Problem Set 8

In this problem set, you'll transition away from the regular languages to the context-free languages and to the realm of Turing machines. This will be your first foray beyond the limits of what computers can ever hope to accomplish, and we hope that you find this as exciting as we do!

As always, please feel free to drop by office hours or ask on Piazza if you have any questions. We'd be happy to help out.

Good luck, and have fun!

Due Friday, November 22nd at 2:30PM.
Problem One: Designing CFGs

For each of the following languages, design a CFG for that language. Please use our online tool to design, test, and submit the CFGs in this problem. To use it, visit the CS103 website and click the “CFG Editor” link under the “Resources” header. You should only have one member from each team submit your grammars; tell us who this person is when you submit the rest of the problems through GradeScope.

i. Given $\Sigma = \{a, b, c\}$, write a CFG for the language $\{ w \in \Sigma^* \mid w \text{ contains } aa \text{ as a substring} \}$. For example, the strings aa, $baac$, and $ccaabb$ are all in the language, but aba is not.

ii. Given $\Sigma = \{a, b\}$, write a CFG for the language $L = \{ w \in \Sigma^* \mid w \text{ is not a palindrome} \}$, the language of strings that are not the same when read forwards and backwards. For example, $aab \in L$ and $baabab \in L$, but $aba \notin L$, $bb \notin L$, and $\varepsilon \notin L$.

Don’t try solving this one by starting with the CFG for palindromes and making modifications to it. In general, there’s no way to mechanically turn a CFG for a language L into a CFG for the language \overline{L}, since the context-free languages aren’t closed under complementation. However, the idea of looking at the first and last characters of a given string might still be a good idea.

iii. Let Σ be an alphabet containing these symbols: \emptyset \mathbb{N} $\{ \}$ \cup

We can form strings from these symbols which represent sets. Here’s some examples:

- \emptyset
- $\{ \emptyset, \mathbb{N} \} \cup \mathbb{N} \cup \emptyset$
- $\{ \emptyset \} \cup \mathbb{N} \cup \{ \emptyset \}$
- $\{ \emptyset, \{ \emptyset \} \}$
- $\{ \{ \{ \mathbb{N} \} \} \}$
- $\emptyset \cup \{ \emptyset, \mathbb{N} \}$
- $\{ \}$
- \mathbb{N}
- $\{ \emptyset, \{ \} \}$
- $\{ \emptyset \}$
- $\mathbb{N} \cup \{ \emptyset \}$
- $\{ \emptyset, \emptyset, \emptyset \}$
- $\emptyset \cup \mathbb{N} \cup \{ \emptyset \}$
- $\{ \emptyset \}$
- $\{ \emptyset, \emptyset, \emptyset \}$
- $\emptyset \cup \mathbb{N} \cup \{ \emptyset \}$

Notice that some of these sets, like $\{ \emptyset, \emptyset \}$ are syntactically valid but redundant, and others like $\{ \}$ are syntactically valid but not the cleanest way of writing things. Here’s some examples of strings that don’t represent sets or aren’t syntactically valid:

- \emptyset
- $\{ \emptyset \}$
- $\emptyset \mathbb{N}$
- $\{ \emptyset, \emptyset \}$
- $\{ \emptyset \}$
- \mathbb{N}
- $\{ \emptyset \}$
- $\emptyset \mathbb{N}$
- $\{ \emptyset, \emptyset \}$
- $\emptyset \mathbb{N}$
- $\{ \emptyset \}$
- $\emptyset \mathbb{N}$
- $\{ \emptyset, \emptyset \}$

Write a CFG for the language $\{ w \in \Sigma^* \mid w \text{ is a syntactically valid string representing a set} \}$. When using the CFG tool, please use the letters n, u, and o in place of \mathbb{N}, \cup, and \emptyset, respectively.

Fun fact: The starter files for Problem Set One contain a parser that’s designed to take as input a string representing a set and to reconstruct what set that is. The logic we wrote to do that parsing was based on a CFG we wrote for sets and set theory. Take CS143 if you’re curious how to go from a grammar to a parser!

Test your CFG thoroughly! In Fall 2017, a quarter of the submissions we received weren’t able to derive the string $\{ \emptyset, \emptyset, \emptyset \}$.

