
CS103 Handout 46
Spring 2017 June 2, 2016

Problem Set 9

What problems are beyond our capacity to solve? Why are they so hard? And why is anything that
we've discussed this quarter at all practically relevant? In this problem set – the last one of the quar-
ter! – you'll explore the absolute limits of computing power.

As always, please feel free to drop by office hours or ask questions on Piazza if you have any ques-
tions. We'd be happy to help out.

Good luck, and have fun!

Due Wednesday, June 7th at the start of lecture.

Because this problem set is due on the last day of class, no late days
may be used and no late submissions will be accepted. Sorry about that!
On the  plus  side,  we'll  release  solutions  as  soon as  the  problem set
comes due.
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Problem One: Password Checking
(We recommend reading the Guide to Self-Reference on the course website before attempting this problem.)

If you're an undergraduate here, you've probably noticed that the dorm staff have master keys they can
use to unlock any of the doors in the residences. That way, if you ever lock yourself out of your room,
you can, sheepishly, ask for help back in. (Not that I've ever done that or anything.) Compare this to a
password system. When you log onto a website with a password, you have the presumption that your pass-
word is the only possible password that will log you in. There shouldn't be a “master key” password that
can unlock any account, since that would be a huge security vulnerability. But how could you tell? If you
had the source code to the password checking system, could you figure out whether your password was
the only password that would grant you access to the system?

Let's frame this question in terms of Turing machines. If we wanted to build a TM password checker,
“entering your password” would correspond to starting up the TM on some string, and “gaining access”
would  mean  that  the  TM  accepts  your  string.  Let's  suppose  that  your  password  is  the  string
iheartquokkas. A TM that would work as a valid password checker would be a TM M where ℒ(M) =
{iheartquokkas}: the TM accepts your string, and it doesn't accept anything else. Given a TM, is there
some way you could tell whether the TM was a valid password checker?

Consider the following language L:

L = { ⟨M⟩ | M is a TM and ℒ(M) = {iheartquokkas} }

Your task in this problem is to prove that L is undecidable (that is, L ∉ R). This means that there's no al-
gorithm that can mechanically check whether a TM is suitable as a password checker. Rather than drop-
ping you headfirst into this problem, we've split this problem apart into a few smaller pieces.

Let's suppose for the sake of contradiction that L ∈ R. That means that there is some function

bool isPasswordChecker(string program)

with the following properties:

• If program is the source of a program that accepts just the string iheartquokkas, then calling
isPasswordChecker(program) will return true.

• If program is not the source of a program that accepts just the string iheartquokkas, then call-
ing isPasswordChecker(program) will return false.

We can try to build a self-referential program that uses the isPasswordChecker function to obtain a con-
tradiction. Here's a first try:

int main() {
string me = mySource();
string input = getInput();

 

if (isPasswordChecker(me)) {
reject();

} else {
accept();

}
}

This code is, essentially, a (minimally) modified version of the self-referential program we used to get a
contradiction for the language ATM.

(Continued on the next page.)
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i. Prove that the above program is not a valid password checker.

ii. Suppose that this program is not a valid password checker. Briefly explain why no contradiction
arises in this case – no formal justification is necessary.

Ultimately, the goal of building a self-referential program here is to have the program cause a contradic-
tion regardless of whether or not it's a password checker. As you've seen in part (ii), this particular pro-
gram does not cause a contradiction if it isn't a password checker. Consequently, if we want to prove that
L ∉  R, we need to modify it so that it leads to a contradiction in the case where it is not a password
checker.

iii. Modify the above code so that it causes a contradiction regardless of whether it's a password
checker. Then, briefly explain why your modified program is correct. (No formal proof is neces-
sary here; you're going to do that in the next step.)

iv. Formalize your argument in part (iii) by proving that L ∉ R. Use the proof that ATM ∉ R as a tem-
plate for your proof.

