule
- Define Conditional Independence
- Define Naive Bayes

Probability

Definition

Let event "Y" be if a person has (cancer or no cancer)

Let event "X" be the outcome of a test (positive or negative)

Basic Probability

P(Y = cancer) = 0.01 means a person has 1% chance of having cancer

P(Y = no cancer) = 0.99, 99% chance of no cancer

Meaning

If you pick anyone on the street, there's a 1% chance that person has cancer.

Probability

Person	Y (cancer or not)	X (test positive or negative)
А	Cancer	Positive
В	Cancer	Negative
С	No Cancer	Negative
D	Cancer	Positive
E	No Cancer	Negative
F	No Cancer	Negative
G	No Cancer	Positive

P(Y = cancer) = 3/7, P(Y = no cancer) = 4/7

P(X = positive) = 3/7, P(X = negative) = 4/7

Person	Y (cancer or not)	X (test positive or negative)
A	Cancer	Positive
В	Cancer	Negative
С	No Cancer	Negative
D	Cancer	Positive
E	No Cancer	Negative
F	No Cancer	Negative
G	No Cancer	Positive

P(Y = cancer | X = positive)

= #cancer and positives

#positives

Probability of having cancer **given** that we know the test is positive.

Person	Y (cancer or not)	X (test positive or negative)
А	Cancer	Positive
D	Cancer	Positive
G	No Cancer	Positive

P(Y = cancer | X = positive)

= #cancer and positives

#positives

= #cancer and positives

3

We only want to look at rows where X = positive first

We can see that there are 3 rows that have positive tests

Person	Y (cancer or not)	X (test positive or negative)
А	Cancer	Positive
D	Cancer	Positive
G	No Cancer	Positive

P(Y = cancer | X = positive)

= #cancer and positives

#positives

= 2 3

We can see that there are 2 rows where Y = cancer and X = Positive. We know know that P(Y = cancer|X = positive) = $\frac{2}{3} = 0.66$

Person	Y (cancer or not)	X (test positive or negative)
A	Cancer	Positive
В	Cancer	Negative
С	No Cancer	Negative
D	Cancer	Positive
E	No Cancer	Negative
F	No Cancer	Negative
G	No Cancer	Positive

What is P(Y = Cancer | X = negative)?

Person	Y (cancer or not)	X (test positive or negative)
В	Cancer	Negative
С	No Cancer	Negative
E	No Cancer	Negative
F	No Cancer	Negative

What is P(Y = Cancer | X = negative)? ¹/₄.

Person	Y (cancer or not)	X (test positive or negative)
A	Cancer	Positive
В	Cancer	Negative
С	No Cancer	Negative
D	Cancer	Positive
E	No Cancer	Negative
F	No Cancer	Negative
G	No Cancer	Positive

$$P(Y = cancer) = 3/7, P(Y = no cancer) = 4/7$$

$$P(X = positive) = 3/7$$
, $P(X = negative) = 4/7$

 $P(Y = cancer | X = positive) = \frac{2}{3}$

$$P(Y = cancer | X = negative) = \frac{1}{4}$$

Person	Y (cancer or not)	X (test positive or negative)
A	Cancer	Positive
В	Cancer	Negative
С	No Cancer	Negative
D	Cancer	Positive
E	No Cancer	Negative
F	No Cancer	Negative
G	No Cancer	Positive

$$P(Y = cancer) = 3/7$$
, $P(Y = no cancer) = 4/7$
 $P(X = positive) = 3/7$, $P(X = negative) = 4/7$

 $P(Y = cancer | X = positive) = \frac{2}{3}$

 $P(Y = cancer | X = negative) = \frac{1}{4}$

How about P(X = positive | Y = cancer)?

Your Turn!

Person	Y (cancer or not)	X (test positive or negative)
A	Cancer	Positive
В	Cancer	Negative
С	No Cancer	Negative
D	Cancer	Positive
E	No Cancer	Negative
F	No Cancer	Negative
G	No Cancer	Positive

$$P(Y = cancer) = 3/7$$
, $P(Y = no cancer) = 4/7$
 $P(X = positive) = 3/7$, $P(X = negative) = 4/7$

 $P(Y = cancer | X = positive) = \frac{2}{3}$

 $P(Y = cancer | X = negative) = \frac{1}{4}$

How about P(X = positive | Y = no cancer)?

