Welcome to CS103!

- **Handouts**
 - Course Information
 - Syllabus

- **Today:**
 - Course Overview
 - Introduction to Set Theory
 - The Limits of Computation
 - *Problem Set 0 will be posted later today*
Are there “laws of physics” in computer science?
Key Questions in CS103

- What problems can you solve with a computer?
 - Computability Theory
- Why are some problems harder to solve than others?
 - Complexity Theory
- How can we be certain in our answers to these questions?
 - Discrete Mathematics
Instructors
Cynthia Lee (cbl@cs.stanford.edu)

TAs
Joshua Kravitz
David Liang
John Melloni
Teresa Noyola
Divya Saini
Magdy Saleh
Ryan Smith
Pranav Sriram
Hugo Valdivia
Course Website

https://cs103.stanford.edu
Prerequisite / Corequisite

CS106B

We have some programming assignments and will be referencing some concepts from CS106B/X throughout the quarter.

There aren't any math prerequisites for this course – high-school algebra should be enough!
Problem Set 0

• Your first assignment, Problem Set 0, goes out today. It's due Friday at 2:30PM.

• There's no actual coding involved. This is just to ensure that you get your coding environment set up and know how to submit your work.
Recommended Reading

1. *How to Read and Do Proofs*, Sixth Edition
 - Author: Daniel Solow
 - Publisher: Wiley

 - Author: Michael Sipser
Grading
Problem Sets

Ten Problem Sets

Problem sets (other than PS0) may be done individually or in pairs.
Grading

- Problem Sets
- Midterms

Midterm I
Monday, Feb 4
7:00PM – 10:00PM

Midterm II
Monday, Feb 25
7:00PM – 10:00PM
Grading

Midterm Score

\(\frac{2}{3} \cdot \text{Higher} + \frac{1}{3} \cdot \text{Lower} \)
Final Exam
Monday, March 18
3:30PM - 6:30PM
Lecture Participation
Optional—otherwise this 5% splits between midterm and final.
CS103A

- **CS103A** is an optional, one-unit add-on course to CS103.
- It provides extra review and practice with the material from CS103 and covers general problem-solving techniques useful in discrete math.
- Similar in spirit to Math 51A, Physics 41A, or Chem 31AC.
- Class meets Tuesdays 3-5pm, location TBA (watch for announcement on course website).
- Tomorrow’s class only: Gates 104 3:00-4:30pm.
We've got a big journey ahead of us.

Let's get started!
Introduction to Set Theory
“CS103 students”

“Cool people”

“All the computers on the Stanford network”

“The chemical elements”

“Cute animals”

“US coins”
A set is an unordered collection of distinct objects, which may be anything (including other sets).
A set is an unordered collection of distinct objects, which may be anything (including other sets).
A *set* is an unordered collection of distinct objects, which may be anything (including other sets).
Two sets are equal when they have exactly the same contents, ignoring order.
Two sets are equal when they have exactly the same contents, ignoring order.
Two sets are equal when they have exactly the same contents, ignoring order.

These are the same set!
Sets cannot contain the same object twice. Repeated elements are ignored.
Sets cannot contain the same object twice. Repeated elements are ignored.
Sets cannot contain the same object twice. Repeated elements are ignored.
Sets cannot contain the same object twice.
Repeated elements are ignored.
We use this symbol to denote the empty set.

\[
\emptyset
\]

The \textbf{empty set} contains no elements.

We use this symbol to denote the empty set.
Are these objects equal to one another?
Are these objects equal to one another?
Are these objects equal to one another?

This set contains nothing at all.

This set has one element, which happens to be the empty set.
Are these objects equal to one another?
Membership
Membership
Membership

\{\text{Nickel}, \text{Penny}, \text{Quarter}, \text{Dime}\}

\text{Is } \text{ in this set?}
Membership

∈ { }

Is in this set?
Membership

\[\epsilon \in \{ \text{American coins} \} \]

Is 1 euro in this set?
Membership

Is 1 € in this set?
Set Membership

- Given a set S and an object x, we write $x \in S$ if x is contained in S, and $x \notin S$ otherwise.
- If $x \in S$, we say that x is an *element* of S.
- Given any object x and any set S, either $x \in S$ or $x \notin S$.
Infinite Sets

- Some sets contain *infinitely many* elements!
- The set $\mathbb{N} = \{ 0, 1, 2, 3, \ldots \}$ is the set of all the *natural numbers*.
 - Some mathematicians don't include zero; in this class, assume that 0 is a natural number.
- The set $\mathbb{Z} = \{ \ldots, -2, -1, 0, 1, 2, \ldots \}$ is the set of all the *integers*.
 - \mathbb{Z} is from German “Zahlen.”
- The set \mathbb{R} is the set of all *real numbers*.
 - $e \in \mathbb{R}$, $\pi \in \mathbb{R}$, $4 \in \mathbb{R}$, etc.
Describing Complex Sets

• Here are some English descriptions of infinite sets:
 “The set of all even numbers.”
 “The set of all real numbers less than 137.”
 “The set of all negative integers.”

