
  

Mathematical Logic
Part One



  

Question: How do we formalize the 
definitions and reasoning we use in our 

proofs?



  

Where We're Going

● Propositional Logic (Today)
● Basic logical connectives.
● Truth tables.
● Logical equivalences.

● First-Order Logic (Wednesday/Friday)
● Reasoning about properties of multiple 

objects.



  

Propositional Logic



  

A proposition is a statement that is,
by itself, either true or false.



  

Some Sample Propositions

● Puppies are cuter than kittens.
● Kittens are cuter than puppies.
● Usain Bolt can outrun everyone in this 

room.
● CS103 is useful for cocktail parties.
● This is the last entry on this list.



  

More Propositions

● They say time's supposed to heal ya.
● But I ain't done much healing.
● I'm in California dreaming about who we 

used to be.
● I've forgotten how it felt before the world 

fell at our feet.
● There's such a difference between us.



  

Things That Aren't Propositions

Commands 
cannot be true 

or false.

Commands 
cannot be true 

or false.



  

Things That Aren't Propositions

Questions 
cannot be true 

or false.

Questions 
cannot be true 

or false.



  

Things That Aren't Propositions

I am the walrus,
goo goo g'joob

The first half is 
a valid 

proposition.

The first half is 
a valid 

proposition.

Jibberish cannot 
be true or 

false.

Jibberish cannot 
be true or 

false.



  

Propositional Logic

● Propositional logic is a mathematical system 
for reasoning about propositions and how they 
relate to one another.

● Every statement in propositional logic consists 
of propositional variables combined via 
propositional connectives.
● Each variable represents some proposition, such as 

“You liked it” or “You should have put a ring on it.”
● Connectives encode how propositions are related, 

such as “If you liked it, then you should have put a 
ring on it.”



  

Propositional Variables

● Each proposition will be represented by a 
propositional variable.

● Propositional variables are usually 
represented as lower-case letters, such 
as p, q, r, s, etc.

● Each variable can take one one of two 
values: true or false.



  

Propositional Connectives

● Logical NOT: ¬p
● Read “not p”
● ¬p is true if and only if p is false.
● Also called logical negation.

● Logical AND: p ∧ q
● Read “p and q.”
● p ∧ q is true if both p and q are true.
● Also called logical conjunction.

● Logical OR: p ∨ q
● Read “p or q.”
● p ∨ q is true if at least one of p or q are true (inclusive OR)
● Also called logical disjunction.



  

Truth Tables

● A truth table is a table showing the 
truth value of a propositional logic 
formula as a function of its inputs.

● Useful for several reasons:
● They give a formal definition of what a 

connective “means.”
● They give us a way to figure out what a 

complex propositional formula says.



  

The Truth Table Tool



  

Summary of Important Points

● The ∨ connective is an inclusive “or.” It's 
true if at least one of the operands is 
true.
● Similar to the || operator in C, C++, Java and 

the or operator in Python.
● If we need an exclusive “or” operator, we 

can build it out of what we already have.



  

Mathematical Implication



  

Implication

● The → connective is used to represent 
implications.
● Its technical name is the material 

conditional operator.
● What is its truth table?



  

Why This Truth Table?

● The truth values of the → are the way they are 
because they're defined that way.

● The intuition:
● We want p → q to mean “if p is true, q is true as well.”
● The only way this doesn't happen is if p is true and q is 

false.
● In other words, p → q should be true whenever

¬(p ∧ ¬q) is true.
● What's the truth table for ¬(p ∧ ¬q)?



  

T
F
T
T

Truth Table for Implication

p q p → q
F
F
T
T

F

F
T

T

The only way for 
p   q to be false is →

for p to be true and 
q to be false. 

Otherwise, p  → q is by 
definition true.

The only way for 
p   q to be false is →

for p to be true and 
q to be false. 

Otherwise, p  → q is by 
definition true.



  

The Biconditional Connective



  

The Biconditional Connective

● The biconditional connective ↔ is used to 
represent a two-directional implication.

● Specifically, p ↔ q means that p implies q 
and q implies p.

● What should its truth table look like?



  

Biconditionals

● The biconditional connective p ↔ q is 
read “p if and only if q.”

● Here's its truth table:

T
F
F
T

p q p ↔ q
F
F
T
T

F

F
T

T

One interpretation of  ↔

is to think of it as 
equality: the two 

propositions must have 
equal truth values.

One interpretation of  ↔

is to think of it as 
equality: the two 

propositions must have 
equal truth values.



  

True and False

● There are two more “connectives” to 
speak of: true and false.
● The symbol ⊤ is a value that is always true.
● The symbol ⊥ is value that is always false.

● These are often called connectives, 
though they don't connect anything.
● (Or rather, they connect zero things.)