As a hint, as is often the case when writing CFGs, we recommend that you use different nonterminals to represent different components of the string. For example, structure of a comma-separated list is very different from the structure of an expression combining multiple sets together.
Problem Two: The Complexity of Addition

This problem explores the following question:

How hard is it to add two numbers?

Suppose that we want to check whether \(x + y = z \), where \(x, y, \) and \(z \) are all natural numbers. If we want to phrase this as a problem as a question of strings and languages, we will need to find some way to standardize our notation. In this problem, we will be using the unary number system, a number system in which the number \(n \) is represented by writing out \(n \) 1’s. For example, the number 5 would be written as 11111, the number 7 as 1111111, and the number 12 as 111111111111.

Given the alphabet \(\Sigma = \{ 1, +, = \} \), we can consider strings encoding \(x + y = z \) by writing out \(x, y, \) and \(z \) in unary. For example:

\[
\begin{align*}
4 + 3 &= 7 \text{ would be encoded as } 1111 + 111 = 11111111 \\
7 + 1 &= 8 \text{ would be encoded as } 1111111 + 1 = 1111111111 \\
0 + 1 &= 1 \text{ would be encoded as } +1 = 1
\end{align*}
\]

Consider the alphabet \(\Sigma = \{ 1, +, = \} \) and the following language, which we'll call \(ADD \):

\[
\{ 1^n + 1^m = 1^{n+m} \mid m, n \in \mathbb{N} \}
\]

For example, the strings 1111+1=1111 and +1=1 are in the language, but 1+11=11 is not, nor is the string 1+1+1=111.

i. Prove or disprove: the language \(ADD \) defined above is regular.

ii. Write a context-free grammar for \(ADD \), showing that \(ADD \) is context-free. (Please submit your CFG online.)

You may find it easier to solve this problem if you first build a CFG for this language where you’re allowed to have as many numbers added together as you’d like. Once you have that working, think about how you’d modify it so that you have exactly two numbers added together on the left-hand side of the equation.

Problem Three: The Complexity of Pet Ownership

This problem explores the following question:

How hard is it to walk your dog without a leash?

Let’s imagine that you’re going for a walk with your dog, but this time don’t have a leash. As in Problem Set Six and Problem Set Seven, let \(\Sigma = \{ y, d \} \), where \(y \) means that you take a step forward and \(d \) means that your dog takes a step forward. A string in \(\Sigma^* \) can be thought of as a series of events in which either you or your dog moves forward one unit. For example, the string yydd means that you take two steps forward, then your dog takes two steps forward.

Let \(DOGWALK = \{ w \in \Sigma^* \mid w \text{ describes a series of steps where you and your dog arrive at the same point} \} \). For example, the strings yyyddd, ydyd, and yyydddddyyy are all in \(DOGWALK \).

i. Prove or disprove: the language \(DOGWALK \) defined above is regular.

ii. Write a context-free grammar for \(DOGWALK \), showing that \(DOGWALK \) is context-free. (Please submit your CFG online.)

Be careful, and test your CFG thoroughly! Check the lecture slides on CFGs for examples of grammars that don’t work, and make sure you can articulate why those grammars are incorrect.
Problem Four: Equivalence Classes and Regular Languages, Part Two

On Problem Set Seven, you explored the *indistinguishability* relation for L, denoted \equiv_L, defined as
\[x \equiv_L y \text{ if } \forall w \in \Sigma^*. (xw \in L \iff yw \in L). \]

You specifically proved that for any language L, the relation \equiv_L is an equivalence relation and that any DFA for L must have at least $I(\equiv_L)$ states. In this problem, you're going to prove an amazing result:

Theorem: If L is a language where $I(\equiv_L)$ is finite, then L is regular.

In other words, if you know absolutely nothing about a language other than there are finitely many equivalence classes of the \equiv_L relation, then somewhere out there, there must be a DFA for L!

Let L be an arbitrary language over some alphabet Σ where $I(\equiv_L)$ is finite. We are going to prove that L is regular by defining a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ for this language L. The key insight behind this proof is how to choose Q. Specifically, we will choose Q to be the set of equivalence classes of \equiv_L:
\[Q = \{ \left[w \right]_{\equiv_L} \mid w \in \Sigma^* \}. \]

It might seem strange to have the states of a DFA be sets, but then again, you’ve seen something like this before. In Problem Set Six, when working through the subset construction, you created a DFA whose states literally were sets of states of some particular NFA.

i. Explain why Q is finite. This should take you at most a sentence or two.