• To describe complex sets like these mathematically, we'll use set-builder notation.
Even Natural Numbers

\{ n \mid n \in \mathbb{N} \text{ and } n \text{ is even} \}
Even Natural Numbers

\{ n \mid n \in \mathbb{N} \text{ and } n \text{ is even} \}
Even Natural Numbers

\{ n \mid n \in \mathbb{N} \text{ and } n \text{ is even} \}

The set of all n
Even Natural Numbers

\{ n \mid n \in \mathbb{N} \text{ and } n \text{ is even} \}
Even Natural Numbers

\[\{ n \mid n \in \mathbb{N} \text{ and } n \text{ is even} \} \]

The set of all \(n \) where

\(n \) is a natural number
Even Natural Numbers

\{ n \mid n \in \mathbb{N} \text{ and } n \text{ is even} \}

The set of all \(n \)

where

\(n \) is a natural number

and \(n \) is even
Even Natural Numbers

\[\{ n \mid n \in \mathbb{N} \text{ and } n \text{ is even} \} \]

The set of all \(n \) where \(n \) is a natural number and \(n \) is even

\[\{ 0, 2, 4, 6, 8, 10, 12, 14, 16, \ldots \} \]
Set Builder Notation

- A set may be specified in **set-builder notation**:
 \[
 \{ x \mid \text{some property } x \text{ satisfies} \}
 \]

- For example:
 \[
 \{ r \mid r \in \mathbb{R} \text{ and } r < 137 \}
 \]
 \[
 \{ n \mid n \text{ is an even natural number} \}
 \]
 \[
 \{ S \mid S \text{ is a set of US currency} \}
 \]
 \[
 \{ a \mid a \text{ is cute animal} \}
 \]
 \[
 \{ r \in \mathbb{R} \mid r < 137 \}
 \]
 \[
 \{ n \in \mathbb{N} \mid n \text{ is odd} \}
 \]
Combining Sets
Venn Diagrams

\[A = \{ 1, 2, 3 \} \]
\[B = \{ 3, 4, 5 \} \]
Venn Diagrams

\[A = \{ 1, 2, 3 \} \]
\[B = \{ 3, 4, 5 \} \]
Venn Diagrams

\[A = \{ 1, 2, 3 \} \]
\[B = \{ 3, 4, 5 \} \]
Venn Diagrams

$A = \{1, 2, 3\}$

$B = \{3, 4, 5\}$
Venn Diagrams

A = \{ 1, 2, 3 \}
B = \{ 3, 4, 5 \}
Venn Diagrams

\[A = \{ 1, 2, 3 \} \]
\[B = \{ 3, 4, 5 \} \]
Venn Diagrams

$A = \{ 1, 2, 3 \}$
$B = \{ 3, 4, 5 \}$

Union
$A \cup B = \{ 1, 2, 3, 4, 5 \}$
Venn Diagrams

\[A = \{ 1, 2, 3 \} \]
\[B = \{ 3, 4, 5 \} \]
Venn Diagrams

\[A = \{1, 2, 3\} \]
\[B = \{3, 4, 5\} \]

Intersection
\[A \cap B \]
\[\{3\} \]
Venn Diagrams

$A = \{ 1, 2, 3 \}$
$B = \{ 3, 4, 5 \}$
Venn Diagrams

$A = \{ 1, 2, 3 \}$
$B = \{ 3, 4, 5 \}$

Difference
$A - B = \{ 1, 2 \}$
Venn Diagrams

$A = \{ 1, 2, 3 \}$
$B = \{ 3, 4, 5 \}$

Difference $A \setminus B = \{ 1, 2 \}$
Venn Diagrams

$A = \{ 1, 2, 3 \}$
$B = \{ 3, 4, 5 \}$
Venn Diagrams

\[A = \{1, 2, 3\} \]
\[B = \{3, 4, 5\} \]

Symmetric Difference
\[A \Delta B = \{1, 2, 4, 5\} \]
Venn Diagrams for Three Sets

Bank Robbers

Everybody on the floor

Put your hands up

Give me your money

Are you with me

Preachers

DJs
Venn Diagrams for Three Sets
Subsets and Power Sets
Subsets

- A set S is called a **subset** of a set T (denoted $S \subseteq T$) if all elements of S are also elements of T.

- Examples:
 - $\{ 1, 2, 3 \} \subseteq \{ 1, 2, 3, 4 \}$
 - $\{ b, c \} \subseteq \{ a, b, c, d \}$
 - $\{ H, He, Li \} \subseteq \{ H, He, Li \}$
 - $\mathbb{N} \subseteq \mathbb{Z}$ *(every natural number is an integer)*
 - $\mathbb{Z} \subseteq \mathbb{R}$ *(every integer is a real number)*
Subsets and Elements

Set S
Subsets and Elements

Set $S \in S$
Subsets and Elements

Set S

$\{2\}$

$\star \in S$
Subsets and Elements

Set S

$\{2\}$

$2 \in S$

$2 \in \{2\}$
Subsets and Elements

Set S

$\{2\} \in S$
Subsets and Elements

Set S

\{2\}
Subsets and Elements

Set S

$\{2\}$

$\{\$\, 2\} \subseteq S$
Subsets and Elements

Set S

$\{2\} \subseteq S$

$\{\text{coin}, 2\} \subseteq S$
Subsets and Elements

Set S

$\{2\}$

2

$\{1, 2\} \not\in S$
Subsets and Elements

Set S

$\{2\} \in S$

$\{1, 2\} \notin S$
Subsets and Elements

Set S

$\{2\} \in S$
Subsets and Elements

Set S

$\{2\} \in S$
Subsets and Elements

\[\{2\} \subseteq S \]
Subsets and Elements

Set S

$\{2\}$

$\{2\} \subseteq S$
Subsets and Elements

Set \(S \)

\(\{2\} \)

\(\{2\} \subseteq S \)
Subsets and Elements

Set S

$\{2\}$

$2 \not\in S$
Subsets and Elements

Set S is not a subset of S, since 2 is not a set.
Subsets and Elements

- We say that $S \in T$ if, among the elements of T, one of them is exactly the object S.