  

Proof by Contradiction

● Suppose you want to prove p is true using 
a proof by contradiction.

● The setup looks like this:
● Assume p is false.
● Derive something that we know is false.
● Conclude that p is true.

● In propositional logic:

(¬p → ⊥) → p  



  

Operator Precedence

● How do we parse this statement?

¬x → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   
● All operators are right-associative.
● We can use parentheses to disambiguate.
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Operator Precedence

● How do we parse this statement?
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Operator Precedence

● How do we parse this statement?

(¬x) → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   
● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence

● How do we parse this statement?

(¬x) → y ∨ z → x ∨ (y ∧ z)
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   
● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence

● How do we parse this statement?

(¬x) → y ∨ z → x ∨ (y ∧ z)
● Operator precedence for propositional logic:
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↔   
● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence

● How do we parse this statement?

(¬x) → (y ∨ z) → (x ∨ (y ∧ z))
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   
● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence

● How do we parse this statement?

(¬x) → (y ∨ z) → (x ∨ (y ∧ z))
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   
● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence

● How do we parse this statement?

(¬x) → ((y ∨ z) → (x ∨ (y ∧ z)))
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   
● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence

● How do we parse this statement?

(¬x) → ((y ∨ z) → (x ∨ (y ∧ z)))
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   
● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence

● The main points to remember:
● ¬ binds to whatever immediately follows it.
● ∧ and ∨ bind more tightly than →.

● We will commonly write expressions like 
p ∧ q → r without adding parentheses.

● For more complex expressions, we'll try to 
add parentheses.

● Confused? Just ask!



  

Time-Out for Announcements!



  

Problem Set One

● The checkpoint problem for PS1 was due 
at the start of class today.
● We'll try to have it graded and returned by 

tomorrow evening.
● The remaining problems from PS1 are 

due on Friday.
● Have questions? Stop by office hours, or ask 

on Piazza, or email the staff list!



  

Back to CS103!



  

Recap So Far

● A propositional variable is a variable that is 
either true or false.

● The propositional connectives are
● Negation: ¬p
● Conjunction: p ∧ q
● Disjunction: p ∨ q
● Implication: p → q
● Biconditional: p ↔ q
● True: ⊤
● False: ⊥



  

Translating into Propositional Logic



  

Some Sample Propositions

a: I will be awake this evening.

b: I will see the lunar eclipse this evening.



  

Some Sample Propositions

“I won't see a lunar eclipse 
if I'm not awake this 

evening.”

“I won't see a lunar eclipse 
if I'm not awake this 

evening.”

a: I will be awake this evening.

b: I will see the lunar eclipse this evening.



  

Some Sample Propositions

“I won't see a lunar eclipse 
if I'm not awake this 

evening.”

“I won't see a lunar eclipse 
if I'm not awake this 

evening.”

¬a → ¬b

a: I will be awake this evening.

b: I will see the lunar eclipse this evening.



  

“p if q”

translates to

q → p

It does not translate to

p → q



  

Some Sample Propositions

a: I will be awake this evening.

b: I will see a lunar eclipse.

c: There is a lunar eclipse this evening.



  

Some Sample Propositions

a: I will be awake this evening.

b: I will see a lunar eclipse.

c: There is a lunar eclipse this evening.

“If I will be awake this 
evening, but there's no 

lunar eclipse, I won't see a 
lunar eclipse.

“If I will be awake this 
evening, but there's no 

lunar eclipse, I won't see a 
lunar eclipse.



  

Some Sample Propositions

a: I will be awake this evening.

b: I will see a lunar eclipse.

c: There is a lunar eclipse this evening.

“If I will be awake this 
evening, but there's no 

lunar eclipse, I won't see a 
lunar eclipse.

“If I will be awake this 
evening, but there's no 

lunar eclipse, I won't see a 
lunar eclipse.

a ∧ ¬c → ¬b



  

“p, but q”

translates to

p ∧ q



  

The Takeaway Point

● When translating into or out of 
propositional logic, be very careful not to 
get tripped up by nuances of the English 
language.
● In fact, this is one of the reasons we have a 

symbolic notation in the first place!
● Many prepositional phrases lead to 

counterintuitive translations; make sure 
to double-check yourself!



  

Propositional Equivalences



  

Quick Question:

What would I have to show you to convince 
you that the statement p ∧ q is false?



  

Quick Question:

What would I have to show you to convince 
you that the statement p ∨ q is false?



  

De Morgan's Laws

● Using truth tables, we concluded that

¬(p ∧ q)

is equivalent to

¬p ∨ ¬q  
● We also saw that

¬(p ∨ q)

is equivalent to

¬p ∧ ¬q  
● These two equivalences are called De Morgan's 

Laws.



