Functions
What is a function?
Functions, High-School Edition
\[f(x) = x^4 - 5x^2 + 4 \]
\[f(x) = \frac{x^2 + 4x - 9}{x^2 + 10x + 21} \]
Functions, High-School Edition

- In high school, functions are usually given as objects of the form

\[f(x) = \frac{x^3 + 3x^2 + 15x + 7}{1 - x^{137}} \]

- What does a function do?
 - Takes in as input a real number.
 - Outputs a real number.
 - ... except when there are vertical asymptotes or other discontinuities, in which case the function doesn't output anything.
Functions, CS Edition
```c
int flipUntil(int n) {
    int numHeads = 0;
    int numTries = 0;

    while (numHeads < n) {
        if (randomBoolean()) numHeads++;
        numTries++;
    }

    return numTries;
}
```
Functions, CS Edition

- In programming, functions
 - might take in inputs,
 - might return values,
 - might have side effects,
 - might never return anything,
 - might crash, and
 - might return different values when called multiple times.
What's Common?

- Although high-school math functions and CS functions are pretty different, they have two key aspects in common:
 - They take in inputs.
 - They produce outputs.
- In math, we like to keep things easy, so that's pretty much how we're going to define a function.
A function is an object f that takes in an input and produces exactly one output.

(This is not a complete definition – we'll revisit this in a bit.)
High School versus CS Functions

- In high school, functions usually were given by a rule:
 \[f(x) = 4x + 15 \]
- In CS, functions are usually given by code:
  ```c
  int factorial(int n) {
    int result = 1;
    for (int i = 1; i <= n; i++) {
      result *= i;
    }
    return result;
  }
  ```
- What sorts of functions are we going to allow from a mathematical perspective?
... but also ...
\[f(x) = x^2 + 3x - 15 \]
\[f(n) = \begin{cases}
 -n/2 & \text{if } n \text{ is even} \\
 (n+1)/2 & \text{otherwise}
\end{cases} \]

Functions like these are called \textit{piecewise} functions.
To define a function, you will typically either

· draw a picture, or
· give a rule for determining the output.
In mathematics, functions are \textit{deterministic}. That is, given the same input, a function must always produce the same output.

The following is a perfectly valid piece of C++ code, but it's not a valid function under our definition:

```cpp
int randomNumber(int numOutcomes) {
    return rand() % numOutcomes;
}
```
One Challenge
\[f(x) = x^2 + 2x + 5 \]
\[f(x) = x^2 + 2x + 5 \]

\[f(3) = 3^2 + 3 \cdot 2 + 5 = 20 \]
\[f(x) = x^2 + 2x + 5 \]

\[f(3) = 3^2 + 3 \cdot 2 + 5 = 20 \]

\[f(0) = 0^2 + 0 \cdot 2 + 5 = 5 \]
\[f(x) = x^2 + 2x + 5 \]

\[f(3) = 3^2 + 3 \cdot 2 + 5 = 20 \]

\[f(0) = 0^2 + 0 \cdot 2 + 5 = 5 \]

\[f(\text{ Pikachu}) = \ldots ? \]
\[f(\text{Pikachu}) = \text{Pikachu} \]
\[f(137) = \ldots ? \]
We need to make sure we can't apply functions to meaningless inputs.
Every function f has two sets associated with it: its **domain** and its **codomain**.

A function f can only be applied to elements of its domain. For any x in the domain, $f(x)$ belongs to the codomain.

The function must be defined for every element of the domain.

The output of the function must always be in the codomain, but not all elements of the codomain must be produced as outputs.
Domains and Codomains

- Every function f has two sets associated with it: its *domain* and its *codomain*.
- A function f can only be applied to elements of its domain. For any x in the domain, $f(x)$ belongs to the codomain.

```java
private double absoluteValueOf(double x) {
    if (x >= 0) {
        return x;
    } else {
        return -x;
    }
}
```

The domain of this function is \mathbb{R}. Any real number can be provided as input.

The codomain of this function is \mathbb{R}. Everything produced is a real number, but not all real numbers can be produced.
Domains and Codomains

- If f is a function whose domain is A and whose codomain is B, we write $f : A \rightarrow B$.
- This notation just says what the domain and codomain of the function are. It doesn't say how the function is evaluated.
- Think of it like a “function prototype” in C or C++. The notation $f : \text{ArgType} \rightarrow \text{RetType}$ is like writing

\[
\text{RetType } f(\text{ArgType } \text{argument});
\]

We know that f takes in an ArgType and returns a RetType, but we don't know exactly which RetType it's going to return for a given ArgType.
The Official Rules for Functions

• Formally speaking, we say that \(f : A \rightarrow B \) if the following two rules hold:

• The function must be obey its domain/codomain rules:

\[
\forall a \in A. \ \exists b \in B. \ f(a) = b
\]

(“Every input in A maps to some output in B.”)

• The function must be deterministic:

\[
\forall a_1 \in A. \ \forall a_2 \in A. \ (a_1 = a_2 \rightarrow f(a_1) = f(a_2))
\]

(“Equal inputs produce equal outputs.”)

• If you’re ever curious about whether something is a function, look back at these rules and check! For example:
 • Can a function have an empty domain?
 • Can a function with a nonempty domain have an empty codomain?
Defining Functions

• Typically, we specify a function by describing a rule that maps every element of the domain to some element of the codomain.

• Examples:
 • $f(n) = n + 1$, where $f : \mathbb{Z} \rightarrow \mathbb{Z}$
 • $f(x) = \sin x$, where $f : \mathbb{R} \rightarrow \mathbb{R}$
 • $f(x) = \lceil x \rceil$, where $f : \mathbb{R} \rightarrow \mathbb{Z}$

• Notice that we're giving both a rule and the domain/codomain.
Defining Functions

Typically, we specify a function by describing a rule that maps every element of the domain to some element of the codomain.

Examples:

\[f(n) = n + 1, \text{ where } f : \mathbb{Z} \rightarrow \mathbb{Z} \]

\[f(x) = \sin x, \text{ where } f : \mathbb{R} \rightarrow \mathbb{R} \]

• \(f(x) = [x], \text{ where } f : \mathbb{R} \rightarrow \mathbb{Z} \)

Notice that we're giving both a rule and the domain/codomain.

This is the ceiling function – the smallest integer greater than or equal to \(x \). For example, \([1] = 1\), \([1.37] = 2\), and \([\pi] = 4\).
Is This a Function from A to B?

- Stanford → Cardinal
- Berkeley → Blue
- Michigan → Gold
- Arkansas → White
Is This a Function from A to B?

- California
- New York
- Delaware
- Washington DC

A

- Dover
- Sacramento
- Albany

B
Is This a Function from A to B?