- We say that $S \subseteq T$ if S is a set and every element of S is also an element of T. (S has to be a set for the statement $S \subseteq T$ to be meaningful.)

- Although these concepts are similar, they are not the same! Not all elements of a set are subsets of that set and vice-versa.

- We have a resource on the course website, the Guide to Elements and Subsets, that explores this in more depth.
What About the Empty Set?

• A set S is called a **subset** of a set T (denoted $S \subseteq T$) if all elements of S are also elements of T.

• Are there any sets S where $\emptyset \subseteq S$?

• Equivalently, is there a set S where the following statement is true?

 “All elements of \emptyset are also elements of S”

• **Yes!** In fact, this statement is true for every choice of S!
Vacuous Truth

• A statement of the form

 "All objects of type P are also of type Q"

is called *vacuously true* if there are no objects of type P.

• Vacuously true statements are true *by definition*. This is a convention used throughout mathematics.

• Some examples:
 • All unicorns are pink.
 • All unicorns are blue.
 • Every element of \emptyset is also an element of S.
Vacuous Truth

Can’t find an element of the set for which the statement fails if the set has no elements.
Subsets and Elements

Set S

$\{2\}$

$\emptyset \subseteq S$
Subsets and Elements

Set S

$\emptyset \subseteq S$

$\{2\}$

2

\star

2002 Penny

Smiley Face

$\emptyset \subseteq S$
Subsets and Elements

Set S

$\{2\}$

$\emptyset \notin S$
Subsets and Elements

Set S

$\{2\}$

$\emptyset \notin S$
The notation $\mathcal{P}(S)$ denotes the power set of S (the set of all subsets of S).

Formally, $\mathcal{P}(S) = \{ T \mid T \subseteq S \}$
What is $\emptyset(\emptyset)$?

Answer: $\{\emptyset\}$

Remember that $\emptyset \neq \{\emptyset\}$!
Cardinality
Cardinality
Cardinality

- The **cardinality** of a set is the number of elements it contains.
- If S is a set, we denote its cardinality by writing $|S|$.
- Examples:
 - $|\{a, b, c, d, e\}| = 5$
 - $|\{\{a, b\}, \{c, d, e, f, g\}, \{h\}\}| = 3$
 - $|\{1, 2, 3, 3, 3, 3, 3\}| = 3$
 - $|\{n \in \mathbb{N} \mid n < 137\}| = 137$
The Cardinality of \mathbb{N}

- What is $|\mathbb{N}|$?
 - There are infinitely many natural numbers.
 - $|\mathbb{N}|$ can't be a natural number, since it's infinitely large.

Definition: $|\mathbb{N}| = \aleph_0$

Pronounced "Aleph-Zero" or "Aleph-Null"
The Cardinality of \(\mathbb{N} \)

• **What is \(|\mathbb{N}| \)?**
 • There are infinitely many natural numbers.
 • \(|\mathbb{N}| \) can't be a natural number, since it's infinitely large.

• **We need to introduce a new term.**

• **Let's define \(\aleph_0 = |\mathbb{N}| \).**
 • \(\aleph_0 \) is pronounced “aleph-zero,” “aleph-nought,” or “aleph-null.”
Consider the set

\[S = \{ \ n \mid n \in \mathbb{N} \text{ and } n \text{ is even} \} \]

What is \(|S|\)?
How Big Are These Sets?
How Big Are These Sets?
Comparing Cardinalities

• *By definition*, two sets have the same size if there is a way to pair their elements off without leaving any elements uncovered.
Comparing Cardinalities

• *By definition*, two sets have the same size if there is a way to pair their elements off without leaving any elements uncovered.

• The intuition:

\[
\begin{align*}
\{X, X, X, X, X, X\} \\
\downarrow \quad \downarrow \\
\{X, X, X\}
\end{align*}
\]

Everything has been paired up, and this one is all alone.
Infinite Cardinalities

\[
\mathbb{N} \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad \ldots
\]

\[
S \quad 0 \quad 2 \quad 4 \quad 6 \quad 8 \quad \ldots
\]

\[
S = \{ \ n \mid n \in \mathbb{N} \text{ and } n \text{ is even} \}
\]

Two sets have the same size if there is a way to pair their elements off without leaving any elements uncovered.
Infinite Cardinalities

\[S = \{ n \mid n \in \mathbb{N} \text{ and } n \text{ is even} \} \]

Two sets have the same size if there is a way to pair their elements off without leaving any elements uncovered.
Infinite Cardinalities

\[S = \{ n \mid n \in \mathbb{N} \text{ and } n \text{ is even} \} \]
Infinite Cardinalities

\[S = \{ n \mid n \in \mathbb{N} \text{ and } n \text{ is even} \} \]

\[|S| = |\mathbb{N}| = \aleph_0 \]
Infinite Cardinalities

\[
\mathbb{N} \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad \ldots
\]

\[
\mathbb{Z} \quad \ldots \quad -3 \quad -2 \quad -1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad \ldots
\]
Infinite Cardinalities

\[\mathbb{N} \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad \ldots \]

\[\mathbb{Z} \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad \ldots \]

\[\ldots \quad -3 \quad -2 \quad -1 \]
Infinite Cardinalities

\[\mathbb{N} \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad \ldots \]

\[\mathbb{Z} \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad \ldots \]

