Mathematical Logic Part One

Question: How do we formalize the definitions and reasoning we use in our proofs?

Where We're Going

- Propositional Logic (Today)
 - Basic logical connectives.
 - Truth tables.
 - Logical equivalences.
- First-Order Logic (Wednesday/Friday)
 - Reasoning about properties of multiple objects.

Propositional Logic

A *proposition* is a statement that is, by itself, either true or false.

Some Sample Propositions

- Puppies are cuter than kittens.
- Kittens are cuter than puppies.
- Usain Bolt can outrun everyone in this room.
- CS103 is useful for cocktail parties.
- This is the last entry on this list.

More Propositions

- They say time's supposed to heal ya.
- But I ain't done much healing.
- I'm in California dreaming about who we used to be.
- I've forgotten how it felt before the world fell at our feet.
- There's such a difference between us.

Things That Aren't Propositions

Things That Aren't Propositions

Things That Aren't Propositions

Propositional Logic

- **Propositional logic** is a mathematical system for reasoning about propositions and how they relate to one another.
- Every statement in propositional logic consists of propositional variables combined via propositional connectives.
 - Each variable represents some proposition, such as "You liked it" or "You should have put a ring on it."
 - Connectives encode how propositions are related, such as "If you liked it, then you should have put a ring on it."

Propositional Variables

- Each proposition will be represented by a propositional variable.
- Propositional variables are usually represented as lower-case letters, such as p, q, r, s, etc.
- Each variable can take one one of two values: true or false.

Propositional Connectives

• Logical NOT: $\neg p$

- Read "not p"
- $\neg p$ is true if and only if p is false.
- Also called *logical negation*.

• Logical AND: p A q

- Read "p and q."
- $p \land q$ is true if both p and q are true.
- Also called *logical conjunction*.

Logical OR: p v q

- Read "p or q."
- *p* v *q* is true if at least one of *p* or *q* are true (inclusive OR)
- Also called *logical disjunction*.

Truth Tables

- A *truth table* is a table showing the truth value of a propositional logic formula as a function of its inputs.
- Useful for several reasons:
 - They give a formal definition of what a connective "means."
 - They give us a way to figure out what a complex propositional formula says.

The Truth Table Tool

Summary of Important Points

- The v connective is an *inclusive* "or." It's true if at least one of the operands is true.
 - Similar to the || operator in C, C++, Java and the or operator in Python.
- If we need an exclusive "or" operator, we can build it out of what we already have.

Mathematical Implication

Implication

- The → connective is used to represent implications.
 - Its technical name is the *material* conditional operator.
- What is its truth table?

Why This Truth Table?

- The truth values of the → are the way they are because they're *defined* that way.
- The intuition:
 - We want $p \rightarrow q$ to mean "if p is true, q is true as well."
 - The only way this doesn't happen is if p is true and q is false.
 - In other words, $p \rightarrow q$ should be true whenever $\neg (p \land \neg q)$ is true.
 - What's the truth table for $\neg (p \land \neg q)$?

Truth Table for Implication

The Biconditional Connective

The Biconditional Connective

- The biconditional connective

 is used to represent a two-directional implication.
- Specifically, $p \leftrightarrow q$ means that p implies q and q implies p.
- What should its truth table look like?

Biconditionals

- The **biconditional** connective $p \leftrightarrow q$ is read "p if and only if q."
- Here's its truth table:

True and False

- There are two more "connectives" to speak of: true and false.
 - The symbol T is a value that is always true.
 - The symbol \bot is value that is always false.
- These are often called connectives, though they don't connect anything.
 - (Or rather, they connect zero things.)

Proof by Contradiction

- Suppose you want to prove *p* is true using a proof by contradiction.
- The setup looks like this:
 - Assume p is false.
 - Derive something that we know is false.
 - Conclude that p is true.
- In propositional logic:

$$(\neg p \rightarrow \bot) \rightarrow p$$

How do we parse this statement?

$$\neg x \rightarrow y \lor z \rightarrow x \lor y \land z$$

Operator precedence for propositional logic:

Λ V

 \rightarrow

- All operators are right-associative.
- We can use parentheses to disambiguate.

