

Mathematical Logic
Part One

Question: How do we formalize the
definitions and reasoning we use in our

proofs?

Where We're Going

● Propositional Logic (Today)
● Basic logical connectives.
● Truth tables.
● Logical equivalences.

● First-Order Logic (Wednesday/Friday)
● Reasoning about properties of multiple

objects.

Propositional Logic

A proposition is a statement that is,
by itself, either true or false.

Some Sample Propositions

● Puppies are cuter than kittens.
● Kittens are cuter than puppies.
● Usain Bolt can outrun everyone in this

room.
● CS103 is useful for cocktail parties.
● This is the last entry on this list.

More Propositions

● They say time's supposed to heal ya.
● But I ain't done much healing.
● I'm in California dreaming about who we

used to be.
● I've forgotten how it felt before the world

fell at our feet.
● There's such a difference between us.

Things That Aren't Propositions

Commands
cannot be true

or false.

Commands
cannot be true

or false.

Things That Aren't Propositions

Questions
cannot be true

or false.

Questions
cannot be true

or false.

Things That Aren't Propositions

I am the walrus,
goo goo g'joob

The first half is
a valid

proposition.

The first half is
a valid

proposition.

Jibberish cannot
be true or

false.

Jibberish cannot
be true or

false.

Propositional Logic

● Propositional logic is a mathematical system
for reasoning about propositions and how they
relate to one another.

● Every statement in propositional logic consists
of propositional variables combined via
propositional connectives.
● Each variable represents some proposition, such as

“You liked it” or “You should have put a ring on it.”
● Connectives encode how propositions are related,

such as “If you liked it, then you should have put a
ring on it.”

Propositional Variables

● Each proposition will be represented by a
propositional variable.

● Propositional variables are usually
represented as lower-case letters, such
as p, q, r, s, etc.

● Each variable can take one one of two
values: true or false.

Propositional Connectives

● Logical NOT: ¬p
● Read “not p”
● ¬p is true if and only if p is false.
● Also called logical negation.

● Logical AND: p ∧ q
● Read “p and q.”
● p ∧ q is true if both p and q are true.
● Also called logical conjunction.

● Logical OR: p ∨ q
● Read “p or q.”
● p ∨ q is true if at least one of p or q are true (inclusive OR)
● Also called logical disjunction.

Truth Tables

● A truth table is a table showing the
truth value of a propositional logic
formula as a function of its inputs.

● Useful for several reasons:
● They give a formal definition of what a

connective “means.”
● They give us a way to figure out what a

complex propositional formula says.

The Truth Table Tool

Summary of Important Points

● The ∨ connective is an inclusive “or.” It's
true if at least one of the operands is
true.
● Similar to the || operator in C, C++, Java and

the or operator in Python.
● If we need an exclusive “or” operator, we

can build it out of what we already have.

Mathematical Implication

Implication

● The → connective is used to represent
implications.
● Its technical name is the material

conditional operator.
● What is its truth table?

Why This Truth Table?

● The truth values of the → are the way they are
because they're defined that way.

● The intuition:
● We want p → q to mean “if p is true, q is true as well.”
● The only way this doesn't happen is if p is true and q is

false.
● In other words, p → q should be true whenever

¬(p ∧ ¬q) is true.
● What's the truth table for ¬(p ∧ ¬q)?

T
F
T
T

Truth Table for Implication

p q p → q
F
F
T
T

F

F
T

T

The only way for
p q to be false is →

for p to be true and
q to be false.

Otherwise, p → q is by
definition true.

The only way for
p q to be false is →

for p to be true and
q to be false.

Otherwise, p → q is by
definition true.

The Biconditional Connective

The Biconditional Connective

● The biconditional connective ↔ is used to
represent a two-directional implication.

● Specifically, p ↔ q means that p implies q
and q implies p.

● What should its truth table look like?

Biconditionals

● The biconditional connective p ↔ q is
read “p if and only if q.”

● Here's its truth table:

T
F
F
T

p q p ↔ q
F
F
T
T

F

F
T

T

One interpretation of ↔

is to think of it as
equality: the two

propositions must have
equal truth values.

One interpretation of ↔

is to think of it as
equality: the two

propositions must have
equal truth values.

True and False

● There are two more “connectives” to
speak of: true and false.
● The symbol ⊤ is a value that is always true.
● The symbol ⊥ is value that is always false.

● These are often called connectives,
though they don't connect anything.
● (Or rather, they connect zero things.)

Proof by Contradiction

● Suppose you want to prove p is true using
a proof by contradiction.

● The setup looks like this:
● Assume p is false.
● Derive something that we know is false.
● Conclude that p is true.

● In propositional logic:

(¬p → ⊥) → p

Operator Precedence

● How do we parse this statement?