... -3 -2 -1
Infinite Cardinalities

Two sets have the same size if there is a way to pair their elements off without leaving any elements uncovered.
Infinite Cardinalities

\[\mathbb{N} \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad \ldots\]

\[\mathbb{Z} \quad \ldots \quad -3 \quad -2 \quad -1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad \ldots\]
Infinite Cardinalities

\(\mathbb{N} \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad ... \)

\(\mathbb{Z} \quad ... \quad -3 \quad -2 \quad -1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad ... \)
Infinite Cardinalities

\[\mathbb{N} \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad \ldots \]

\[\mathbb{Z} \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad \ldots \]

\[\ldots \quad -3 \quad -2 \quad -1 \]
Infinite Cardinalities

\[\mathbb{N} \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad \ldots \]

\[\mathbb{Z} \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad \ldots \]

\[\ldots \quad -3 \quad -2 \quad -1 \]
Pair nonnegative integers with even natural numbers.
Pair nonnegative integers with even natural numbers.
Pair nonnegative integers with even natural numbers.
Infinite Cardinalities

\[\mathbb{N} \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad \ldots \]

\[\mathbb{Z} \quad 0 \quad -1 \quad 1 \quad -2 \quad 2 \quad -3 \quad 3 \quad -4 \quad 4 \quad \ldots \]

Pair nonnegative integers with even natural numbers.
Pair negative integers with odd natural numbers.
Infinite Cardinalities

\[|\mathbb{N}| = |\mathbb{Z}| = \aleph_0 \]

Pair nonnegative integers with even natural numbers. Pair negative integers with odd natural numbers.
Important Question:

Do all infinite sets have the same cardinality?
\[S = \{ \} \]

\[\mathcal{P}(S) = \{ \emptyset, \{ \} \} \]

\[|S| < |\mathcal{P}(S)| \]
\[S = \{ \varnothing, \{ \varnothing \}, \{ \{ \varnothing \} \}, \{ \{ \varnothing \}, \{ \varnothing \} \} \} \]

\[\mathcal{P}(S) = \{ \varnothing, \{ \varnothing \}, \{ \{ \varnothing \} \}, \{ \{ \varnothing \}, \{ \varnothing \} \}, \{ \{ \{ \varnothing \} \}, \{ \varnothing \} \}, \{ \{ \{ \varnothing \}, \{ \varnothing \} \}, \{ \varnothing \} \}, \{ \{ \{ \varnothing \}, \{ \varnothing \}, \{ \varnothing \} \}, \{ \varnothing \} \} \} \}

| S | < | \mathcal{P}(S) |
\[S = \{a, b, c, d\} \]

\[\wp(S) = \{ \emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, \{a, b, c, d\} \} \]

\[|S| < |\wp(S)| \]
If $|S|$ is infinite, what is the relation between $|S|$ and $|\mathcal{P}(S)|$?

Does $|S| = |\mathcal{P}(S)|$?
If $|S| = |\wp(S)|$, we can pair up the elements of S and the elements of $\wp(S)$ without leaving anything out.
If $|S| = |\wp(S)|$, we can pair up the elements of S and the elements of $\wp(S)$ without leaving anything out.
If $|S| = |\wp(S)|$, we can pair up the elements of S and the subsets of S without leaving anything out.
If $|S| = |\mathcal{P}(S)|$, we can pair up the elements of S and the subsets of S without leaving anything out.
If $|S| = |\mathcal{P}(S)|$, we can pair up the elements of S and the subsets of S without leaving anything out.

What would that look like?
\(\chi_0 \)

\(\chi_1 \)

\(\chi_2 \)

\(\chi_3 \)

\(\chi_4 \)

\(\chi_5 \)

\[\cdots \]
\[x_0 \rightarrow \{ x_0, x_2, x_4, \ldots \} \]

\[x_1 \rightarrow \{ x_0, x_3, x_4, \ldots \} \]

\[x_2 \rightarrow \{ x_4, \ldots \} \]

\[x_3 \rightarrow \{ x_1, x_4, \ldots \} \]

\[x_4 \rightarrow \{ x_0, x_5, \ldots \} \]

\[x_5 \rightarrow \{ x_0, x_1, x_2, x_3, x_4, x_5, \ldots \} \]

\[\ldots \]
\[x_0 \rightarrow \{ x_0, x_2, x_4, \ldots \} \]
\[x_1 \rightarrow \{ x_0, x_3, x_4, \ldots \} \]
\[x_2 \rightarrow \{ x_4, \ldots \} \]
\[x_3 \rightarrow \{ x_1, x_4, \ldots \} \]
\[x_4 \rightarrow \{ x_0, x_5, \ldots \} \]
\[x_5 \rightarrow \{ x_0, x_1, x_2, x_3, x_4, x_5, \ldots \} \]
\[\ldots \]
<table>
<thead>
<tr>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
</tbody>
</table>

- $x_0 \xrightarrow{\text{Y}} \{ x_0, x_3, x_4, \ldots \}$
- $x_1 \xrightarrow{\text{N}} \{ x_4, \ldots \}$
- $x_2 \xrightarrow{\text{Y}} \{ x_4, \ldots \}$
- $x_3 \xrightarrow{\text{N}} \{ x_1, x_4, \ldots \}$
- $x_4 \xrightarrow{\text{Y}} \{ x_0, x_5, \ldots \}$
- $x_5 \xrightarrow{\text{N}} \{ x_0, x_1, x_2, x_3, x_4, x_5, \ldots \}$