A

B

- Wish
- Funshine
- Love-a-Lot
- Tenderheart
- Friend
Combining Functions
\[h : \text{People} \to \text{Prices} \]
\[h(x) = g(f(x)) \]
People \rightarrow Prices
\[h(x) = g(f(x)) \]
Function Composition

- Suppose that we have two functions $f : A \to B$ and $g : B \to C$.
- Notice that the codomain of f is the domain of g. This means that we can use outputs from f as inputs to g.

\[g(f(x)) \]
Function Composition

- Suppose that we have two functions $f : A \rightarrow B$ and $g : B \rightarrow C$.
- The *composition of f and $g*$, denoted $g \circ f$, is a function where
 - $g \circ f : A \rightarrow C$, and
 - $(g \circ f)(x) = g(f(x))$.
- A few things to notice:
 - The domain of $g \circ f$ is the domain of f. Its codomain is the codomain of g.
 - Even though the composition is written $g \circ f$, when evaluating $(g \circ f)(x)$, the function f is evaluated first.
Function Composition

- Let $f : \mathbb{N} \to \mathbb{N}$ be defined as $f(n) = 2n + 1$ and $g : \mathbb{N} \to \mathbb{N}$ be defined as $g(n) = n^2$.
- What is $g \circ f$?

$$
(g \circ f)(n) = g(f(n)) \\
= g(2n + 1) \\
= (2n + 1)^2 = 4n^2 + 4n + 1
$$

- What is $f \circ g$?

$$
(f \circ g)(n) = f(g(n)) \\
= f(n^2) \\
= 2n^2 + 1
$$

- In general, if they exist, the functions $g \circ f$ and $f \circ g$ are usually not the same function. **Order matters in function composition!**
Time-Out for Announcements!
Problem Set Three

• Problem Set Two was due at 3:00PM today.
 • **Reminder:** You have three 24-hour late days to use throughout the quarter.

• Problem Set Three goes out right now.
 • Checkpoint due on Monday at the start of class.
 • Remaining problems due Friday at the start of class.

• As always, feel free to ask questions on Piazza or to stop by office hours with questions!
First Midterm Exam

• The first midterm exam is on Tuesday, May 2nd from 7:00PM – 10:00PM, location TBA.

• We’ll be releasing a ton of practice problems next week, and we’ll talk about policies on Monday.

• We will be holding a practice midterm exam next Tuesday, April 25th from 7:00PM – 10:00PM, location TBA.

 • \textit{You are highly encouraged to attend}. This is an excellent way to practice and prepare for the midterm.

 • More details next week.
WiCS Casual CS Dinner

• Stanford WiCS (Women in Computer Science) is holding a Casual CS Dinner this upcoming Monday, April 24th at 6:00PM at the Women's Community Center.

• All are welcome. Highly recommended!

• RSVP using http://bit.ly/2osKb63!
Your Questions
“I feel like I'll never catch up to my peers who are so ahead in CS. What advice do you have for changing that, especially for someone from FLI background.”

A few things to keep in mind:

1. The overwhelming majority of CS majors have no prior CS experience before coming here – most schools don’t offer anything.

2. Make sure you have the right mental model for where you stand relative to everyone else – there’s a huge sampling bias!

3. The gap between you and everyone else is largest when you get started and rapidly gets washed out by coursework here. You’d be amazed how quickly we move here!

4. “A little slope makes up for a lot of y-intercept”

5. Never confuse talent for experience.
“Is there any hope for a just world under capitalism?”

I think so, though that might just be because I have a different conception of the question than what was intended. I’ll take this one in class.
Back to CS103!
Special Types of Functions
Mercury
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune
Pluto
Mercury
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune
Mercury
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune
Mercury
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune
Injective Functions

• A function $f : A \rightarrow B$ is called **injective** (or **one-to-one**) if the following statement is true about f:

$$\forall a_1 \in A. \forall a_2 \in A. (a_1 \neq a_2 \rightarrow f(a_1) \neq f(a_2))$$

(“If the inputs are different, the outputs are different.”)

• The following first-order definition is equivalent and is often useful in proofs.

$$\forall a_1 \in A. \forall a_2 \in A. (f(a_1) = f(a_2) \rightarrow a_1 = a_2)$$

(“If the outputs are the same, the inputs are the same.”)

• A function with this property is called an **injection**.

• How does this compare to our second rule for functions?
Injective Functions

Theorem: Let $f : \mathbb{N} \rightarrow \mathbb{N}$ be defined as $f(n) = 2n + 7$. Then f is injective.
Injective Functions

Theorem: Let \(f : \mathbb{N} \to \mathbb{N} \) be defined as \(f(n) = 2n + 7 \).
Then \(f \) is injective.

Proof:

Since \(f(n_0) = f(n_1) \), we see that \(2n_0 + 7 = 2n_1 + 7 \).
This in turn means that \(2n_0 = 2n_1 \), so \(n_0 = n_1 \), as required. \(\square\)
Injective Functions

Theorem: Let $f : \mathbb{N} \to \mathbb{N}$ be defined as $f(n) = 2n + 7$. Then f is injective.

Proof:

What does it mean for the function f to be injective?
Injective Functions

Theorem: Let $f : \mathbb{N} \to \mathbb{N}$ be defined as $f(n) = 2n + 7$. Then f is injective.

Proof:

What does it mean for the function f to be injective?

$\forall n_1 \in \mathbb{N}. \forall n_2 \in \mathbb{N}. (f(n_1) = f(n_2) \rightarrow n_1 = n_2)$

$\forall n_1 \in \mathbb{N}. \forall n_2 \in \mathbb{N}. (n_1 \neq n_2 \rightarrow f(n_1) \neq f(n_2))$
Injective Functions

Theorem: Let \(f : \mathbb{N} \to \mathbb{N} \) be defined as \(f(n) = 2n + 7 \). Then \(f \) is injective.

Proof:

What does it mean for the function \(f \) to be injective?

\[
\forall n_1 \in \mathbb{N}. \forall n_2 \in \mathbb{N}. (f(n_1) = f(n_2) \rightarrow n_1 = n_2)
\]

\[
\forall n_1 \in \mathbb{N}. \forall n_2 \in \mathbb{N}. (n_1 \neq n_2 \rightarrow f(n_1) \neq f(n_2))
\]
Theorem: Let \(f : \mathbb{N} \rightarrow \mathbb{N} \) be defined as \(f(n) = 2n + 7 \). Then \(f \) is injective.

Proof:

What does it mean for the function \(f \) to be injective?

\[
\forall n_1 \in \mathbb{N}. \forall n_2 \in \mathbb{N}. (f(n_1) = f(n_2) \rightarrow n_1 = n_2) \\
\forall n_1 \in \mathbb{N}. \forall n_2 \in \mathbb{N}. (n_1 \neq n_2 \rightarrow f(n_1) \neq f(n_2))
\]

Therefore, we'll pick arbitrary \(n_1, n_2 \in \mathbb{N} \) where \(f(n_1) = f(n_2) \), then prove that \(n_1 = n_2 \).
Injective Functions

Theorem: Let \(f : \mathbb{N} \to \mathbb{N} \) be defined as \(f(n) = 2n + 7 \). Then \(f \) is injective.

Proof:

What does it mean for the function \(f \) to be injective?

\[
\forall n_1 \in \mathbb{N}. \forall n_2 \in \mathbb{N}. \ (f(n_1) = f(n_2) \rightarrow n_1 = n_2)
\]

\[
\forall n_1 \in \mathbb{N}. \forall n_2 \in \mathbb{N}. \ (n_1 \neq n_2 \rightarrow f(n_1) \neq f(n_2))
\]

Therefore, we’ll pick arbitrary \(n_1, n_2 \in \mathbb{N} \) where \(f(n_1) = f(n_2) \), then prove that \(n_1 = n_2 \).
Injective Functions

Theorem: Let \(f : \mathbb{N} \to \mathbb{N} \) be defined as \(f(n) = 2n + 7 \).