We need to figure out how to pick a start state and wire up our transitions. Our goal will be to define q_0 and δ so that our DFA has the following property: if you run w through this DFA, the state you end up in corresponds to $\left[w \right]_{\equiv_L}$. It turns out that choosing q_0 and δ as follows makes this work:
\[q_0 = \left[\varepsilon \right]_{\equiv_L} \quad \delta(\left[x \right]_{\equiv_L}, a) = \left[xa \right]_{\equiv_L}. \]

Of course, you shouldn’t take our word for it. You should prove that these choices make everything work!

ii. Prove that for any string $w \in \Sigma^*$, we have $\delta^*(w) = \left[w \right]_{\equiv_L}$.

Need a refresher on the definition of δ^? Check Problem Set Seven.*

To seal the deal, we need to choose our set of accepting states. We’ll define F as follows:
\[F = \{ \left[w \right]_{\equiv_L} \mid \exists x \in \left[w \right]_{\equiv_L}, x \in L \}. \]

In other words, F is the set of all equivalence classes containing at least one string in L.

iii. On Problem Set Seven, you saw that we can formally define $\mathcal{L}(D) = \{ w \in \Sigma^* \mid \delta^*(w) \in F \}$. Prove that with this choice of F, we have $\mathcal{L}(D) = L$.

There is a ton of formal notation here, but at the end of the day, this question is just asking you to prove that two sets are equal. Think way back to Problem Set One. What’s the easiest way to do this?

Your proof should use the formal definitions provided here rather than higher-level concepts like “the DFA accepts w” or “run the DFA on $w.” Also, perhaps a result from Problem Set Seven would be useful here?

By combining the two theorems you’ve explored about indistinguishability – the one you proved last time, and the one from above – we get this fundamental result:

Theorem (Myhill-Nerode): A language L is regular if and only if $I(\equiv_L)$ is finite.

Furthermore, if $I(\equiv_L)$ is finite, the smallest possible DFA for L has exactly $I(\equiv_L)$ states.

This result formalizes the intuition we’ve had about regular languages corresponding to problems you can solve with only finite memory. The “memory” you need corresponds to remembering which equivalence class the string you’ve seen so far happens to fall into.

If you talk to CS theory folk and mention “the Myhill-Nerode theorem,” they’ll assume you’re talking about the above theorem! The version we saw in lecture is just a special case of this more general one.
Problem Five: Generalizing the Kleene Star

On Problem Set Six, you saw that there was a connection between preorders from binary relations and monoids from formal languages. That was the tip of the iceberg – the connection runs much deeper.

When talking about the Kleene star for formal languages, we first started by using concatenation to define language exponentiation, which we did as follows:

\[L^0 = \{ \varepsilon \}, \text{ the identity element for language concatenation.} \]
\[L^{n+1} = LL^n. \]

We can similarly define powers of relations by using composition:

\[R^0 = I_A, \text{ the identity element for relation composition.} \]
\[R^{n+1} = R \circ R^n. \]

(See PS3 for a refresher on the identity relation and how to define relation composition.) Notice how closely this definition mirrors that of language exponentiation.

i. Below is a binary relation \(R \) over a set \(A \). Add arrows to the diagrams to draw \(R^0, R^1, R^2, \) and \(R^3 \). No justification is required.

As you saw on Problem Set Six, if \(L \) is a language, then \(L^{m+n} = L^mL^n \). Something similar holds for relations.

ii. Prove that if \(R \) is a binary relation over \(A \) and \(m, n \in \mathbb{N} \), then \(R^{m+n} = R^m \circ R^n \). Feel free to assume that relation concatenation is associative: \(R \circ (S \circ T) = (R \circ S) \circ T \) for any relations \(R, S, \) and \(T \) over the same underlying set.

Use the formal definition of relation composition and relation powers. What's a good proof technique to use when reasoning about inductive definitions?