...
<table>
<thead>
<tr>
<th></th>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_0</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_1</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_2</td>
<td>{ x_4, ... }</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_3</td>
<td>{ x_1, x_4, ... }</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_4</td>
<td>{ x_0, x_5, ... }</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_5</td>
<td>{ x_0, x_1, x_2, x_3, x_4, x_5, ... }</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...
<table>
<thead>
<tr>
<th></th>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_0</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_1</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x_4, ...</td>
</tr>
<tr>
<td>x_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x_1, x_4, ...</td>
</tr>
<tr>
<td>x_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x_0, x_5, ...</td>
</tr>
<tr>
<td>x_5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x_0, x_1, x_2, x_3, x_4, x_5, ...</td>
</tr>
</tbody>
</table>

...
<table>
<thead>
<tr>
<th>(x_0)</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>(x_5)</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
</tbody>
</table>

\(x_3 \) \rightarrow \{ x_1, x_4, ... \}

\(x_4 \) \rightarrow \{ x_0, x_5, ... \}

\(x_5 \) \rightarrow \{ x_0, x_1, x_2, x_3, x_4, x_5, ... \}

...
<table>
<thead>
<tr>
<th>(x_0)</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>(x_5)</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_0)</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>(x_1)</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>(x_2)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>(x_3)</td>
<td>{</td>
<td>(x_1), (x_4), ... }</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x_4)</td>
<td>{ (x_0), (x_5), ... }</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x_5)</td>
<td>{ (x_0), (x_1), (x_2), (x_3), (x_4), (x_5), ... }</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...
\[
\begin{array}{ccccccc}
\hline
 & x_0 & x_1 & x_2 & x_3 & x_4 & x_5 & \ldots \\
\hline
x_0 & Y & N & Y & N & Y & N & \ldots \\
x_1 & Y & N & N & Y & Y & N & \ldots \\
x_2 & N & N & N & N & N & Y & N & \ldots \\
x_3 & N & Y & N & N & N & Y & N & \ldots \\
x_4 & \{ x_0, x_5, \ldots \} & & & & & & \\
x_5 & \{ x_0, x_1, x_2, x_3, x_4, x_5, \ldots \} & & & & & & \\
\hline
\end{array}
\]
<table>
<thead>
<tr>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_0</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>x_1</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>x_2</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>x_3</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>x_4</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
</tbody>
</table>

$x_5 \leftrightarrow \{ x_0, x_1, x_2, x_3, x_4, x_5, \ldots \}$

...
<table>
<thead>
<tr>
<th></th>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_0</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_1</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_2</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>x_3</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>x_4</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>x_5</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...
<table>
<thead>
<tr>
<th></th>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_0</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_1</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_2</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_3</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_4</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>...</td>
</tr>
<tr>
<td>x_5</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>x_0</td>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>x_4</td>
<td>x_5</td>
<td>\ldots</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>x_0</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>x_1</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>x_2</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>x_3</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>x_4</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>x_5</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x_0</td>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>x_4</td>
<td>x_5</td>
<td>...</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>x_0</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_1</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_2</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_3</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_4</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>...</td>
</tr>
<tr>
<td>x_5</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>x_0</td>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>x_4</td>
<td>x_5</td>
<td>...</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>x_0</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_1</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_2</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>x_3</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>x_4</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>x_5</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

...