Then \(f \) is injective.

Proof:

What does it mean for the function \(f \) to be injective?

\[
\forall n_1 \in \mathbb{N}. \forall n_2 \in \mathbb{N}. \ (f(n_1) = f(n_2) \rightarrow n_1 = n_2)
\]

\[
\forall n_1 \in \mathbb{N}. \forall n_2 \in \mathbb{N}. \ (n_1 \neq n_2 \rightarrow f(n_1) \neq f(n_2))
\]

Therefore, we'll pick arbitrary \(n_1, n_2 \in \mathbb{N} \) where \(f(n_1) = f(n_2) \), then prove that \(n_1 = n_2 \).
Injective Functions

Theorem: Let \(f : \mathbb{N} \to \mathbb{N} \) be defined as \(f(n) = 2n + 7 \). Then \(f \) is injective.

Proof:

What does it mean for the function \(f \) to be injective?

\[
\forall n_1 \in \mathbb{N}. \forall n_2 \in \mathbb{N}. (f(n_1) = f(n_2) \rightarrow n_1 = n_2)
\]

\[
\forall n_1 \in \mathbb{N}. \forall n_2 \in \mathbb{N}. (n_1 \neq n_2 \rightarrow f(n_1) \neq f(n_2))
\]

Therefore, we'll pick arbitrary \(n_1, n_2 \in \mathbb{N} \) where \(f(n_1) = f(n_2) \), then prove that \(n_1 = n_2 \).
Injective Functions

Theorem: Let $f : \mathbb{N} \to \mathbb{N}$ be defined as $f(n) = 2n + 7$. Then f is injective.

Proof: Consider any $n_1, n_2 \in \mathbb{N}$ where $f(n_1) = f(n_2)$. We will prove that $n_1 = n_2$.

Since $f(n_0) = f(n_1)$, we see that $2n_0 + 7 = 2n_1 + 7$.

This in turn means that $2n_0 = 2n_1$, so $n_0 = n_1$, as required. ■
Injective Functions

Theorem: Let $f : \mathbb{N} \to \mathbb{N}$ be defined as $f(n) = 2n + 7$. Then f is injective.

Proof: Consider any $n_1, n_2 \in \mathbb{N}$ where $f(n_1) = f(n_2)$. We will prove that $n_1 = n_2$.

Since $f(n_1) = f(n_2)$, we see that

$$2n_1 + 7 = 2n_2 + 7.$$
Injective Functions

Theorem: Let \(f : \mathbb{N} \to \mathbb{N} \) be defined as \(f(n) = 2n + 7 \). Then \(f \) is injective.

Proof: Consider any \(n_1, n_2 \in \mathbb{N} \) where \(f(n_1) = f(n_2) \). We will prove that \(n_1 = n_2 \).

Since \(f(n_1) = f(n_2) \), we see that

\[
2n_1 + 7 = 2n_2 + 7.
\]

This in turn means that \(2n_1 = 2n_2 \).
Theorem: Let $f : \mathbb{N} \to \mathbb{N}$ be defined as $f(n) = 2n + 7$. Then f is injective.

Proof: Consider any $n_1, n_2 \in \mathbb{N}$ where $f(n_1) = f(n_2)$. We will prove that $n_1 = n_2$.

Since $f(n_1) = f(n_2)$, we see that

$$2n_1 + 7 = 2n_2 + 7.$$

This in turn means that

$$2n_1 = 2n_2$$

so $n_1 = n_2$, as required.
Theorem: Let $f : \mathbb{N} \to \mathbb{N}$ be defined as $f(n) = 2n + 7$. Then f is injective.

Proof: Consider any $n_1, n_2 \in \mathbb{N}$ where $f(n_1) = f(n_2)$. We will prove that $n_1 = n_2$.

Since $f(n_1) = f(n_2)$, we see that

$$2n_1 + 7 = 2n_2 + 7.$$

This in turn means that

$$2n_1 = 2n_2$$

so $n_1 = n_2$, as required. ■
Injective Functions

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.
Injective Functions

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof:
Injective Functions

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof:

What does it mean for f to be injective?

$\forall x_0 \in \mathbb{Z}. \forall x_1 \in \mathbb{Z}. \left(x_0 \neq x_1 \rightarrow f(x_0) \neq f(x_1) \right)$

What is the negation of this statement?

$\neg \forall x_0 \in \mathbb{Z}. \forall x_1 \in \mathbb{Z}. \left(x_0 \neq x_1 \rightarrow f(x_0) \neq f(x_1) \right)$

$\exists x_0 \in \mathbb{Z}. \neg \forall x_1 \in \mathbb{Z}. \left(x_0 \neq x_1 \rightarrow f(x_0) \neq f(x_1) \right)$

$\exists x_0 \in \mathbb{Z}. \exists x_1 \in \mathbb{Z}. \left(x_0 \neq x_1 \land \neg \left(f(x_0) \neq f(x_1) \right) \right)$

Therefore, we need to find $x_0, x_1 \in \mathbb{Z}$ such that $x_0 \neq x_1$, but $f(x_0) = f(x_1)$. Can we do that?
Injective Functions

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof:

What does it mean for f to be injective?

\[
\forall x_1 \in \mathbb{Z}. \forall x_2 \in \mathbb{Z}. (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))
\]
Injective Functions

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof:

What does it mean for f to be injective?

$$\forall x_1 \in \mathbb{Z}. \forall x_2 \in \mathbb{Z}. (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$$

What is the negation of this statement?

$$\exists x_0 \in \mathbb{Z}. \exists x_1 \in \mathbb{Z}. (x_0 \neq x_1 \wedge f(x_0) = f(x_1))$$
Injective Functions

Theorem: Let \(f : \mathbb{Z} \to \mathbb{N} \) be defined as \(f(x) = x^4 \). Then \(f \) is not injective.

Proof:

What does it mean for \(f \) to be injective?

\[
\forall x_1 \in \mathbb{Z}. \forall x_2 \in \mathbb{Z}. (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))
\]

What is the negation of this statement?

\[
\neg \forall x_1 \in \mathbb{Z}. \forall x_2 \in \mathbb{Z}. (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))
\]
Injective Functions

Theorem: Let \(f : \mathbb{Z} \rightarrow \mathbb{N} \) be defined as \(f(x) = x^4 \). Then \(f \) is not injective.