Your Turn!

Person	Y (cancer or not)	X (test positive or negative)
С	No Cancer	Negative
E	No Cancer	Negative
F	No Cancer	Negative
G	No Cancer	Positive

$$P(Y = cancer) = 3/7, P(Y = no cancer) = 4/7$$

$$P(X = positive) = 3/7, P(X = negative) = 4/7$$

$$P(Y = cancer | X = positive) = \frac{2}{3}$$

$$P(Y = cancer | X = negative) = \frac{1}{4}$$

How about P(X = positive | Y = no cancer)? ¹/₄

Person	Y (cancer or not)	X (test positive or negative)
A	Cancer	Positive
В	Cancer	Negative
D	Cancer	Positive

$$P(Y = cancer) = 3/7, P(Y = no cancer) = 4/7$$

$$P(X = positive) = 3/7$$
, $P(X = negative) = 4/7$

 $P(Y = cancer | X = positive) = \frac{2}{3}$

 $P(Y = cancer | X = negative) = \frac{1}{4}$

How about P(X = positive | Y = cancer)? 2/3.

Person	Y (cancer or not)	X (test positive or negative)
A	Cancer	Positive
В	Cancer	Negative
D	Cancer	Positive

P(Y = cancer) = 3/7, P(Y = no cancer) = 4/7

P(X = positive) = 3/7, P(X = negative) = 4/7

 $P(Y = cancer | X = positive) = \frac{2}{3}$

 $P(Y = cancer | X = negative) = \frac{1}{4}$

How about P(X = positive | Y = cancer)? 2/3.

We can also get this answer ²/₃ without counting by using our previous results obtained through <u>Bayes Rule.</u>

Bayes Rule

$$P(A|B) = P(B|A) * P(A) / P(B)$$

Not going to prove it in class, its a few lines for those who are interested.

Remember we wanted to find **P(X = positive | Y = Cancer)**.

- P(X=positive | Y=Cancer)
- = P(Y=Cancer | X=positive) * P(X = positive) / P(Y = Cancer)
- = (2/3) * (3/7) / (3/7)
- = $\frac{2}{3}$ (same as direct counting!)

Conditional Independence

Definition: Given we know the Label, the probability of feature X1 occuring is independent of feature X2.

In Math: P(X1,X2 | Y) = P(X1 | Y) * P(X2 | Y)

<u>Naive Bayes</u> assumes all variables are conditionally independent, hence it is called "*naive*".

Example: The grade you get from a class through the time you spent studying is independent from your intelligence

Features

- X1: Age [young / old]
- X2: Tumor Size [none / small / large]

Labels

• Y: [Cancer / No Cancer]

Person	X1 Age [young / old]	X2 Tumor Size [none / S / L]	Y (cancer or not)
А	old	none	Cancer
В	old	small	Cancer
С	young	none	No Cancer
D	young	large	Cancer
E	old	none	No Cancer
F	old	none	No Cancer
G	young	small	No Cancer

Suppose this person who is (X1) old and has a (X2) small tumor comes to you...

Determine if P(Y = Cancer | X1 = old, X2 = small)

or P(Y = No Cancer | X1 = old, X2 = small) is greater

Suppose this person who is (X1) old and has a (X2) small tumor comes to you...

Determine if P(Y = Cancer | X1 = old, X2 = small)

or P(Y = No Cancer | X1 = old, X2 = small) is greater

We can reform that equation using **Bayes Rule**:

P(Y = Cancer | X1 , X2) = P(X1, X2 | Y = Cancer) * P(Y = Cancer) / P(X1,X2) P(Y = No Cancer | X1 , X2) = P(X1, X2 | Y = No Cancer) * P(Y = No Cancer) / P(X1,X2)

Suppose this person who is (X1) old and has a (X2) small tumor comes to you...

```
Determine if P(Y = Cancer | X1 = old, X2 = small)
```

or P(Y = No Cancer | X1 = old, X2 = small) is greater

We can reform that equation using **Bayes Rule**:

P(Y = Cancer | X1 , X2) = P(X1, X2 | Y = Cancer) * P(Y = Cancer) / P(X1,X2) P(Y = No Cancer | X1 , X2)

= P(X1, X2 | Y = No Cancer) * P(Y = No Cancer) / P(X1, X2)

Since we only care about which one is bigger, we can drop the P(X1,X2) term. Determine if P(X1, X2 | Y = Cancer) * P(Y = Cancer) or P(X1, X2 | Y = No Cancer) * P(Y = No Cancer) is greater.