\{ x_0, x_5, ... \}
<table>
<thead>
<tr>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_0</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>x_1</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>x_2</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>x_3</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>x_4</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>x_5</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Which row in the table is paired with this set?

```
Y
N
N
N
N
N
Y
...```
Which row in the table is paired with this set?
| $x_0$ | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | ...
|------|------|------|------|------|------|------
| $x_0$ | Y | N | Y | N | Y | N | ...
| $x_1$ | Y | N | N | Y | Y | N | ...
| $x_2$ | N | N | N | N | Y | N | ...
| $x_3$ | N | Y | N | N | Y | N | ...
| $x_4$ | Y | N | N | N | N | Y | ...
| $x_5$ | Y | Y | Y | Y | Y | Y | ...
<p>| ... | ... | ... | ... | ... | ... | ... | ... |</p>
<table>
<thead>
<tr>
<th>$x_0$</th>
<th>$x_1$</th>
<th>$x_2$</th>
<th>$x_3$</th>
<th>$x_4$</th>
<th>$x_5$</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_0$</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>$x_1$</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>$x_2$</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>$x_3$</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>$x_4$</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>$x_5$</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Flip all Y's to N's and vice-versa to get a new set.
<table>
<thead>
<tr>
<th>$x_0$</th>
<th>$x_1$</th>
<th>$x_2$</th>
<th>$x_3$</th>
<th>$x_4$</th>
<th>$x_5$</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_0$</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>$x_1$</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>$x_2$</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>$x_3$</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>$x_4$</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>$x_5$</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Flip all Y's to N's and vice-versa to get a new set.

{ $x_1, x_2, x_3, x_4, ...$ }
Which row in the table is paired with this set?
Which row in the table is paired with this set?

<table>
<thead>
<tr>
<th>$x_0$</th>
<th>$x_1$</th>
<th>$x_2$</th>
<th>$x_3$</th>
<th>$x_4$</th>
<th>$x_5$</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_0$</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>$x_1$</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>$x_2$</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>$x_3$</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>$x_4$</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>$x_5$</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>$x_0$</td>
<td>$x_1$</td>
<td>$x_2$</td>
<td>$x_3$</td>
<td>$x_4$</td>
<td>$x_5$</td>
<td>...</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>$x_0$</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>$x_1$</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>$x_2$</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>$x_3$</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>$x_4$</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>$x_5$</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Which row in the table is paired with this set?

N Y Y Y Y Y N ...
Which row in the table is paired with this set?
Which row in the table is paired with this set?
<table>
<thead>
<tr>
<th>$x_0$</th>
<th>$x_1$</th>
<th>$x_2$</th>
<th>$x_3$</th>
<th>$x_4$</th>
<th>$x_5$</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x_1$</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x_2$</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x_3$</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x_4$</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x_5$</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Which row in the table is paired with this set?
Which row in the table is paired with this set?

<table>
<thead>
<tr>
<th></th>
<th>x₀</th>
<th>x₁</th>
<th>x₂</th>
<th>x₃</th>
<th>x₄</th>
<th>x₅</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x₀</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x₁</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>x₂</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x₃</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x₄</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>...</td>
</tr>
<tr>
<td>x₅</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>

Which row in the table is paired with this set?

|   | N  | Y  | Y  | Y  | Y  | Y  | N  | ...|
Which row in the table is paired with this set?

<table>
<thead>
<tr>
<th>$x_0$</th>
<th>$x_1$</th>
<th>$x_2$</th>
<th>$x_3$</th>
<th>$x_4$</th>
<th>$x_5$</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_0$</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>$x_1$</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>$x_2$</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>$x_3$</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>$x_4$</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>$x_5$</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Which row in the table is paired with this set?
Which row in the table is paired with this set?
<table>
<thead>
<tr>
<th>$x_0$</th>
<th>$x_1$</th>
<th>$x_2$</th>
<th>$x_3$</th>
<th>$x_4$</th>
<th>$x_5$</th>
<th>$\ldots$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_0$</td>
<td>$Y$</td>
<td>$N$</td>
<td>$Y$</td>
<td>$N$</td>
<td>$Y$</td>
<td>$N$</td>
</tr>
<tr>
<td>$x_1$</td>
<td>$Y$</td>
<td>$N$</td>
<td>$N$</td>
<td>$Y$</td>
<td>$Y$</td>
<td>$N$</td>
</tr>
<tr>
<td>$x_2$</td>
<td>$N$</td>
<td>$N$</td>
<td>$N$</td>
<td>$N$</td>
<td>$Y$</td>
<td>$N$</td>
</tr>
<tr>
<td>$x_3$</td>
<td>$N$</td>
<td>$Y$</td>
<td>$N$</td>
<td>$N$</td>
<td>$Y$</td>
<td>$N$</td>
</tr>
<tr>
<td>$x_4$</td>
<td>$Y$</td>
<td>$N$</td>
<td>$N$</td>
<td>$N$</td>
<td>$N$</td>
<td>$Y$</td>
</tr>
<tr>
<td>$x_5$</td>
<td>$Y$</td>
<td>$Y$</td>
<td>$Y$</td>
<td>$Y$</td>
<td>$Y$</td>
<td>$Y$</td>
</tr>
<tr>
<td>$\ldots$</td>
<td>$\ldots$</td>
<td>$\ldots$</td>
<td>$\ldots$</td>
<td>$\ldots$</td>
<td>$\ldots$</td>
<td>$\ldots$</td>
</tr>
</tbody>
</table>
|   | $x_0$ | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | ...
|---|------|------|------|------|------|------|---
| $x_0$ | N    | N    | N    | N    | N    | Y    | ...
| $x_1$ | Y    | Y    | Y    | Y    | Y    | Y    | ...
| $x_2$ | N    | Y    | N    | Y    | Y    | N    | ...
| $x_3$ | Y    | N    | Y    | N    | Y    | N    | ...
| $x_4$ | N    | N    | Y    | Y    | N    | Y    | ...
| $x_5$ | Y    | N    | N    | N    | N    | Y    | ...
| ... | ... | ... | ... | ... | ... | ... | ...
<table>
<thead>
<tr>
<th></th>
<th>(x_0)</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>(x_5)</th>