Proof:

What does it mean for \(f \) to be injective?

\[
\forall x_1 \in \mathbb{Z}. \forall x_2 \in \mathbb{Z}. (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))
\]

What is the negation of this statement?

\[
\neg \forall x_1 \in \mathbb{Z}. \forall x_2 \in \mathbb{Z}. (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))
\]

\[
\exists x_1 \in \mathbb{Z}. \neg \forall x_2 \in \mathbb{Z}. (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))
\]

Therefore, we need to find \(x_0 \), \(x_1 \in \mathbb{Z} \) such that \(x_0 \neq x_1 \), but \(f(x_0) = f(x_1) \). Can we do that?
Injective Functions

Theorem: Let $f: \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof:

What does it mean for f to be injective?

$$\forall x_1 \in \mathbb{Z}. \forall x_2 \in \mathbb{Z}. (x_1 \neq x_2 \to f(x_1) \neq f(x_2))$$

What is the negation of this statement?

$$\neg \forall x_1 \in \mathbb{Z}. \forall x_2 \in \mathbb{Z}. (x_1 \neq x_2 \to f(x_1) \neq f(x_2))$$

$$\exists x_1 \in \mathbb{Z}. \neg \forall x_2 \in \mathbb{Z}. (x_1 \neq x_2 \to f(x_1) \neq f(x_2))$$

$$\exists x_1 \in \mathbb{Z}. \exists x_2 \in \mathbb{Z}. \neg(x_1 \neq x_2 \to f(x_1) \neq f(x_2))$$

Therefore, we need to find $x_0, x_1 \in \mathbb{Z}$ such that $x_0 \neq x_1$, but $f(x_0) = f(x_1)$. Can we do that?
Injective Functions

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof:

What does it mean for f to be injective?

$$\forall x_1 \in \mathbb{Z}. \forall x_2 \in \mathbb{Z}. (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$$

What is the negation of this statement?

$$\neg \forall x_1 \in \mathbb{Z}. \forall x_2 \in \mathbb{Z}. (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$$

$$\exists x_1 \in \mathbb{Z}. \neg \forall x_2 \in \mathbb{Z}. (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$$

$$\exists x_1 \in \mathbb{Z}. \exists x_2 \in \mathbb{Z}. \neg (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$$

$$\exists x_1 \in \mathbb{Z}. \exists x_2 \in \mathbb{Z}. (x_1 \neq x_2 \land \neg (f(x_1) \neq f(x_2)))$$

Therefore, we need to find $x_0, x_1 \in \mathbb{Z}$ such that $x_0 \neq x_1$, but $f(x_0) = f(x_1)$. Can we do that?
Injective Functions

Theorem: Let \(f : \mathbb{Z} \rightarrow \mathbb{N} \) be defined as \(f(x) = x^4 \). Then \(f \) is not injective.

Proof:

What does it mean for \(f \) to be injective?

\[
\forall x_1 \in \mathbb{Z}. \forall x_2 \in \mathbb{Z}. (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))
\]

What is the negation of this statement?

\[
\neg \forall x_1 \in \mathbb{Z}. \forall x_2 \in \mathbb{Z}. (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))
\]

\[
\exists x_1 \in \mathbb{Z}. \neg \forall x_2 \in \mathbb{Z}. (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))
\]

\[
\exists x_1 \in \mathbb{Z}. \exists x_2 \in \mathbb{Z}. \neg (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))
\]

\[
\exists x_1 \in \mathbb{Z}. \exists x_2 \in \mathbb{Z}. (x_1 \neq x_2 \land \neg (f(x_1) \neq f(x_2)))
\]

\[
\exists x_1 \in \mathbb{Z}. \exists x_2 \in \mathbb{Z}. (x_1 \neq x_2 \land f(x_1) = f(x_2))
\]

Therefore, we need to find \(x_0, x_1 \in \mathbb{Z} \) such that \(x_0 \neq x_1 \), but \(f(x_0) = f(x_1) \). Can we do that?
Injective Functions

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof:

What does it mean for f to be injective?

$$\forall x_1 \in \mathbb{Z}. \forall x_2 \in \mathbb{Z}. (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$$

What is the negation of this statement?

$$\neg \forall x_1 \in \mathbb{Z}. \forall x_2 \in \mathbb{Z}. (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$$

$$\exists x_1 \in \mathbb{Z}. \neg \forall x_2 \in \mathbb{Z}. (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$$

$$\exists x_1 \in \mathbb{Z}. \exists x_2 \in \mathbb{Z}. \neg (x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$$

$$\exists x_1 \in \mathbb{Z}. \exists x_2 \in \mathbb{Z}. (x_1 \neq x_2 \land \neg (f(x_1) \neq f(x_2))))$$

$$\exists x_1 \in \mathbb{Z}. \exists x_2 \in \mathbb{Z}. (x_1 \neq x_2 \land f(x_1) = f(x_2))$$

Therefore, we need to find $x_1, x_2 \in \mathbb{Z}$ such that $x_1 \neq x_2$, but $f(x_1) = f(x_2)$. Can we do that?
Injective Functions

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof: We will prove that there exist integers x_1 and x_2 such that $x_1 \neq x_2$, but $f(x_1) = f(x_2)$.
Injective Functions

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof: We will prove that there exist integers x_1 and x_2 such that $x_1 \neq x_2$, but $f(x_1) = f(x_2)$.

Let $x_1 = -1$ and $x_2 = +1$.

Let $x_1 = -1$ and $x_2 = +1$.

Injective Functions

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof: We will prove that there exist integers x_1 and x_2 such that $x_1 \neq x_2$, but $f(x_1) = f(x_2)$.

Let $x_1 = -1$ and $x_2 = +1$.

$$f(x_1) = f(-1) = (-1)^4 = 1$$
Injective Functions

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof: We will prove that there exist integers x_1 and x_2 such that $x_1 \neq x_2$, but $f(x_1) = f(x_2)$.

Let $x_1 = -1$ and $x_2 = +1$.

\[
 f(x_1) = f(-1) = (-1)^4 = 1
\]

and

\[
 f(x_2) = f(1) = 1^4 = 1
\]
Injective Functions

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof: We will prove that there exist integers x_1 and x_2 such that $x_1 \neq x_2$, but $f(x_1) = f(x_2)$.

Let $x_1 = -1$ and $x_2 = +1$.

$f(x_1) = f(-1) = (-1)^4 = 1$

and

$f(x_2) = f(1) = 1^4 = 1,$

so $f(x_1) = f(x_2)$ even though $x_1 \neq x_2$, as required.
Injective Functions

Theorem: Let $f : \mathbb{Z} \to \mathbb{N}$ be defined as $f(x) = x^4$. Then f is not injective.

Proof: We will prove that there exist integers x_1 and x_2 such that $x_1 \neq x_2$, but $f(x_1) = f(x_2)$.

Let $x_1 = -1$ and $x_2 = +1$.

- $f(x_1) = f(-1) = (-1)^4 = 1$
- $f(x_2) = f(1) = 1^4 = 1$,

so $f(x_1) = f(x_2)$ even though $x_1 \neq x_2$, as required. ■
Injections and Composition
Injections and Composition

• **Theorem:** If $f : A \rightarrow B$ is an injection and $g : B \rightarrow C$ is an injection, then the function $g \circ f : A \rightarrow C$ is an injection.

• Our goal will be to prove this result. To do so, we're going to have to call back to the formal definitions of injectivity and function composition.
Theorem: If $f : A \rightarrow B$ is an injection and $g : B \rightarrow C$ is an injection, then the function $g \circ f : A \rightarrow C$ is also an injection.
Theorem: If $f : A \to B$ is an injection and $g : B \to C$ is an injection, then the function $g \circ f : A \to C$ is also an injection.

Proof:
Theorem: If $f : A \to B$ is an injection and $g : B \to C$ is an injection, then the function $g \circ f : A \to C$ is also an injection.

Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary injections.
Theorem: If $f : A \rightarrow B$ is an injection and $g : B \rightarrow C$ is an injection, then the function $g \circ f : A \rightarrow C$ is also an injection.