¬x → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬

∧

∨

→

↔
● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

¬x → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬

∧

∨

→

↔
● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

(¬x) → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬

∧

∨

→

↔
● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

(¬x) → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬

∧

∨

→

↔
● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

(¬x) → y ∨ z → x ∨ (y ∧ z)
● Operator precedence for propositional logic:

¬

∧

∨

→

↔
● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

(¬x) → y ∨ z → x ∨ (y ∧ z)
● Operator precedence for propositional logic:

¬

∧

∨

→

↔
● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

(¬x) → (y ∨ z) → (x ∨ (y ∧ z))
● Operator precedence for propositional logic:

¬

∧

∨

→

↔
● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

(¬x) → (y ∨ z) → (x ∨ (y ∧ z))
● Operator precedence for propositional logic:

¬

∧

∨

→

↔
● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

(¬x) → ((y ∨ z) → (x ∨ (y ∧ z)))
● Operator precedence for propositional logic:

¬

∧

∨

→

↔
● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

(¬x) → ((y ∨ z) → (x ∨ (y ∧ z)))
● Operator precedence for propositional logic:

¬

∧

∨

→

↔
● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● The main points to remember:
● ¬ binds to whatever immediately follows it.
● ∧ and ∨ bind more tightly than →.

● We will commonly write expressions like
p ∧ q → r without adding parentheses.

● For more complex expressions, we'll try to
add parentheses.

● Confused? Just ask!

Time-Out for Announcements!

Problem Set One

● The checkpoint problem for PS1 was due
at the start of class today.
● We'll try to have it graded and returned by

tomorrow evening.
● The remaining problems from PS1 are

due on Friday.
● Have questions? Stop by office hours, or ask

on Piazza, or email the staff list!

Back to CS103!

Recap So Far

● A propositional variable is a variable that is
either true or false.

● The propositional connectives are
● Negation: ¬p
● Conjunction: p ∧ q
● Disjunction: p ∨ q
● Implication: p → q
● Biconditional: p ↔ q
● True: ⊤
● False: ⊥

Translating into Propositional Logic

Some Sample Propositions

a: I will be awake this evening.

b: I will see the lunar eclipse this evening.

Some Sample Propositions

“I won't see a lunar eclipse
if I'm not awake this

evening.”

“I won't see a lunar eclipse
if I'm not awake this

evening.”

a: I will be awake this evening.

b: I will see the lunar eclipse this evening.

Some Sample Propositions

“I won't see a lunar eclipse
if I'm not awake this

evening.”

“I won't see a lunar eclipse
if I'm not awake this

evening.”

¬a → ¬b

a: I will be awake this evening.

b: I will see the lunar eclipse this evening.

“p if q”

translates to

q → p

It does not translate to

p → q

Some Sample Propositions

a: I will be awake this evening.

b: I will see a lunar eclipse.

c: There is a lunar eclipse this evening.

Some Sample Propositions

a: I will be awake this evening.

b: I will see a lunar eclipse.

c: There is a lunar eclipse this evening.

“If I will be awake this
evening, but there's no

lunar eclipse, I won't see a
lunar eclipse.

“If I will be awake this
evening, but there's no

lunar eclipse, I won't see a
lunar eclipse.

Some Sample Propositions

a: I will be awake this evening.

b: I will see a lunar eclipse.

c: There is a lunar eclipse this evening.

“If I will be awake this
evening, but there's no

lunar eclipse, I won't see a
lunar eclipse.

“If I will be awake this
evening, but there's no

lunar eclipse, I won't see a
lunar eclipse.

a ∧ ¬c → ¬b

“p, but q”

translates to

p ∧ q

The Takeaway Point

● When translating into or out of
propositional logic, be very careful not to
get tripped up by nuances of the English
language.
● In fact, this is one of the reasons we have a

symbolic notation in the first place!
● Many prepositional phrases lead to

counterintuitive translations; make sure
to double-check yourself!

Propositional Equivalences

Quick Question:

What would I have to show you to convince
you that the statement p ∧ q is false?

Quick Question:

What would I have to show you to convince
you that the statement p ∨ q is false?

De Morgan's Laws

● Using truth tables, we concluded that

¬(p ∧ q)

is equivalent to

¬p ∨ ¬q
● We also saw that

¬(p ∨ q)

is equivalent to

¬p ∧ ¬q
● These two equivalences are called De Morgan's

Laws.

De Morgan's Laws in Code

● Pro tip: Don't write this:

 if (!(p() && q()) {

 /* … */

 }

● Write this instead:

 if (!p() || !q()) {

 /* … */

 }

● (This even short-circuits correctly!)

Logical Equivalence

● Because ¬(p ∧ q) and ¬p ∨ ¬q have the same truth
tables, we say that they're equivalent to one another.

● We denote this by writing

 ¬(p ∧ q) ≡ ¬p ∨ ¬q
● The ≡ symbol is not a connective.

● The statement ¬(p ∧ q) ↔ (¬p ∨ ¬q) is a propositional formula.
If you plug in different values of p and q, it will evaluate to a
truth value. It just happens to evaluate to true every time.

● The statement ¬(p ∧ q) ≡ ¬p ∨ ¬q means “these two formulas
have exactly the same truth table.”

● In other words, the notation φ ≡ ψ means “φ and ψ
always have the same truth values, regardless of how the
variables are assigned.”