(Continued on the next page…)
In formal language theory, we defined the Kleene star of a language \(L \) as follows:

\[w \in L^* \text{ if and only if } \exists n \in \mathbb{N}. w \in L^n. \]

If \(R \) is a binary relation over a set \(A \), we define the relation \(R^* \) over \(A \) as follows:

\[xR^*y \text{ if } \exists n \in \mathbb{N}. xR^ny. \]

The rest of this problem focuses on properties of relation \(R^* \).

iii. Add arrows to the following diagram to draw the relation \(R^* \).

<table>
<thead>
<tr>
<th>Relation (R)</th>
<th>Add arrows here to define (R^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) \rightarrow (b)</td>
<td></td>
</tr>
<tr>
<td>(c) \rightarrow (d)</td>
<td></td>
</tr>
</tbody>
</table>

Where have you seen this before?

The Kleene star turns any language into a monoid. This star operation turns any relation into a preorder.

iv. Let \(R \) be a relation over a set \(A \). Prove that \(R^* \) is a preorder.

There are many routes you can take to prove this. You could show that \(R^* \) is reflexive and transitive. You could use what you proved on Problem Set Three and show that \(I_A \subseteq R^* \) and that \(R^* \circ R^* \subseteq R^* \). You will almost certainly need to prove some helper lemmas in the course of doing so. Given the similarity between preorders and monoids, perhaps you might find your work from Problem Set Six useful here?

Because of the result you proved in part (iv), the relation \(R^* \) is called the reflexive, transitive closure of \(R \). Reflexive, transitive closures show up all the time in computer science and discrete mathematics.

v. Let \(G = (V, E) \) be a graph and let \(R \) be the relation over \(V \) where \(uRv \) holds if \(\{u, v\} \in E \). Explain what the relations \(R \) and \(R^* \) are in plain English. You should be able to answer this question by filling in the following blanks in at most five words each:

\[“uRv \text{ means that } \ldots” \quad \text{“}uR^*v \text{ means that } \ldots” \]

The reason that it’s possible to define a Kleene star operator for both formal languages and binary relations is because both languages and relations are examples of complete star semirings. This is a concept from abstract algebra that shows up in surprising places in computer science. For more on complete star semirings, take Math 120 and Math 121. For more on their applications in computer science, take CS161 and ask the instructor about transitive closure algorithms. 😃
Problem Six: The Collatz Conjecture

The Collatz conjecture is a famous conjecture (an unproved claim) that says the following procedure (called the hailstone sequence) terminates for all positive natural numbers n:

- If $n = 1$, stop.
- If n is even, set $n = n / 2$ and repeat from the top.
- If n is odd, set $n = 3n + 1$ and repeat from the top.

Let $L = \{ 1^n \mid n \geq 1 \text{ and the hailstone sequence terminates for } n \}$ be a language over the singleton alphabet $\Sigma = \{1\}$. It turns out that it’s possible to build a TM for this language, which means that $L \in \text{RE}$, and in this problem you’ll do just that. Parts (i) and (ii) will ask you to design two useful subroutines, and you’ll assemble the overall machine in part (iii).

i. Design a TM subroutine that, given a tape holding a string of the form 1^{2n} (where $n \in \mathbb{N}$) surrounded by infinitely many blanks, ends with 1^n written on the tape, surrounded by infinitely many blanks. You can assume the tape head begins reading the first 1 (or points to an arbitrary blank cell in the case where $n = 0$), and your TM should end with the tape head reading the first 1 of the result (or any blank cell if $n = 0$). For example, given the initial configuration

```
... 1 1 1 1 1 1 1 1 1 ...
```

your TM subroutine would end with this configuration:

```
... 1 1 1 1 ...
```

You can assume that there are an even number of 1s on the tape at startup and can have your TM behave however you’d like if this isn’t the case. Please use our provided TM editor to design, develop, test, and submit your answer to this question. Since our TM tool doesn’t directly support subroutines, just have your machine accept when it’s done.

For reference, our solution has fewer than 10 states. If you have significantly more than this and are struggling to get your TM working, you might want to change your approach. It’s totally fine if you have a bunch of states, provided that your solution works.

There are a lot of different solutions here. Some use very little extra tape. Some use a lot of extra tape. Some don’t need any other tape symbols. Some do. Be creative, try things out, and don’t be afraid to back up and try something else if your approach doesn’t seem to be panning out.