  

De Morgan's Laws in Code

● Pro tip: Don't write this:

            if (!(p() && q()) {

                /* … */

            }

● Write this instead:

            if (!p() || !q()) {

                /* … */

            }

● (This even short-circuits correctly!)



  

Logical Equivalence

● Because ¬(p ∧ q) and ¬p ∨ ¬q have the same truth 
tables, we say that they're equivalent to one another.

● We denote this by writing

 ¬(p ∧ q)  ≡  ¬p ∨ ¬q  
● The ≡ symbol is not a connective.

● The statement ¬(p ∧ q) ↔ (¬p ∨ ¬q) is a propositional formula. 
If you plug in different values of p and q, it will evaluate to a 
truth value. It just happens to evaluate to true every time.

● The statement ¬(p ∧ q)  ≡  ¬p ∨ ¬q means “these two formulas 
have exactly the same truth table.”

● In other words, the notation φ ≡ ψ means “φ and ψ 
always have the same truth values, regardless of how the 
variables are assigned.”



  

An Important Equivalence

● Earlier, we talked about the truth table 
for p → q. We chose it so that

    p → q    ≡    ¬(p ∧ ¬q)
● Later on, this equivalence will be 

incredibly useful:

¬(p → q)    ≡    p ∧ ¬q      



  

Another Important Equivalence

● Here's a useful equivalence. Start with

     p → q ≡ ¬(p ∧ ¬q)
● By De Morgan's laws:

     p → q ≡ ¬(p ∧ ¬q)

      p → q≡ ¬p ∨ ¬¬q

      p → q≡ ¬p ∨ q
● Thus p → q ≡ ¬p ∨ q



  

Another Important Equivalence

● Here's a useful equivalence. Start with

     p → q ≡ ¬(p ∧ ¬q)
● By De Morgan's laws:

     p → q ≡ ¬(p ∧ ¬q)

      p → q≡ ¬p ∨ ¬¬q

      p → q≡ ¬p ∨ q
● Thus p → q ≡ ¬p ∨ q

If p is false, then 
¬p   q∨  is true. If p is 
true, then q has to be 
true for the whole 

expression to be true.

If p is false, then 
¬p   q∨  is true. If p is 
true, then q has to be 
true for the whole 

expression to be true.



  

One Last Equivalence



  

The Contrapositive

● The contrapositive of the statement

p → q 

is the statement

¬q → ¬p 
● These are logically equivalent, which is 

why proof by contrapositive works:

p → q    ≡    ¬q → ¬p 



  

Why All This Matters



  

Why All This Matters

● Suppose we want to prove the following 
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”   
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Why All This Matters

● Suppose we want to prove the following 
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”   

¬(x ≥ 8) ∧ ¬(y ≥ 8) → x + y ≠ 16



  

Why All This Matters

● Suppose we want to prove the following 
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”   

¬(x ≥ 8) ∧ ¬(y ≥ 8) → x + y ≠ 16



  

Why All This Matters

● Suppose we want to prove the following 
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”   

¬(x ≥ 8) ∧ ¬(y ≥ 8) → x + y ≠ 16



  

Why All This Matters

● Suppose we want to prove the following 
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”   

x < 8 ∧ ¬(y ≥ 8) → x + y ≠ 16
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Why All This Matters

● Suppose we want to prove the following 
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”   

x < 8 ∧ y < 8 → x + y ≠ 16

“If x < 8 and y < 8, then x + y ≠ 16”



  

Theorem: If x + y = 16, then x ≥ 8 or y ≥ 8.

Proof: By contrapositive. We will prove that if x < 8 and
y < 8, then x + y ≠ 16. To see this, note that

 

x + y < 8 + y
         < 8 + 8 
         = 16

 

This means that x + y < 16, so x + y ≠ 16, which is
what we needed to show. ■



  

Why All This Matters

● Suppose we want to prove the following 
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”   
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Why All This Matters

● Suppose we want to prove the following 
statement:
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Why All This Matters

● Suppose we want to prove the following 
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”   

x + y = 16 ∧ x < 8 ∧ y < 8

“x + y = 16, but x < 8 and y < 8.”



  

Theorem: If x + y = 16, then x ≥ 8 or y ≥ 8.
 
Proof: Assume for the sake of contradiction that

x + y = 16, but that x < 8 and y < 8. Then
  

x + y < 8 + y
         < 8 + 8 
         = 16

  

So x + y < 16, contradicting that x + y = 16. We have
reached a contradiction, so our assumption must have
been wrong. Therefore if x + y = 16, then x ≥ 8 or
y ≥ 8. ■



  

Why This Matters

● Propositional logic is a tool for reasoning 
about how various statements affect one 
another.

● To better understand how to prove a result, 
it often helps to translate what you're trying 
to prove into propositional logic first.

● That said, propositional logic isn't 
expressive enough to capture all 
statements. For that, we need something 
more powerful.
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