Proof: Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be arbitrary injections. We will prove that the function $g \circ f : A \rightarrow C$ is also injective.
Theorem: If $f : A \to B$ is an injection and $g : B \to C$ is an injection, then the function $g \circ f : A \to C$ is also an injection.

Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary injections. We will prove that the function $g \circ f : A \to C$ is also injective.

There are two definitions of injectivity that we can use here:

$\forall a_1 \in A. \forall a_2 \in A. ((g \circ f)(a_1) = (g \circ f)(a_2) \rightarrow a_1 = a_2)$

$\forall a_1 \in A. \forall a_2 \in A. (a_1 \neq a_2 \rightarrow (g \circ f)(a_1) \neq (g \circ f)(a_2))$
Theorem: If $f : A \to B$ is an injection and $g : B \to C$ is an injection, then the function $g \circ f : A \to C$ is also an injection.

Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary injections. We will prove that the function $g \circ f : A \to C$ is also injective.

There are two definitions of injectivity that we can use here:

1. $\forall a_1 \in A. \forall a_2 \in A. ((g \circ f)(a_1) = (g \circ f)(a_2) \to a_1 = a_2)$
2. $\forall a_1 \in A. \forall a_2 \in A. (a_1 \neq a_2 \to (g \circ f)(a_1) \neq (g \circ f)(a_2))$
Theorem: If \(f : A \rightarrow B \) is an injection and \(g : B \rightarrow C \) is an injection, then the function \(g \circ f : A \rightarrow C \) is also an injection.

Proof: Let \(f : A \rightarrow B \) and \(g : B \rightarrow C \) be arbitrary injections. We will prove that the function \(g \circ f : A \rightarrow C \) is also injective.

There are two definitions of injectivity that we can use here:

\[
\forall a_1 \in A. \forall a_2 \in A. \ ((g \circ f)(a_1) = (g \circ f)(a_2) \rightarrow a_1 = a_2)
\]

\[
\forall a_1 \in A. \forall a_2 \in A. \ (a_1 \neq a_2 \rightarrow (g \circ f)(a_1) \neq (g \circ f)(a_2))
\]

Therefore, we'll choose an arbitrary \(a_1, a_2 \in A \) where \(a_1 \neq a_2 \), then prove that \((g \circ f)(a_1) \neq (g \circ f)(a_2)\).
Theorem: If \(f : A \to B \) is an injection and \(g : B \to C \) is an injection, then the function \(g \circ f : A \to C \) is also an injection.

Proof: Let \(f : A \to B \) and \(g : B \to C \) be arbitrary injections. We will prove that the function \(g \circ f : A \to C \) is also injective. To do so, consider any \(a_1, a_2 \in A \) where \(a_1 \neq a_2 \).
Theorem: If $f : A \to B$ is an injection and $g : B \to C$ is an injection, then the function $g \circ f : A \to C$ is also an injection.

Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary injections. We will prove that the function $g \circ f : A \to C$ is also injective. To do so, consider any $a_1, a_2 \in A$ where $a_1 \neq a_2$. We will prove that $(g \circ f)(a_1) \neq (g \circ f)(a_2)$.

Since f is injective and $a_1 \neq a_2$, we see that $f(a_1) \neq f(a_2)$. Then, since g is injective and $f(a_1) \neq f(a_2)$, we see that $g(f(a_1)) \neq g(f(a_2))$, as required. ■
Theorem: If \(f : A \to B \) is an injection and \(g : B \to C \) is an injection, then the function \(g \circ f : A \to C \) is also an injection.

Proof: Let \(f : A \to B \) and \(g : B \to C \) be arbitrary injections. We will prove that the function \(g \circ f : A \to C \) is also injective. To do so, consider any \(a_1, a_2 \in A \) where \(a_1 \neq a_2 \). We will prove that \((g \circ f)(a_1) \neq (g \circ f)(a_2)\).

How is \((g \circ f)(x)\) defined?
Theorem: If $f : A \rightarrow B$ is an injection and $g : B \rightarrow C$ is an injection, then the function $g \circ f : A \rightarrow C$ is also an injection.

Proof: Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be arbitrary injections. We will prove that the function $g \circ f : A \rightarrow C$ is also injective. To do so, consider any $a_1, a_2 \in A$ where $a_1 \neq a_2$. We will prove that $(g \circ f)(a_1) \neq (g \circ f)(a_2)$.

How is $(g \circ f)(x)$ defined?

$$(g \circ f)(x) = g(f(x))$$
Theorem: If $f : A \to B$ is an injection and $g : B \to C$ is an injection, then the function $g \circ f : A \to C$ is also an injection.

Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary injections. We will prove that the function $g \circ f : A \to C$ is also injective. To do so, consider any $a_1, a_2 \in A$ where $a_1 \neq a_2$. We will prove that $(g \circ f)(a_1) \neq (g \circ f)(a_2)$.

How is $(g \circ f)(x)$ defined?

$$(g \circ f)(x) = g(f(x))$$

So we need to prove that $g(f(a_1)) \neq g(f(a_2))$.
Theorem: If $f : A \rightarrow B$ is an injection and $g : B \rightarrow C$ is an injection, then the function $g \circ f : A \rightarrow C$ is also an injection.

Proof: Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be arbitrary injections. We will prove that the function $g \circ f : A \rightarrow C$ is also injective. To do so, consider any $a_1, a_2 \in A$ where $a_1 \neq a_2$. We will prove that $(g \circ f)(a_1) \neq (g \circ f)(a_2)$. Equivalently, we need to show that $g(f(a_1)) \neq g(f(a_2))$.

How is $(g \circ f)(x)$ defined?

$$(g \circ f)(x) = g(f(x))$$

So we need to prove that $g(f(a_1)) \neq g(f(a_2))$.
Theorem: If $f : A \to B$ is an injection and $g : B \to C$ is an injection, then the function $g \circ f : A \to C$ is also an injection.

Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary injections. We will prove that the function $g \circ f : A \to C$ is also injective. To do so, consider any $a_1, a_2 \in A$ where $a_1 \neq a_2$. We will prove that $(g \circ f)(a_1) \neq (g \circ f)(a_2)$. Equivalently, we need to show that $g(f(a_1)) \neq g(f(a_2))$.

![Diagram](image)
Theorem: If \(f : A \rightarrow B \) is an injection and \(g : B \rightarrow C \) is an injection, then the function \(g \circ f : A \rightarrow C \) is also an injection.

Proof: Let \(f : A \rightarrow B \) and \(g : B \rightarrow C \) be arbitrary injections. We will prove that the function \(g \circ f : A \rightarrow C \) is also injective. To do so, consider any \(a_1, a_2 \in A \) where \(a_1 \neq a_2 \). We will prove that \((g \circ f)(a_1) \neq (g \circ f)(a_2)\). Equivalently, we need to show that \(g(f(a_1)) \neq g(f(a_2)) \).

Since \(f \) is injective and \(a_1 \neq a_2 \), we see that \(f(a_1) \neq f(a_2) \).
Theorem: If \(f : A \to B \) is an injection and \(g : B \to C \) is an injection, then the function \(g \circ f : A \to C \) is also an injection.

Proof: Let \(f : A \to B \) and \(g : B \to C \) be arbitrary injections. We will prove that the function \(g \circ f : A \to C \) is also injective. To do so, consider any \(a_1, a_2 \in A \) where \(a_1 \neq a_2 \). We will prove that \((g \circ f)(a_1) \neq (g \circ f)(a_2) \). Equivalently, we need to show that \(g(f(a_1)) \neq g(f(a_2)) \).