(Continued on the next page...)
ii. Design a TM subroutine that, given a tape holding a string of the form 1^n (for some $n \in \mathbb{N}$), surrounded by infinitely many blanks, ends with 1^{3n+1} written on the tape, surrounded by infinitely many blanks. You can assume that the tape head begins reading the first 1, and your TM should end with the tape head reading the first 1 of the result. For example, given this configuration

```
... 1 1 1 ...
```

your TM subroutine would end with this configuration:

```
... 1 1 1 1 1 1 1 1 1 ...
```

You can assume the number of 1s on the tape at startup is odd and can have your TM behave however you'd like if this isn't the case. Please use our provided TM editor to design, develop, test, and submit your answer to this question. Since our TM tool doesn't directly support subroutines, just have your machine accept when it's done.

For reference, our solution has fewer than 10 states. If you have significantly more than this and are struggling to get things working, you might want to change your approach.

iii. Draw the state transition diagram for a Turing machine M that recognizes L. Our TM tool is configured for this problem so that you can use our reference solutions for parts (i) and (ii) as subroutines in your solution. To do so, follow these directions:

1. Create states named `half`, `half_`, `trip`, and `trip_`.
2. To execute the subroutine that converts 1^{2n} into 1^n, transition into the state named `half`. When that subroutine finishes, the TM will automagically jump into the state labeled `half_`. You do not need to – and should not – define any transitions into `half_` or out of `half`.
3. To execute the subroutine that converts 1^n into 1^{3n+1}, transition into the state named `trip`. When that subroutine finishes, the TM will automagically jump into the state labeled `trip_`. You do not need to – and should not – define any transitions into `trip_` or out of `trip`.

Calling ahead to Monday’s lecture: a TM M recognizes a language L if M accepts all of the strings in L and either rejects or loops on all strings that are not in L. In other words, your TM should accept every string in L, and for any string not in L it can either loop infinitely or reject the string.

Please use our provided TM editor to design, develop, test, and submit your answer to this question.

For reference, our solution has fewer than 15 states. If you have significantly more than this and are struggling to get things working, you might want to change your approach.

For those of you who did the Hailstone Sequence problem in CS106A – you’re now solving the same problem using pure mathematics! Did you expect you’d ever get to do something like that?

Because TMs can go into infinite loops, our provided TM simulator will only simulate TMs for some fixed, large number of steps. Some inputs to your TM might take a very long time to complete purely because the Hailstone Sequence takes a long time to complete in those cases. When that happens, you’ll get timeouts reported. It’s probably nothing to worry about if you’re seeing timeouts for very large or long strings, but you shouldn’t be seeing timeouts for, say, strings whose lengths are between 5 and 10.
Problem Seven: What Does it Mean to Solve a Problem?

Let L be a language over Σ and M be a TM with input alphabet Σ. Here are three potential traits of M:

1. M halts on all inputs.
2. For any string $w \in \Sigma^*$, if M accepts w, then $w \in L$.
3. For any string $w \in \Sigma^*$, if M rejects w, then $w \notin L$.

At some level, for a TM to claim to solve a problem, it should have at least some of these properties. Interestingly, though, just having two of these properties doesn't say much.

i. Prove that if L is any language over Σ, then there is a TM M that satisfies properties (1) and (2).

ii. Prove that if L is any language over Σ, then there is a TM M that satisfies properties (1) and (3).

iii. Prove that if L is any language over Σ, then there is a TM M that satisfies properties (2) and (3).

iv. Suppose L is a language over Σ for which there is a TM M that satisfies all of properties (1), (2), and (3). What can you say about L? Prove it.

The whole point of this problem is to show that you have to be extremely careful about how you define “solving a problem,” since if you define it incorrectly then you can “solve” a problem in a way that bears little resemblance to what we’d think of as solving a problem. Keep this in mind as you work through this one.

Optional Fun Problem: TMs and Regular Languages (Extra Credit)

Let M be a TM with the following property: there exists a natural number k such that after M is run on any string w, it always halts after at most k steps. (One “step” corresponds to following a transition in the TM, which consists of writing a symbol, moving the tape head, and changing state.)

Prove that $\mathcal{L}(M)$ is regular.