An Important Equivalence

● Earlier, we talked about the truth table
for p → q. We chose it so that

 p → q ≡ ¬(p ∧ ¬q)
● Later on, this equivalence will be

incredibly useful:

¬(p → q) ≡ p ∧ ¬q

Another Important Equivalence

● Here's a useful equivalence. Start with

 p → q ≡ ¬(p ∧ ¬q)
● By De Morgan's laws:

 p → q ≡ ¬(p ∧ ¬q)

 p → q≡ ¬p ∨ ¬¬q

 p → q≡ ¬p ∨ q
● Thus p → q ≡ ¬p ∨ q

Another Important Equivalence

● Here's a useful equivalence. Start with

 p → q ≡ ¬(p ∧ ¬q)
● By De Morgan's laws:

 p → q ≡ ¬(p ∧ ¬q)

 p → q≡ ¬p ∨ ¬¬q

 p → q≡ ¬p ∨ q
● Thus p → q ≡ ¬p ∨ q

If p is false, then
¬p q∨ is true. If p is
true, then q has to be
true for the whole

expression to be true.

If p is false, then
¬p q∨ is true. If p is
true, then q has to be
true for the whole

expression to be true.

One Last Equivalence

The Contrapositive

● The contrapositive of the statement

p → q

is the statement

¬q → ¬p
● These are logically equivalent, which is

why proof by contrapositive works:

p → q ≡ ¬q → ¬p

Why All This Matters

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x + y = 16 → x ≥ 8 ∨ y ≥ 8

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x + y = 16 → x ≥ 8 ∨ y ≥ 8

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8 ∨ y ≥ 8) → ¬(x + y = 16)

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8 ∨ y ≥ 8) → ¬(x + y = 16)

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8 ∨ y ≥ 8) → ¬(x + y = 16)

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8 ∨ y ≥ 8) → x + y ≠ 16

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8 ∨ y ≥ 8) → x + y ≠ 16

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8 ∨ y ≥ 8) → x + y ≠ 16

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8) ∧ ¬(y ≥ 8) → x + y ≠ 16

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8) ∧ ¬(y ≥ 8) → x + y ≠ 16

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8) ∧ ¬(y ≥ 8) → x + y ≠ 16

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x < 8 ∧ ¬(y ≥ 8) → x + y ≠ 16

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x < 8 ∧ ¬(y ≥ 8) → x + y ≠ 16

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x < 8 ∧ ¬(y ≥ 8) → x + y ≠ 16

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x < 8 ∧ y < 8 → x + y ≠ 16

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x < 8 ∧ y < 8 → x + y ≠ 16

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x < 8 ∧ y < 8 → x + y ≠ 16

“If x < 8 and y < 8, then x + y ≠ 16”

Theorem: If x + y = 16, then x ≥ 8 or y ≥ 8.

Proof: By contrapositive. We will prove that if x < 8 and
y < 8, then x + y ≠ 16. To see this, note that

x + y < 8 + y
 < 8 + 8
 = 16

This means that x + y < 16, so x + y ≠ 16, which is
what we needed to show. ■

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x + y = 16 → x ≥ 8 ∨ y ≥ 8

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x + y = 16 → x ≥ 8 ∨ y ≥ 8)

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x + y = 16 → x ≥ 8 ∨ y ≥ 8)

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x + y = 16 ∧ ¬(x ≥ 8 ∨ y ≥ 8)

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x + y = 16 ∧ ¬(x ≥ 8 ∨ y ≥ 8)

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x + y = 16 ∧ ¬(x ≥ 8 ∨ y ≥ 8)

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x + y = 16 ∧ ¬(x ≥ 8) ∧ ¬(y ≥ 8)

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x + y = 16 ∧ ¬(x ≥ 8) ∧ ¬(y ≥ 8)

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x + y = 16 ∧ ¬(x ≥ 8) ∧ ¬(y ≥ 8)

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x + y = 16 ∧ x < 8 ∧ ¬(y ≥ 8)

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x + y = 16 ∧ x < 8 ∧ ¬(y ≥ 8)

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x + y = 16 ∧ x < 8 ∧ ¬(y ≥ 8)

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x + y = 16 ∧ x < 8 ∧ y < 8

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x + y = 16 ∧ x < 8 ∧ y < 8

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x + y = 16 ∧ x < 8 ∧ y < 8

“x + y = 16, but x < 8 and y < 8.”

Theorem: If x + y = 16, then x ≥ 8 or y ≥ 8.

Proof: Assume for the sake of contradiction that

x + y = 16, but that x < 8 and y < 8. Then

x + y < 8 + y
 < 8 + 8
 = 16

So x + y < 16, contradicting that x + y = 16. We have
reached a contradiction, so our assumption must have
been wrong. Therefore if x + y = 16, then x ≥ 8 or
y ≥ 8. ■

Why This Matters

● Propositional logic is a tool for reasoning
about how various statements affect one
another.

● To better understand how to prove a result,
it often helps to translate what you're trying
to prove into propositional logic first.

● That said, propositional logic isn't
expressive enough to capture all
statements. For that, we need something
more powerful.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99