Suppose this person who is (X1) old and has a (X2) small tumor comes to you...

```
Determine if P(Y = Cancer | X1 = old, X2 = small)
```

or P(Y = No Cancer | X1 = old, X2 = small) is greater

We can reform that equation using **Bayes Rule**:

P(Y = Cancer | X1, X2)

= P(X1, X2 | Y = Cancer) * P(Y = Cancer) / P(X1,X2)

P(Y = No Cancer | X1, X2)

= P(X1, X2 | Y = No Cancer) * P(Y = No Cancer) / P(X1, X2)

Since we only care about which one is bigger, we can drop the P(X1,X2) term.

Determine if P(X1, X2 | Y = Cancer) * P(Y = Cancer)

or P(X1, X2 | Y = No Cancer) * P(Y = No Cancer) is greater.

Use the Conditional Independence Assumption

P(X1 | Y = Cancer) * P(X2 | Y = Cancer) * P(Y = Cancer)

P(X1 | Y = No Cancer) * P(X2 | Y = No Cancer) * P(Y = No Cancer)

Suppose this person who is (X1) old and has a (X2) small tumor comes to you...

```
Determine if P(Y = Cancer | X1 = old, X2 = small)
```

or P(Y = No Cancer | X1 = old, X2 = small) is greater

We can reform that equation using **Bayes Rule**:

P(Y = Cancer | X1 , X2) = P(X1, X2 | Y = Cancer) * P(Y = Cancer) / P(X1,X2)

P(Y = No Cancer | X1, X2)

= P(X1, X2 | Y = No Cancer) * P(Y = No Cancer) / P(X1, X2)

Since we only care about which one is bigger, we can drop the P(X1,X2) term.

Determine if P(X1, X2 | Y = Cancer) * P(Y = Cancer)

or P(X1, X2 | Y = No Cancer) * P(Y = No Cancer) is greater.

Use the Conditional Independence Assumption

P(X1 | Y = Cancer) * P(X2 | Y = Cancer) * P(Y = Cancer)

P(X1 | Y = No Cancer) * P(X2 | Y = No Cancer) * P(Y = No Cancer)

Depending on which term is larger, we predict if a person has cancer or not

In English

"We are finding the probability of features {length of nose, weight, height} occuring given that it is an elephant"

Score =

Probability of having nose length 1 meter given that is is an elephant * Probability of having weight 500 pounds given that is is an elephant * Probability of having height 3 meters given that is is an elephant

And then comparing this score for other possible animals

In English

"We are finding the probability of features {length of nose, weight, height} occuring given that it is an elephant"

Score =

Probability of having nose length 1 meter given that is is an elephant * Probability of having weight 500 pounds given that is is an elephant * Probability of having height 3 meters given that is is an elephant

And then comparing this score for other possible animals

Probability is just counting of number of rows in the data!

Going back to example data

Person	X1 Age [young / old]	X2 Tumor Size [none / S / L]	Y (cancer or not)
А	old	none	Cancer
В	old	small	Cancer
С	young	none	No Cancer
D	young	large	Cancer
E	old	none	No Cancer
F	old	none	No Cancer
G	young	small	No Cancer

P(X1 = old | Y = Cancer) * P(X2 = small | Y = Cancer)* P(Y = Cancer)

=

P(X1 = old | Y = No Cancer) * P(X2 = small | Y = No Cancer)* P(Y = No Cancer)

=

Going back to example data

Person	X1 Age [young / old]	X2 Tumor Size [none / S / L]	Y (cancer or not)
А	old	none	Cancer
В	old	small	Cancer
С	young	none	No Cancer
D	young	large	Cancer
E	old	none	No Cancer
F	old	none	No Cancer
G	young	small	No Cancer