Since \(f \) is injective and \(a_1 \neq a_2 \), we see that \(f(a_1) \neq f(a_2) \). Then, since \(g \) is injective and \(f(a_1) \neq f(a_2) \), we see that \(g(f(a_1)) \neq g(f(a_2)) \), as required.
Theorem: If $f : A \rightarrow B$ is an injection and $g : B \rightarrow C$ is an injection, then the function $g \circ f : A \rightarrow C$ is also an injection.

Proof: Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be arbitrary injections. We will prove that the function $g \circ f : A \rightarrow C$ is also injective. To do so, consider any $a_1, a_2 \in A$ where $a_1 \neq a_2$. We will prove that $(g \circ f)(a_1) \neq (g \circ f)(a_2)$. Equivalently, we need to show that $g(f(a_1)) \neq g(f(a_2))$.

Since f is injective and $a_1 \neq a_2$, we see that $f(a_1) \neq f(a_2)$. Then, since g is injective and $f(a_1) \neq f(a_2)$, we see that $g(f(a_1)) \neq g(f(a_2))$, as required. ■
Theorem: If \(f : A \to B \) is an injection and \(g : B \to C \) is an injection, then the function \(g \circ f : A \to C \) is also an injection.

Proof: Let \(f : A \to B \) and \(g : B \to C \) be arbitrary injections. We will prove that the function \(g \circ f : A \to C \) is also injective. To do so, consider any \(a_1, a_2 \in A \) where \(a_1 \neq a_2 \). We will prove that \((g \circ f)(a_1) \neq (g \circ f)(a_2) \). Equivalently, we need to show that \(g(f(a_1)) \neq g(f(a_2)) \).

Since \(f \) is injective and \(a_1 \neq a_2 \), we see that \(f(a_1) \neq f(a_2) \). Then, since \(g \) is injective and \(f(a_1) \neq f(a_2) \), we see that \(g(f(a_1)) \neq g(f(a_2)) \), as required. ■

Great exercise: Repeat this proof using the other definition of injectivity.
Another Class of Functions
California
Mt. Lassen
Mt. Hood
Mt. St. Helens
Mt. Shasta

Washington

Oregon
Surjective Functions

- A function $f : A \rightarrow B$ is called **surjective** (or **onto**) if this first-order logic statement is true about f:

 $\forall b \in B. \exists a \in A. f(a) = b$

 ("For every possible output, there's at least one possible input that produces it")

- A function with this property is called a **surjection**.

- How does this compare to our first rule of functions?
Theorem: Let $f : \mathbb{R} \to \mathbb{R}$ be defined as $f(x) = x / 2$. Then $f(x)$ is surjective.
Theorem: Let \(f : \mathbb{R} \to \mathbb{R} \) be defined as \(f(x) = x / 2 \). Then \(f(x) \) is surjective.

Proof:
Surjective Functions

Theorem: Let \(f : \mathbb{R} \to \mathbb{R} \) be defined as \(f(x) = x / 2 \). Then \(f(x) \) is surjective.

Proof:

What does it mean for \(f \) to be surjective?
Surjective Functions

Theorem: Let $f : \mathbb{R} \to \mathbb{R}$ be defined as $f(x) = x / 2$. Then $f(x)$ is surjective.

Proof:

What does it mean for f to be surjective?

$\forall y \in \mathbb{R}. \exists x \in \mathbb{R}. f(x) = y$
Surjective Functions

Theorem: Let \(f : \mathbb{R} \to \mathbb{R} \) be defined as \(f(x) = x / 2 \). Then \(f(x) \) is surjective.

Proof:

What does it mean for \(f \) to be surjective?

\[\forall y \in \mathbb{R}. \exists x \in \mathbb{R}. f(x) = y \]

Therefore, we’ll choose an arbitrary \(y \in \mathbb{R} \), then prove that there is some \(x \in \mathbb{R} \) where \(f(x) = y \).
Surjective Functions

Theorem: Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be defined as $f(x) = x / 2$. Then $f(x)$ is surjective.

Proof:

What does it mean for f to be surjective?

$\forall y \in \mathbb{R}. \exists x \in \mathbb{R}. f(x) = y$

Therefore, we’ll choose an arbitrary $y \in \mathbb{R}$, then prove that there is some $x \in \mathbb{R}$ where $f(x) = y$.

```plaintext
What does it mean for f to be surjective?

$\forall y \in \mathbb{R}. \exists x \in \mathbb{R}. f(x) = y$

Therefore, we’ll choose an arbitrary $y \in \mathbb{R}$, then prove that there is some $x \in \mathbb{R}$ where $f(x) = y$.
```
Surjective Functions

Theorem: Let $f : \mathbb{R} \to \mathbb{R}$ be defined as $f(x) = x / 2$. Then $f(x)$ is surjective.

Proof:

What does it mean for f to be surjective?

\[
\forall y \in \mathbb{R}. \exists x \in \mathbb{R}. f(x) = y
\]

Therefore, we’ll choose an arbitrary $y \in \mathbb{R}$, then prove that there is some $x \in \mathbb{R}$ where $f(x) = y$.
Surjective Functions

Theorem: Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be defined as $f(x) = x / 2$. Then $f(x)$ is surjective.

Proof:

What does it mean for f to be surjective?

$$\forall y \in \mathbb{R}. \exists x \in \mathbb{R}. f(x) = y$$

Therefore, we'll choose an arbitrary $y \in \mathbb{R}$, then prove that there is some $x \in \mathbb{R}$ where $f(x) = y$.
Surjective Functions

Theorem: Let \(f : \mathbb{R} \to \mathbb{R} \) be defined as \(f(x) = x / 2 \). Then \(f(x) \) is surjective.

Proof: Consider any \(y \in \mathbb{R} \).
Surjective Functions

Theorem: Let $f : \mathbb{R} \to \mathbb{R}$ be defined as $f(x) = x / 2$. Then $f(x)$ is surjective.

Proof: Consider any $y \in \mathbb{R}$. We will prove that there is a choice of $x \in \mathbb{R}$ such that $f(x) = y$. Let $x = 2y$. Then we see that $f(x) = f(2y) = 2y / 2 = y$. So $f(x) = y$, as required. ■
Theorem: Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be defined as $f(x) = x / 2$. Then $f(x)$ is surjective.

Proof: Consider any $y \in \mathbb{R}$. We will prove that there is a choice of $x \in \mathbb{R}$ such that $f(x) = y$.

Let $x = 2y$.
Surjective Functions

Theorem: Let $f : \mathbb{R} \to \mathbb{R}$ be defined as $f(x) = x / 2$. Then $f(x)$ is surjective.

Proof: Consider any $y \in \mathbb{R}$. We will prove that there is a choice of $x \in \mathbb{R}$ such that $f(x) = y$.

Let $x = 2y$. Then we see that

$$f(x) = f(2y)$$
Theorem: Let $f : \mathbb{R} \to \mathbb{R}$ be defined as $f(x) = x / 2$. Then $f(x)$ is surjective.

Proof: Consider any $y \in \mathbb{R}$. We will prove that there is a choice of $x \in \mathbb{R}$ such that $f(x) = y$.

