Approximate terminology, though there’s some overlap, and terms are used sloppily or interchangeably:

- **Data(base) operations** - Executing specific operations or queries over data
- **Data mining** - Looking for patterns in data
- **Machine learning** - Using data to make inferences or predictions

Early data mining success stories:
- Victoria’s Secret
- Walmart
- “Beer and diapers”

We’ll cover data mining on **market-basket data**, with patterns being frequent itemsets and association rules.

- Examples of other types of data: graphs (of the node-and-link variety), streams, text (known as “text mining”)
- Examples of other types of patterns: looking for similar items, looking for structural patterns in large networks, looking for clusters and/or anomalies

Market-Basket Data

Originated with retail data, specifically grocery stores, where a **market basket** is a set of items purchased together. More generally, market-basket data is any data where there’s a fixed (possibly very large) set of items, and a (usually large) number of transactions consisting of one or more of the items. Examples:

- Items: groceries, Transaction: grocery cart
- Items: online goods, Transaction: (virtual) shopping cart
- Items: college courses, Transaction: student transcript
- Items: students, Transaction: party
- Items: movies, Transaction: person
- Items: symptoms, Transaction: patient
- Items: menu items, Transaction: customer
- Items: words, Transaction: document

Frequent Itemsets

Sets of items that occur together frequently in transactions

1. How large is a “set”?
2. What does “frequently” mean?

Look for sets containing at least min-set-size items, may also constrain max-set-size

Support: # transactions containing set / total # transactions

Look for sets with support > support-threshold

1 Notes adopted from Jennifer Widom’s CS102 offering in 2016.
Example

T1: beer, eggs, milk
T2: beer, diapers, milk
T3: chips, eggs
T4: eggs, milk
T5: beer, chips, diapers, milk

\(\text{min-set-size} = 2, \text{support-threshold} = 0.3 \)

Frequent itemsets?

Answer: beer/milk, beer/diapers, diapers/milk, eggs/milk, beer/diapers/milk

Computing Frequent Itemsets Using Python

File Shop.csv with tid,item pairs

```python
import csv
transactions={} # dictionary from TID to list of items
items={} # dictionary from item to list of TIDs
with open('Shop.csv', 'rU') as csvfile:
    data = csv.reader(csvfile)
    for row in data:
        if row[0] not in transactions: transactions[row[0]]= [row[1]]
        else: transactions[row[0]].append(row[1])
        if row[1] not in items: items[row[1]]= [row[0]]
        else: items[row[1]].append(row[0])
numtransactions = len(transactions)

# compute all pairs of items, alphabetical
pairs = []
for i1 in items:
    for i2 in items:
        if i1<i2: pairs.append([i1,i2,0])

# append number of transactions containing each pair
for p in pairs:
    for t in transactions:

# compute frequent itemsets of two
frequent2 = []
for p in pairs:
    if float(p[2])/float(numtransactions) > 0.3: frequent2.append(p)
print 'FREQUENT ITEMSETS OF TWO:'
for f in frequent2: print '  ', f[0], f[1]

# compute all triples of items where first two are in frequent itemsets
```
of two, alphabetical
triples = []
for f in frequent2:
 for i in items:
 if f[0] < i and f[1] < i: triples.append([f[0], f[1], i, 0])

append number of transactions containing each triple
for tr in triples:
 for t in transactions:

compute frequent itemsets of three
frequent3 = []
for t in triples:
 if float(t[3])/float(numtransactions) > 0.3: frequent3.append(t)
print 'FREQUENT ITEMSETS OF THREE:'
for f in frequent3: print ' ', f[0], f[1], f[2]

Association Rules
Set1 → Set2: when Set1 occurs in a transaction, Set2 often occurs in the same transaction
Commonly limit to looking for rules where Set2 is a single item
1. How large is Set1?
2. What does “often” mean?
Look for sets Set1 containing at least \textit{min-set-size} items, may also constrain \textit{max-set-size}

\textbf{Confidence}: \# transactions containing Set1 and Set2 / \# transactions containing Set1
Look for sets with confidence > \textit{confidence-threshold}

Still consider \textbf{Support}: \# transactions containing Set1 / total \# transactions
Look for sets with support > \textit{support-threshold} (i.e., Set1 should be frequent itemset)

Example
Same transactions T1-T5 as above
\textit{min-set-size} = 1, \textit{max-set-size} = 1, \textit{confidence-threshold} = 0.5, \textit{support-threshold} = 0.5
Association rules?
Answer: Beer → Diapers, Beer → Milk, Eggs → Milk, Milk → Beer

\textbf{Computing Association Rules Using Python}

Homework!