How do we parse this statement?

$$\neg x \rightarrow y \lor z \rightarrow x \lor y \land z$$

Operator precedence for propositional logic:

∧ ∨ → ↔

- All operators are right-associative.
- We can use parentheses to disambiguate.

How do we parse this statement?

$$(\neg x) \rightarrow y \lor z \rightarrow x \lor y \land z$$

Operator precedence for propositional logic:

∧ ∨ → ↔

- All operators are right-associative.
- We can use parentheses to disambiguate.

How do we parse this statement?

$$(\neg x) \rightarrow y \lor z \rightarrow x \lor y \land z$$

Operator precedence for propositional logic:

∧ ∨ → ↔

- All operators are right-associative.
- We can use parentheses to disambiguate.

How do we parse this statement?

$$(\neg x) \rightarrow y \lor z \rightarrow x \lor (y \land z)$$

Operator precedence for propositional logic:

 $\begin{matrix} \land \\ \lor \\ \rightarrow \\ \leftrightarrow \end{matrix}$

- All operators are right-associative.
- We can use parentheses to disambiguate.

How do we parse this statement?

$$(\neg x) \rightarrow y \lor z \rightarrow x \lor (y \land z)$$

Operator precedence for propositional logic:

∨→
↔

- All operators are right-associative.
- We can use parentheses to disambiguate.

How do we parse this statement?

$$(\neg x) \to (y \lor z) \to (x \lor (y \land z))$$

Operator precedence for propositional logic:

 $\begin{array}{c} \land \\ \blacktriangledown \\ \rightarrow \\ \leftrightarrow \end{array}$

- All operators are right-associative.
- We can use parentheses to disambiguate.

How do we parse this statement?

$$(\neg x) \to (y \lor z) \to (x \lor (y \land z))$$

Operator precedence for propositional logic:

∧ ∨ → ↔

- All operators are right-associative.
- We can use parentheses to disambiguate.

How do we parse this statement?

$$(\neg x) \to ((y \lor z) \to (x \lor (y \land z)))$$

Operator precedence for propositional logic:

∧ ∨ → ↔

- All operators are right-associative.
- We can use parentheses to disambiguate.

How do we parse this statement?

$$(\neg x) \to ((y \lor z) \to (x \lor (y \land z)))$$

Operator precedence for propositional logic:

۸ ۷

 \rightarrow

 \leftrightarrow

- All operators are right-associative.
- We can use parentheses to disambiguate.

- The main points to remember:
 - ¬ binds to whatever immediately follows it.
 - Λ and V bind more tightly than \rightarrow .
- We will commonly write expressions like $p \land q \rightarrow r$ without adding parentheses.
- For more complex expressions, we'll try to add parentheses.
- Confused? Just ask!

Time-Out for Announcements!

Problem Set One

- The checkpoint problem for PS1 was due at the start of class today.
 - We'll try to have it graded and returned by tomorrow evening.
- The remaining problems from PS1 are due on Friday.
 - Have questions? Stop by office hours, or ask on Piazza, or email the staff list!

Back to CS103!

Recap So Far

- A *propositional variable* is a variable that is either true or false.
- The propositional connectives are
 - Negation: $\neg p$
 - Conjunction: p \(\lambda \) q
 - Disjunction: p v q
 - Implication: $p \rightarrow q$
 - Biconditional: $p \leftrightarrow q$
 - True: T
 - False: ⊥

Translating into Propositional Logic

a: I will be awake this evening.

b: I will see the lunar eclipse this evening.

a: I will be awake this evening.

b: I will see the lunar eclipse this evening.

"I won't see a lunar eclipse if I'm not awake this evening."

a: I will be awake this evening.

b: I will see the lunar eclipse this evening.

"I won't see a lunar eclipse if I'm not awake this evening."

$$\neg a \rightarrow \neg b$$

translates to

$$q \rightarrow p$$

It does *not* translate to

$$p \rightarrow q$$

a: I will be awake this evening.

b: I will see a lunar eclipse.

c: There is a lunar eclipse this evening.

a: I will be awake this evening.

b: I will see a lunar eclipse.

c: There is a lunar eclipse this evening.