Problem Two: LD, Cantor’s Theorem, and Diagonalization
Here's another perspective of the proof that LD ∉ RE. Suppose we let TM be the set of all encodings of
Turing machines. That is,

TM = { ⟨M⟩ | M is a TM }

We can then define a function ℒ : TM → ℘(TM) as follows:

ℒ(⟨M⟩) = ℒ(M) ∩ TM

This question explores some properties of this function.

i. Briefly describe, in plain English, what ℒ(⟨M⟩) represents. (You shouldn't need more than a sen-
tence.)

ii. Trace through the proof of Cantor's theorem from the Guide to Cantor's Theorem, assuming that
the choice of the function f in the proof is the function ℒ. What is the set D that is produced in
the course of the proof?
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Problem Three: Double Verification
This problem explores the following beautiful and fundamental theorem about the relationship between
the R and RE languages:

If L is a language, then L ∈ R if and only if L ∈ RE and L ∈ RE

This theorem has a beautiful intuition: it says that a language L is decidable (L ∈ R) precisely if for every
string in the language, it's possible to prove it's in the language (L ∈ RE) and, simultaneously, for every
string not in the language, it's possible to prove that the string is not in the language (L ∈ RE). In this
problem, we're going to ask you to prove one of the two directions of this theorem.

Let L be a language where L ∈ RE and L ∈ RE. This means that there's a verifier Vyes for L and a verifier 
Vno for L. In software, you could imagine that Vyes and Vno correspond to methods with these signatures:

bool imConvincedIsInL(string w, string c)

bool imConvincedIsNotInL(string w, string c)

Prove that L ∈ R by writing pseudocode for a function

bool isInL(string w)

that accepts as input a string w, then returns true if w ∈ L and returns false if w ∉ L. Then, write a brief
proof explaining why your pseudocode meets these requirements. You don't need to write much code
here. If you find yourself writing ten or more lines of pseudocode, you're probably missing something.

The theorem you proved in this problem is extremely useful for building an intuition for what languages
are decidable. You'll see this in the next problem
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Problem Four: The Lava Diagram
Below is a Venn diagram showing the overlap of different classes of languages we've studied so far. We
have also provided you a list of twelve numbered languages. For each of those languages, draw where in
the Venn diagram that language belongs. As an example, we've indicated where Language 1 and Lan-
guage 2 should go. No proofs or justifications are necessary – the purpose of this problem is to help you
build a better intuition for what makes a language regular, R, RE, or none of these.

We strongly recommend reading over the Guide to the Lava Diagram before starting this problem.

RERREG

ALL

1

2

1. Σ*

2. LD

3. { an | n ∈ ℕ }

4. { an | n ∈ ℕ and is a multiple of 137 }

5. { 1n+1m 1≟ n+m | m, n ∈ ℕ }

6. { ⟨M⟩ | M is a Turing machine and ℒ(M) ≠ Ø }

7. { ⟨M⟩ | M is a Turing machine and ℒ(M) = Ø }

8. { ⟨M⟩ | M is a Turing machine and ℒ(M) = LD }

9. { ⟨M, n⟩ | M is a TM, n ∈ ℕ, and M accepts all strings in its input alphabet of length at most n }

10. { ⟨M, n⟩ | M is a TM, n ∈ ℕ, and M rejects all strings in its input alphabet of length at most n }

11. { ⟨M, n⟩ | M is a TM, n ∈ ℕ, and M loops on all strings in its input alphabet of length at most n }

12. { ⟨M₁, M₂, M₃, w⟩ | M₁, M₂, and M₃ are TMs, w is a string, and at least two of
                               M₁, M₂, and M₃ accept w. }
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Problem Five: The Big Picture
We have covered a lot of ground in this course throughout our whirlwind tour of computability and com-
plexity theory. This last question surveys what we have covered so far by asking you to see how every-
thing we have covered relates. 

Take a minute to review the hierarchy of languages we explored: 

REG ⊊ CFL ⊊ P ≟ NP ⊊ R ⊊ RE ⊊ ALL 

The following questions ask you to provide examples of languages at different spots within this hierarchy.
In each case, you should provide an example of a language, but you don't need to formally prove that it
has the properties required. Instead, describe a proof technique you could use to show that the language
has the required properties. There are many correct answers to these problems, and we'll accept any of
them.

i. Give an example of a regular language. How might you prove that it is regular? 

ii. Give an example of a context-free language is not regular. How might you prove that it is context-
free? How might you prove that it is not regular?

iii. Give an example of a language in P.

iv. Give an example of a language in NP-complete language. (We’ll talk about this on Monday.)

v. Give an example of a language in  RE not contained in  R. How might you prove that it is  RE?
How might you prove that it is not contained in R? 

vi. Give an example of a language that is not in RE. How might you prove it is not contained in RE?

Extra Credit Problem: P ≟ NP (Worth an A+, $1,000,000, and a Stanford Ph.D)
Prove or disprove: P = NP.