P(X1 = old | Y = Cancer) * P(X2 = small | Y = Cancer)* P(Y = Cancer)

 $=\frac{2}{3} * \frac{1}{3} * \frac{3}{7} = 0.0952$

P(X1 = old | Y = No Cancer) * P(X2 = small| Y = No Cancer)* P(Y = No Cancer)

= 2/4 * ¹/₄ * 4/7 = 0.0714

Going back to example data

Person	X1 Age [young / old]	X2 Tumor Size [none / S / L]	Y (cancer or not)
А	old	none	Cancer
В	old	small	Cancer
С	young	none	No Cancer
D	young	large	Cancer
E	old	none	No Cancer
F	old	none	No Cancer
G	young	small	No Cancer

P(X1 = old | Y = Cancer) * P(X2 = small | Y = Cancer)* P(Y = Cancer)

= ²/₃ * ¹/₃ * 3/7 = 0.0952

P(X1 = old | Y = No Cancer) * P(X2 = small | Y = No Cancer)* P(Y = No Cancer)

= 2/4 * ¹/₄ * 4/7 = 0.0714

Model Predicted this person has cancer!!! :o 0.0952 > 0.0714

Naive Bayes Summary

This is all you need to know for purposes of this class

Given training data that follows this format..

Feature X1	Feature X2	Feature X3	 Feature X999	Y (Label) [A or B]

And you are given new data without labels that you want to classify

Feature X1	Feature X2	Feature X3	 Feature X999	Y (Label) [A or B]
			 	???
			 	???

Determine if P(X1 | Y = A) * P(X2 | Y = A) * P(X3 | Y = A) * .. * P(X999 | Y = A) * P(Y = A) OR P(X1 | Y = B) * P(X2 | Y = B) * P(X3 | Y = B) * .. * P(X999 | Y = B) * P(Y = B) Is greater

Lecture 12: Classification + Evaluation

Now, your turn!

Person	X1 Age [young / old]	X2 Tumor Size [none / S / L]	Y (cancer or not)
А	old	none	Cancer
В	old	small	Cancer
С	young	none	No Cancer
D	young	large	Cancer
E	old	none	No Cancer
F	old	none	No Cancer
G	young	small	No Cancer

Given a new person who is X1 = young and X2 = small, what will the model predict?

Remember! Determine if

P(X1 | Y = A) * P(X2 | Y = A) * P(X3 | Y = A) * .. * P(X999 | Y = A) * **P(Y = A) OR** P(X1 | Y = B) * P(X2 | Y = B) * P(X3 | Y = B) * .. * P(X999 | Y = B) * **P(Y = B) Is greater**

Now, your turn!

Person	X1 Age [young / old]	X2 Tumor Size [none / S / L]	Y (cancer or not)
А	old	none	Cancer
В	old	small	Cancer
С	young	none	No Cancer
D	young	large	Cancer
E	old	none	No Cancer
F	old	none	No Cancer
G	young	small	No Cancer

Given a new person who is X1 = young and X2 = small, what will the model predict?

$$P(X1 = young | Y = Cancer) * P(X2 = small | Y = Cancer) * P(Y = Cancer)$$

$$= \frac{1}{3} * \frac{1}{3} * \frac{3}{7} = 0.0476$$

P(X1 = young | Y = No Cancer) * P(X2 = small | Y = No Cancer)* P(Y = No Cancer)

= 2/4 * 1/4 * 4/7 = 0.0714

0.0476 < 0.0714, NO CANCER!! :)

Lecture 10: Regression Part 2 / Classification Part 1

Code in Python (refer to notebook for full code)

```
features = ['minutes', 'shots', 'passes', 'tackles', 'saves']
nb = GaussianNB()
nb.fit(playersTrain[features],playersTrain['position'])
predictions = nb.predict(playersTest[features])
```

Why Naive Bayes?

- 1. Simple and easy to implement (just counting)
- 2. Computationally fast
- 3. Works well on small datasets

Real World Examples

- 1. Classify an email as spam, or not spam
- 2. Classify a news article to its category

Support Vector Machines

Finds a line that best seperates 2 classes of points.