"If I will be awake this evening, but there's no lunar eclipse, I won't see a lunar eclipse.

a: I will be awake this evening.

b: I will see a lunar eclipse.

c: There is a lunar eclipse this evening.

"If I will be awake this evening, but there's no lunar eclipse, I won't see a lunar eclipse.

$$a \wedge \neg c \rightarrow \neg b$$

"p, but q"

translates to

 $p \land q$

The Takeaway Point

- When translating into or out of propositional logic, be very careful not to get tripped up by nuances of the English language.
 - In fact, this is one of the reasons we have a symbolic notation in the first place!
- Many prepositional phrases lead to counterintuitive translations; make sure to double-check yourself!

Propositional Equivalences

Quick Question:

What would I have to show you to convince you that the statement $p \land q$ is false?

Quick Question:

What would I have to show you to convince you that the statement $p \lor q$ is false?

De Morgan's Laws

Using truth tables, we concluded that

$$\neg (p \land q)$$

is equivalent to

$$\neg p \lor \neg q$$

We also saw that

$$\neg (p \lor q)$$

is equivalent to

$$\neg p \land \neg q$$

These two equivalences are called *De Morgan's Laws*.

De Morgan's Laws in Code

• **Pro tip:** Don't write this:

```
if (!(p() && q()) {
    /* ... */
}
```

Write this instead:

```
if (!p() || !q()) {
    /* ... */
}
```

• (This even short-circuits correctly!)

Logical Equivalence

- Because $\neg(p \land q)$ and $\neg p \lor \neg q$ have the same truth tables, we say that they're *equivalent* to one another.
- We denote this by writing

$$\neg (p \land q) \equiv \neg p \lor \neg q$$

- The \equiv symbol is not a connective.
 - The statement $\neg(p \land q) \leftrightarrow (\neg p \lor \neg q)$ is a propositional formula. If you plug in different values of p and q, it will evaluate to a truth value. It just happens to evaluate to true every time.
 - The statement $\neg(p \land q) \equiv \neg p \lor \neg q$ means "these two formulas have exactly the same truth table."
- In other words, the notation $\phi \equiv \psi$ means " ϕ and ψ always have the same truth values, regardless of how the variables are assigned."

An Important Equivalence

• Earlier, we talked about the truth table for $p \rightarrow q$. We chose it so that

$$p \rightarrow q \equiv \neg (p \land \neg q)$$

• Later on, this equivalence will be incredibly useful:

$$\neg(p \to q) \equiv p \land \neg q$$

Another Important Equivalence

Here's a useful equivalence. Start with

$$p \to q \equiv \neg (p \land \neg q)$$

• By De Morgan's laws:

$$p \rightarrow q \equiv \neg (p \land \neg q)$$

$$\equiv \neg p \lor \neg \neg q$$

$$\equiv \neg p \lor q$$

• Thus $p \rightarrow q \equiv \neg p \lor q$

Another Important Equivalence

Here's a useful equivalence. Start with

$$p \to q \equiv \neg (p \land \neg q)$$

• By De Morgan's laws:

$$p \rightarrow q \equiv \neg (p \land \neg q)$$

$$\equiv \neg p \lor \neg \neg q$$

$$\equiv \neg p \lor q \text{ is false, then } \neg p \lor q \text{ is true. If } p \text{ is } true, then } q \text{ has to be } true \text{ for the whole } expression \text{ to be true.}$$

One Last Equivalence

The Contrapositive

The contrapositive of the statement

$$p \rightarrow q$$

is the statement

$$\neg q \rightarrow \neg p$$

• These are logically equivalent, which is why proof by contrapositive works:

$$p \rightarrow q \equiv \neg q \rightarrow \neg p$$

 Suppose we want to prove the following statement:

"If x + y = 16, then $x \ge 8$ or $y \ge 8$ "