Let $x = 2y$. Then we see that

$$f(x) = f(2y) = 2y / 2$$
Theorem: Let $f : \mathbb{R} \to \mathbb{R}$ be defined as $f(x) = x / 2$. Then $f(x)$ is surjective.

Proof: Consider any $y \in \mathbb{R}$. We will prove that there is a choice of $x \in \mathbb{R}$ such that $f(x) = y$.

Let $x = 2y$. Then we see that

$$f(x) = f(2y) = 2y / 2 = y.$$
Theorem: Let $f : \mathbb{R} \to \mathbb{R}$ be defined as $f(x) = x / 2$. Then $f(x)$ is surjective.

Proof: Consider any $y \in \mathbb{R}$. We will prove that there is a choice of $x \in \mathbb{R}$ such that $f(x) = y$. Let $x = 2y$. Then we see that

$$f(x) = f(2y) = 2y / 2 = y.$$

So $f(x) = y$, as required.
Theorem: Let $f : \mathbb{R} \to \mathbb{R}$ be defined as $f(x) = x / 2$. Then $f(x)$ is surjective.

Proof: Consider any $y \in \mathbb{R}$. We will prove that there is a choice of $x \in \mathbb{R}$ such that $f(x) = y$.

Let $x = 2y$. Then we see that

$$f(x) = f(2y) = 2y / 2 = y.$$

So $f(x) = y$, as required. ■
Composing Surjections
Theorem: If \(f : A \to B \) is surjective and \(g : B \to C \) is surjective, then \(g \circ f : A \to C \) is also surjective.
Theorem: If $f : A \to B$ is surjective and $g : B \to C$ is surjective, then $g \circ f : A \to C$ is also surjective.

Proof:
Theorem: If $f : A \to B$ is surjective and $g : B \to C$ is surjective, then $g \circ f : A \to C$ is also surjective.

Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary surjections.
Theorem: If \(f : A \to B \) is surjective and \(g : B \to C \) is surjective, then \(g \circ f : A \to C \) is also surjective.

Proof: Let \(f : A \to B \) and \(g : B \to C \) be arbitrary surjections. We will prove that the function \(g \circ f : A \to C \) is also surjective.
Theorem: If $f : A \to B$ is surjective and $g : B \to C$ is surjective, then $g \circ f : A \to C$ is also surjective.

Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary surjections. We will prove that the function $g \circ f : A \to C$ is also surjective.

What does it mean for $g \circ f : A \to C$ to be surjective?
Theorem: If $f : A \to B$ is surjective and $g : B \to C$ is surjective, then $g \circ f : A \to C$ is also surjective.

Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary surjections. We will prove that the function $g \circ f : A \to C$ is also surjective.

What does it mean for $g \circ f : A \to C$ to be surjective?

\[
\forall c \in C. \exists a \in A. (g \circ f)(a) = c
\]
Theorem: If \(f : A \to B \) is surjective and \(g : B \to C \) is surjective, then \(g \circ f : A \to C \) is also surjective.

Proof: Let \(f : A \to B \) and \(g : B \to C \) be arbitrary surjections. We will prove that the function \(g \circ f : A \to C \) is also surjective.

What does it mean for \(g \circ f : A \to C \) to be surjective?

\[
\forall c \in C. \exists a \in A. (g \circ f)(a) = c
\]

Therefore, we’ll choose arbitrary \(c \in C \) and prove that there is some \(a \in A \) such that \((g \circ f)(a) = c \).
Theorem: If $f : A \to B$ is surjective and $g : B \to C$ is surjective, then $g \circ f : A \to C$ is also surjective.

Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary surjections. We will prove that the function $g \circ f : A \to C$ is also surjective. To do so, we will prove that for any $c \in C$, there is some $a \in A$ such that $(g \circ f)(a) = c$.

Consider any $c \in C$. Since $g : B \to C$ is surjective, there is some $b \in B$ such that $g(b) = c$. Similarly, since $f : A \to B$ is surjective, there is some $a \in A$ such that $f(a) = b$. This means that there is some $a \in A$ such that $g(f(a)) = g(b) = c$, which is what we needed to show. ■
Theorem: If \(f : A \to B \) is surjective and \(g : B \to C \) is surjective, then \(g \circ f : A \to C \) is also surjective.

Proof: Let \(f : A \to B \) and \(g : B \to C \) be arbitrary surjections. We will prove that the function \(g \circ f : A \to C \) is also surjective. To do so, we will prove that for any \(c \in C \), there is some \(a \in A \) such that \((g \circ f)(a) = c\). Equivalently, we will prove that for any \(c \in C \), there is some \(a \in A \) such that \(g(f(a)) = c \).
Theorem: If \(f : A \to B \) is surjective and \(g : B \to C \) is surjective, then \(g \circ f : A \to C \) is also surjective.

Proof: Let \(f : A \to B \) and \(g : B \to C \) be arbitrary surjections. We will prove that the function \(g \circ f : A \to C \) is also surjective. To do so, we will prove that for any \(c \in C \), there is some \(a \in A \) such that \((g \circ f)(a) = c\). Equivalently, we will prove that for any \(c \in C \), there is some \(a \in A \) such that \(g(f(a)) = c \).
Theorem: If $f : A \to B$ is surjective and $g : B \to C$ is surjective, then $g \circ f : A \to C$ is also surjective.

Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary surjections. We will prove that the function $g \circ f : A \to C$ is also surjective. To do so, we will prove that for any $c \in C$, there is some $a \in A$ such that $(g \circ f)(a) = c$. Equivalently, we will prove that for any $c \in C$, there is some $a \in A$ such that $g(f(a)) = c$.
Theorem: If $f : A \rightarrow B$ is surjective and $g : B \rightarrow C$ is surjective, then $g \circ f : A \rightarrow C$ is also surjective.

Proof: Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be arbitrary surjections. We will prove that the function $g \circ f : A \rightarrow C$ is also surjective. To do so, we will prove that for any $c \in C$, there is some $a \in A$ such that $(g \circ f)(a) = c$. Equivalently, we will prove that for any $c \in C$, there is some $a \in A$ such that $g(f(a)) = c$.

![Diagram](image-url)
Theorem: If \(f : A \to B \) is surjective and \(g : B \to C \) is surjective, then \(g \circ f : A \to C \) is also surjective.

Proof: Let \(f : A \to B \) and \(g : B \to C \) be arbitrary surjections. We will prove that the function \(g \circ f : A \to C \) is also surjective. To do so, we will prove that for any \(c \in C \), there is some \(a \in A \) such that \((g \circ f)(a) = c\). Equivalently, we will prove that for any \(c \in C \), there is some \(a \in A \) such that \(g(f(a)) = c \).
Theorem: If \(f : A \to B \) is surjective and \(g : B \to C \) is surjective, then \(g \circ f : A \to C \) is also surjective.

Proof: Let \(f : A \to B \) and \(g : B \to C \) be arbitrary surjections. We will prove that the function \(g \circ f : A \to C \) is also surjective. To do so, we will prove that for any \(c \in C \), there is some \(a \in A \) such that \((g \circ f)(a) = c\). Equivalently, we will prove that for any \(c \in C \), there is some \(a \in A \) such that \(g(f(a)) = c \).
Theorem: If \(f : A \to B \) is surjective and \(g : B \to C \) is surjective, then \(g \circ f : A \to C \) is also surjective.