<th>(\ldots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_0)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(x_1)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(x_2)</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(x_3)</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(x_4)</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(x_5)</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>$x_0$</td>
<td>$x_1$</td>
<td>$x_2$</td>
<td>$x_3$</td>
<td>$x_4$</td>
<td>$x_5$</td>
<td>$...$</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>$x_0$</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>$...$</td>
</tr>
<tr>
<td>$x_1$</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>$...$</td>
</tr>
<tr>
<td>$x_2$</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>$...$</td>
</tr>
<tr>
<td>$x_3$</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>$...$</td>
</tr>
<tr>
<td>$x_4$</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>$...$</td>
</tr>
<tr>
<td>$x_5$</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>$...$</td>
</tr>
<tr>
<td>$...$</td>
<td>$...$</td>
<td>$...$</td>
<td>$...$</td>
<td>$...$</td>
<td>$...$</td>
<td>$...$</td>
<td>$...$</td>
</tr>
<tr>
<td></td>
<td>$x_0$</td>
<td>$x_1$</td>
<td>$x_2$</td>
<td>$x_3$</td>
<td>$x_4$</td>
<td>$x_5$</td>
<td>...</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>$x_0$</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>$x_1$</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>$x_2$</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>$x_3$</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>$x_4$</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>$x_5$</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

...
<table>
<thead>
<tr>
<th></th>
<th>$x_0$</th>
<th>$x_1$</th>
<th>$x_2$</th>
<th>$x_3$</th>
<th>$x_4$</th>
<th>$x_5$</th>
<th>$\ldots$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_0$</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>$x_1$</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>$x_2$</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>$x_3$</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>$x_4$</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>$x_5$</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>$\ldots$</td>
<td>$\ldots$</td>
<td>$\ldots$</td>
<td>$\ldots$</td>
<td>$\ldots$</td>
<td>$\ldots$</td>
<td>$\ldots$</td>
<td>$\ldots$</td>
</tr>
</tbody>
</table>

**Bottom Row:**

<p>| Y | N | Y | Y | Y | N | $\ldots$ |</p>
<table>
<thead>
<tr>
<th></th>
<th>$x_0$</th>
<th>$x_1$</th>
<th>$x_2$</th>
<th>$x_3$</th>
<th>$x_4$</th>
<th>$x_5$</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_0$</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>...</td>
</tr>
<tr>
<td>$x_1$</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>$x_2$</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>$x_3$</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>$x_4$</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>...</td>
</tr>
<tr>
<td>$x_5$</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>$x_0$</td>
<td>$x_1$</td>
<td>$x_2$</td>
<td>$x_3$</td>
<td>$x_4$</td>
<td>$x_5$</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>$x_0$</td>
<td><strong>N</strong></td>
<td><strong>N</strong></td>
<td><strong>N</strong></td>
<td><strong>N</strong></td>
<td><strong>N</strong></td>
<td><strong>Y</strong></td>
<td>...</td>
</tr>
<tr>
<td>$x_1$</td>
<td><strong>Y</strong></td>
<td><strong>Y</strong></td>
<td><strong>Y</strong></td>
<td><strong>Y</strong></td>
<td><strong>Y</strong></td>
<td><strong>Y</strong></td>
<td>...</td>
</tr>
<tr>
<td>$x_2$</td>
<td><strong>N</strong></td>
<td><strong>Y</strong></td>
<td><strong>N</strong></td>
<td><strong>Y</strong></td>
<td><strong>Y</strong></td>
<td><strong>N</strong></td>
<td>...</td>
</tr>
<tr>
<td>$x_3$</td>
<td><strong>Y</strong></td>
<td><strong>N</strong></td>
<td><strong>Y</strong></td>
<td><strong>N</strong></td>
<td><strong>Y</strong></td>
<td><strong>N</strong></td>
<td>...</td>
</tr>
<tr>
<td>$x_4$</td>
<td><strong>N</strong></td>
<td><strong>N</strong></td>
<td><strong>Y</strong></td>
<td><strong>Y</strong></td>
<td><strong>N</strong></td>
<td><strong>Y</strong></td>
<td>...</td>
</tr>
<tr>
<td>$x_5$</td>
<td><strong>Y</strong></td>
<td><strong>N</strong></td>
<td><strong>N</strong></td>
<td><strong>N</strong></td>
<td><strong>N</strong></td>
<td><strong>Y</strong></td>
<td>...</td>
</tr>
</tbody>
</table>

...
<table>
<thead>
<tr>
<th></th>
<th>$x_0$</th>
<th>$x_1$</th>
<th>$x_2$</th>
<th>$x_3$</th>
<th>$x_4$</th>
<th>$x_5$</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_0$</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>...</td>
</tr>
<tr>
<td>$x_1$</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>$x_2$</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>$x_3$</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>$x_4$</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>...</td>
</tr>
<tr>
<td>$x_5$</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>$x_0$</td>
<td>$x_1$</td>
<td>$x_2$</td>
<td>$x_3$</td>
<td>$x_4$</td>
<td>$x_5$</td>
<td>...</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>$x_0$</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>...</td>
</tr>
<tr>
<td>$x_1$</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>...</td>
</tr>
<tr>
<td>$x_2$</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>$x_3$</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>$x_4$</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>...</td>
</tr>
<tr>
<td>$x_5$</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(x_0)</td>
<td>(x_1)</td>
<td>(x_2)</td>
<td>(x_3)</td>
<td>(x_4)</td>
<td>(x_5)</td>
<td>...</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>(x_0)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>...</td>
</tr>
<tr>
<td>(x_1)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>(x_2)</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>(x_3)</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>(x_4)</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>...</td>
</tr>
<tr>
<td>(x_5)</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

\[ \text{...} \]
<table>
<thead>
<tr>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_0</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>x_1</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>x_2</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>x_3</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>x_4</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>x_5</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

... ... ... ... ... ... ... ...

Y N Y Y Y Y N ...
The Diagonalization Proof

- No matter how we pair up elements of $S$ and subsets of $S$, the complemented diagonal won't appear in the table.
  - In row $n$, the $n$th element must be wrong.