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$x + y = 16 \rightarrow x \ge 8 \quad \forall y \ge 8$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$x + y = 16 \rightarrow x \ge 8$$
 $\forall y \ge 8$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$\neg(x \ge 8 \ \lor \ y \ge 8) \to \neg(x + y = 16)$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$\neg(x \ge 8 \ \lor \ y \ge 8) \to \neg(x + y = 16)$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$\neg(x \ge 8 \ \lor \ y \ge 8) \to \neg(x + y = 16)$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$\neg(x \ge 8 \ \lor \ y \ge 8) \rightarrow x + y \ne 16$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$\neg(x \ge 8 \ \lor \ y \ge 8) \rightarrow x + y \ne 16$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$\neg(x \ge 8 \lor y \ge 8) \rightarrow x + y \ne 16$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$\neg(x \ge 8) \land \neg(y \ge 8) \rightarrow x + y \ne 16$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$\neg(x \ge 8) \land \neg(y \ge 8) \rightarrow x + y \ne 16$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$\neg (x \ge 8) \land \neg (y \ge 8) \rightarrow x + y \ne 16$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$x < 8 \land \neg (y \ge 8) \to x + y \ne 16$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$x < 8 \land \neg (y \ge 8) \to x + y \ne 16$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$x < 8 \land \neg (y \ge 8) \to x + y \ne 16$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$x < 8 \land y < 8 \rightarrow x + y \neq 16$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$x < 8 \land y < 8 \rightarrow x + y \neq 16$$

 Suppose we want to prove the following statement:

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$x < 8 \land y < 8 \rightarrow x + y \neq 16$$

"If x < 8 and y < 8, then $x + y \ne 16$ "

Theorem: If x + y = 16, then $x \ge 8$ or $y \ge 8$.

Proof: By contrapositive. We will prove that if x < 8 and y < 8, then $x + y \ne 16$. To see this, note that

$$x + y < 8 + y$$

 $< 8 + 8$
 $= 16$

This means that x + y < 16, so $x + y \ne 16$, which is what we needed to show.

 Suppose we want to prove the following statement:

"If x + y = 16, then $x \ge 8$ or $y \ge 8$ "

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$x + y = 16 \rightarrow x \ge 8 \quad \forall y \ge 8$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$\neg(x + y = 16 \to x \ge 8 \ \text{v} \ y \ge 8)$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$\neg(x + y = 16 \rightarrow x \ge 8 \ \lor \ y \ge 8)$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$x + y = 16 \land \neg (x \ge 8 \lor y \ge 8)$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$x + y = 16 \land \neg (x \ge 8 \lor y \ge 8)$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$x + y = 16 \land \neg (x \ge 8 \lor y \ge 8)$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$x + y = 16 \land \neg(x \ge 8) \land \neg(y \ge 8)$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$x + y = 16 \land \neg(x \ge 8) \land \neg(y \ge 8)$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$x + y = 16 \land \neg(x \ge 8) \land \neg(y \ge 8)$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$x + y = 16 \land x < 8 \land \neg (y \ge 8)$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$x + y = 16 \land x < 8 \land \neg (y \ge 8)$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$x + y = 16 \land x < 8 \land \neg (y \ge 8)$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$x + y = 16 \land x < 8 \land y < 8$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$x + y = 16 \land x < 8 \land y < 8$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$x + y = 16 \land x < 8 \land y < 8$$

"
$$x + y = 16$$
, but $x < 8$ and $y < 8$."

Theorem: If x + y = 16, then $x \ge 8$ or $y \ge 8$.

Proof: Assume for the sake of contradiction that x + y = 16, but that x < 8 and y < 8. Then

$$x + y < 8 + y$$

 $< 8 + 8$
 $= 16$

So x + y < 16, contradicting that x + y = 16. We have reached a contradiction, so our assumption must have been wrong. Therefore if x + y = 16, then $x \ge 8$ or $y \ge 8$.

Why This Matters

- Propositional logic is a tool for reasoning about how various statements affect one another.
- To better understand how to prove a result, it often helps to translate what you're trying to prove into propositional logic first.
- That said, propositional logic isn't expressive enough to capture all statements. For that, we need something more powerful.