Proof: Let \(f : A \to B \) and \(g : B \to C \) be arbitrary surjections. We will prove that the function \(g \circ f : A \to C \) is also surjective. To do so, we will prove that for any \(c \in C \), there is some \(a \in A \) such that \((g \circ f)(a) = c\). Equivalently, we will prove that for any \(c \in C \), there is some \(a \in A \) such that \(g(f(a)) = c \).
Theorem: If \(f: A \to B \) is surjective and \(g: B \to C \) is surjective, then \(g \circ f: A \to C \) is also surjective.

Proof: Let \(f: A \to B \) and \(g: B \to C \) be arbitrary surjections. We will prove that the function \(g \circ f: A \to C \) is also surjective. To do so, we will prove that for any \(c \in C \), there is some \(a \in A \) such that \((g \circ f)(a) = c\). Equivalently, we will prove that for any \(c \in C \), there is some \(a \in A \) such that \(g(f(a)) = c \).

![Diagram showing surjective functions](image)
Theorem: If \(f : A \to B \) is surjective and \(g : B \to C \) is surjective, then \(g \circ f : A \to C \) is also surjective.

Proof: Let \(f : A \to B \) and \(g : B \to C \) be arbitrary surjections. We will prove that the function \(g \circ f : A \to C \) is also surjective. To do so, we will prove that for any \(c \in C \), there is some \(a \in A \) such that \((g \circ f)(a) = c \). Equivalently, we will prove that for any \(c \in C \), there is some \(a \in A \) such that \(g(f(a)) = c \).

Consider any \(c \in C \).
Theorem: If $f : A \to B$ is surjective and $g : B \to C$ is surjective, then $g \circ f : A \to C$ is also surjective.

Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary surjections. We will prove that the function $g \circ f : A \to C$ is also surjective. To do so, we will prove that for any $c \in C$, there is some $a \in A$ such that $(g \circ f)(a) = c$. Equivalently, we will prove that for any $c \in C$, there is some $a \in A$ such that $g(f(a)) = c$.

Consider any $c \in C$. Since $g : B \to C$ is surjective, there is some $b \in B$ such that $g(b) = c$.
Theorem: If $f : A \to B$ is surjective and $g : B \to C$ is surjective, then $g \circ f : A \to C$ is also surjective.

Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary surjections. We will prove that the function $g \circ f : A \to C$ is also surjective. To do so, we will prove that for any $c \in C$, there is some $a \in A$ such that $(g \circ f)(a) = c$. Equivalently, we will prove that for any $c \in C$, there is some $a \in A$ such that $g(f(a)) = c$.

Consider any $c \in C$. Since $g : B \to C$ is surjective, there is some $b \in B$ such that $g(b) = c$. Similarly, since $f : A \to B$ is surjective, there is some $a \in A$ such that $f(a) = b$.
Theorem: If \(f : A \to B \) is surjective and \(g : B \to C \) is surjective, then \(g \circ f : A \to C \) is also surjective.

Proof: Let \(f : A \to B \) and \(g : B \to C \) be arbitrary surjections. We will prove that the function \(g \circ f : A \to C \) is also surjective. To do so, we will prove that for any \(c \in C \), there is some \(a \in A \) such that \((g \circ f)(a) = c\). Equivalently, we will prove that for any \(c \in C \), there is some \(a \in A \) such that \(g(f(a)) = c \).

Consider any \(c \in C \). Since \(g : B \to C \) is surjective, there is some \(b \in B \) such that \(g(b) = c \). Similarly, since \(f : A \to B \) is surjective, there is some \(a \in A \) such that \(f(a) = b \). This means that there is some \(a \in A \) such that

\[
g(f(a)) = g(b) = c,
\]

which is what we needed to show.
Theorem: If $f : A \to B$ is surjective and $g : B \to C$ is surjective, then $g \circ f : A \to C$ is also surjective.

Proof: Let $f : A \to B$ and $g : B \to C$ be arbitrary surjections. We will prove that the function $g \circ f : A \to C$ is also surjective. To do so, we will prove that for any $c \in C$, there is some $a \in A$ such that $(g \circ f)(a) = c$. Equivalently, we will prove that for any $c \in C$, there is some $a \in A$ such that $g(f(a)) = c$.

Consider any $c \in C$. Since $g : B \to C$ is surjective, there is some $b \in B$ such that $g(b) = c$. Similarly, since $f : A \to B$ is surjective, there is some $a \in A$ such that $f(a) = b$. This means that there is some $a \in A$ such that

$$g(f(a)) = g(b) = c,$$

which is what we needed to show. ■
Injections and Surjections

• An injective function associates \textit{at most} one element of the domain with each element of the codomain.

• A surjective function associates \textit{at least} one element of the domain with each element of the codomain.

• What about functions that associate \textit{exactly one} element of the domain with each element of the codomain?
Bijectons

- A function that associates each element of the codomain with a unique element of the domain is called **bijective**.
 - Such a function is a **bijection**.
- Formally, a bijection is a function that is both **injective** and **surjective**.
- Bijections are sometimes called **one-to-one correspondences**.
 - Not to be confused with “one-to-one functions.”
Bijections and Composition

• Suppose that $f : A \rightarrow B$ and $g : B \rightarrow C$ are bijections.

• Is $g \circ f$ necessarily a bijection?

• Yes!
 • Since both f and g are injective, we know that $g \circ f$ is injective.
 • Since both f and g are surjective, we know that $g \circ f$ is surjective.
 • Therefore, $g \circ f$ is a bijection.
Inverse Functions
Mercury
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune
♀
♂
♃
♄
♆
Mt. Lassen

Mt. Hood

Mt. St. Helens

Mt. Shasta

California

Washington

Oregon
Inverse Functions

• In some cases, it's possible to “turn a function around.”
• Let $f : A \rightarrow B$ be a function. A function $f^{-1} : B \rightarrow A$ is called an inverse of f if the following first-order logic statements are true about f and f^{-1}

$$\forall a \in A. \ (f^{-1}(f(a)) = a) \quad \forall b \in B. \ (f(f^{-1}(b)) = b)$$

• In other words, if f maps a to b, then f^{-1} maps b back to a and vice-versa.
• Not all functions have inverses (we just saw a few examples of functions with no inverses).
• If f is a function that has an inverse, then we say that f is invertible.
Inverse Functions

• **Theorem:** Let $f : A \rightarrow B$. Then f is invertible if and only if f is a bijection.

• These proofs are in the course reader. Feel free to check them out if you'd like!

• **Really cool observation:** Look at the formal definition of a function. Look at the rules for injectivity and surjectivity. Do you see why this result makes sense?
Where We Are

- We now know
 - what an injection, surjection, and bijection are;
 - that the composition of two injections, surjections, or bijections is also an injection, surjection, or bijection, respectively; and
 - that bijections are invertible and invertible functions are bijections.

- You might wonder why this all matters. Well, there's a good reason...
Next Time

- **Cardinality, Formally**
 - How do we rigorously define the idea that two sets have the same size?

- **The Nature of Infinity**
 - ... is even weirder than you think!

- **Cantor’s Theorem Revisited**
 - A formal proof of Cantor’s theorem!