- No matter how we pair up elements of $S$ and subsets of $S$, there is *always* at least one subset left over.
- This result is *Cantor's theorem*: Every set is strictly smaller than its power set:
  \[
  \text{If } S \text{ is a set, then } |S| < |\mathcal{P}(S)|. 
  \]
Infinite Cardinalities

- By Cantor's Theorem:

  \[ |\mathbb{N}| < |\mathcal{P}(\mathbb{N})| \]
  \[ |\mathcal{P}(\mathbb{N})| < |\mathcal{P}(\mathcal{P}(\mathbb{N}))| \]
  \[ |\mathcal{P}(\mathcal{P}(\mathbb{N}))| < |\mathcal{P}(\mathcal{P}(\mathcal{P}(\mathbb{N})))| \]
  \[ |\mathcal{P}(\mathcal{P}(\mathcal{P}(\mathbb{N})))| < |\mathcal{P}(\mathcal{P}(\mathcal{P}(\mathcal{P}(\mathbb{N}))))| \]
  ...

- *Not all infinite sets have the same size!*

- *There is no biggest infinity!*

- *There are infinitely many infinities!* 
What does this have to do with computation?
“The set of all computer programs”

“The set of all problems to solve”
Where We're Going

- A *string* is a sequence of characters.
- We're going to prove the following results:
  - There are *at most* as many programs as there are strings.
  - There are *at least* as many problems as there are sets of strings.
- This leads to some *incredible* results – we'll see why in a minute!
Where We're Going

A *string* is a sequence of characters.

We're going to prove the following results:

- There are *at most* as many programs as there are strings.

  There are *at least* as many problems as there are sets of strings.

This leads to some *incredible* results – we'll see why in a minute!
Strings and Programs

- The source code of a computer program is just a (long, structured, well-commented) string of text.
- All programs are strings, but not all strings are necessarily programs.

\[ |\text{Programs}| \leq |\text{Strings}| \]
Where We're Going

• A *string* is a sequence of characters.

• We're going to prove the following results:
  • There are *at most* as many programs as there are strings.
  • There are *at least* as many problems as there are sets of strings.

• This leads to some *incredible* results – we'll see why in a minute!
Where We're Going

- A *string* is a sequence of characters.
- We're going to prove the following results:
  - There are *at most* as many programs as there are strings. ✓
  - There are *at least* as many problems as there are sets of strings.
- This leads to some *incredible* results – we'll see why in a minute!
Where We're Going

A *string* is a sequence of characters.

We're going to prove the following results:

- There are *at most* as many programs as there are strings. ✔
- There are *at least* as many problems as there are sets of strings.

This leads to some *incredible* results – we'll see why in a minute!
Strings and Problems

- There is a connection between the number of sets of strings and the number of problems to solve.
- Let $S$ be any set of strings. This set $S$ gives rise to a problem to solve:

  Given a string $w$, determine whether $w \in S$. 
Strings and Problems

Given a string \( w \), determine whether \( w \in S \).

- Suppose that \( S \) is the set

\[
S = \{ "a", "b", "c", \ldots, "z" \}
\]

- From this set \( S \), we get this problem:

  **Given a string \( w \), determine whether \( w \) is a single lower-case English letter.**
Strings and Problems

Given a string $w$, determine whether $w \in S$.

- Suppose that $S$ is the set
  \[ S = \{ "0", "1", "2", ..., "9", "10", "11", ... \} \]
- From this set $S$, we get this problem:

  Given a string $w$, determine whether $w$ represents a natural number.
Strings and Problems

Given a string $w$, determine whether $w \in S$.

- Suppose that $S$ is the set
  \[ S = \{ p \mid p \text{ is a legal Java program} \} \]
- From this set $S$, we get this problem:
  Given a string $w$, determine whether $w$ is a legal Java program.
Strings and Problems

- Every set of strings gives rise to a unique problem to solve.
- Other problems exist as well.

|Sets of Strings| ≤ |Problems|
Where We're Going

- A string is a sequence of characters.
- We're going to prove the following results:
  - There are at most as many programs as there are strings. ✓
  - There are at least as many problems as there are sets of strings.
- This leads to some incredible results – we'll see why in a minute!
Where We're Going

• A string is a sequence of characters.

• We're going to prove the following results:
  • There are at most as many programs as there are strings. ✓
  • There are at least as many problems as there are sets of strings. ✓

• This leads to some incredible results – we'll see why in a minute!
Where We're Going

A *string* is a sequence of characters.

We're going to prove the following results:

- There are *at most* as many programs as there are strings. ✓
- There are *at least* as many problems as there are sets of strings. ✓

- This leads to some *incredible* results – we'll see why in a minute!
Where We're Going

A *string* is a sequence of characters.

We're going to prove the following results:

- There are *at most* as many programs as there are strings. ✓
  
- There are *at least* as many problems as there are sets of strings. ✓

- **This leads to some incredible results** – *we'll see why in a minute!* **right now!**
Every computer program is a string.

So, the number of programs is at most the number of strings.

From Cantor's Theorem, we know that there are more sets of strings than strings.

There are at least as many problems as there are sets of strings.

|Programs| ≤ |Strings| < |Sets of Strings| ≤ |Problems|
Every computer program is a string.

So, the number of programs is at most the number of strings.

From Cantor's Theorem, we know that there are more sets of strings than strings.

There are at least as many problems as there are sets of strings.

\[|\text{Programs}| < |\text{Problems}|\]
There are more problems to solve than there are programs to solve them.
It Gets Worse

- Using more advanced set theory, we can show that there are *infinitely more* problems than solutions.
- In fact, if you pick a totally random problem, the probability that you can solve it is *zero*.
- **More troubling fact:** We've just shown that *some* problems are impossible to solve with computers, but we don't know *which* problems those are!
We need to develop a more nuanced understanding of computation.
Where We're Going

- **What makes a problem impossible to solve with computers?**
  - Is there a deep reason why certain problems can't be solved with computers, or is it completely arbitrary?
  - How do you know when you're looking at an impossible problem?
  - Are these real-world problems, or are they highly contrived?

- **How do we know that we're right?**
  - How can we back up our pictures with rigorous proofs?
  - How do we build a mathematical framework for studying computation?
Next Time

- **Mathematical Proof**
  - What is a mathematical proof?
  - How can we prove things with certainty?