Finite Automata
Part Two
Recap from Last Time
DFAs

- A **DFA** is a
 - Deterministic
 - Finite
 - Automaton

- DFAs are the simplest type of automaton that we will see in this course.
DFAs

- A DFA is defined relative to some alphabet Σ.
- For each state in the DFA, there must be exactly one transition defined for each symbol in Σ.
 - This is the “deterministic” part of DFA.
- There is a unique start state.
- There are zero or more accepting states.
If D is a DFA, the **language of D**, denoted $\mathcal{L}(D)$, is \{ $w \in \Sigma^*$ | D accepts w \}.

A language L is called a **regular language** if there exists a DFA D such that $\mathcal{L}(D) = L$.
NFAs

• An **NFA** is a
 • **N**ondeterministic
 • **F**inite
 • **A**utomaton

• Can have missing transitions or multiple transitions defined on the same input symbol.

• Accepts if *any possible series of choices* leads to an accepting state.
New Stuff!
Intuiting Nondeterminism

- Nondeterministic machines are a serious departure from physical computers. How can we build up an intuition for them?
- There are two particularly useful frameworks for interpreting nondeterminism:
 - Perfect positive guessing
 - Massive parallelism
Perfect Positive Guessing

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\Sigma \xrightarrow{\text{start}} q_0 \]

\[\Sigma \]
Perfect Positive Guessing

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

Input alphabet: \(\Sigma \)

States transition:
- Start state: \(q_0 \)
- \(q_0 \) to \(q_1 \): on input 'a'
- \(q_1 \) to \(q_2 \): on input 'b'
- \(q_2 \) to \(q_3 \): on input 'a'
- \(q_3 \) is a loop on 'a'

Input sequence: \(a \ b \ a \ b \ a \ b \ a \ a \)
Perfect Positive Guessing
Perfect Positive Guessing

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\Sigma \]

\[a \ b \ a \ b \ a \ b \ a \]
Perfect Positive Guessing

\[
q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3
\]

\[\Sigma\]

\[
\begin{array}{ccccccc}
a & b & a & b & a & b & a \\
\end{array}
\]
Perfect Positive Guessing

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\Sigma \]

\[\text{start} \]

\[q_0 \quad q_1 \quad q_2 \quad q_3 \]

Input sequence: \[a \ b \ a \ b \ a \ b \ a \]
Perfect Positive Guessing

\[q_0 \rightarrow a q_1 \rightarrow b q_2 \rightarrow a q_3 \]

\[\Sigma \]

\[\text{a b a b a b a a} \]
Perfect Positive Guessing

Transition:
- $q_0 \xrightarrow{a} q_1$
- $q_1 \xrightarrow{b} q_2$
- $q_2 \xrightarrow{a} q_3$

Input alphabet: $\Sigma = \{a, b\}$

Sequence: $abaaba$
Perfect Positive Guessing

Start

$q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3$

$a \ b \ a \ b \ a \ b \ a$
Perfect Positive Guessing

\[a \rightarrow b \rightarrow a \rightarrow b \rightarrow a \rightarrow a \]
Perfect Positive Guessing

State transition diagram:
- Start state: q_0
- States: q_0, q_1, q_2, q_3
- Transitions:
 - $q_0 \xrightarrow{a} q_1$
 - $q_1 \xrightarrow{b} q_2$
 - $q_2 \xrightarrow{a} q_3$

Input alphabet: $\Sigma = \{a, b\}$

Strings: $a b a b a b a a$
Perfect Positive Guessing

- We can view nondeterministic machines as having *Magic Superpowers* that enable them to guess choices that lead to an accepting state.
 - If there is at least one choice that leads to an accepting state, the machine will guess it.
 - If there are no choices, the machine guesses any one of the wrong guesses.
- There is no known way to physically model this intuition of nondeterminism – this is quite a departure from reality!
Massive Parallelism

State Transition Diagram

- **Start State:** q_0
- **States:** q_0, q_1, q_2, q_3
- **Transitions:**
 - $q_0 \xrightarrow{a} q_1$
 - $q_1 \xrightarrow{b} q_2$
 - $q_2 \xrightarrow{a} q_3$

- **Input Alphabet:** $\Sigma = \{a, b\}$

Sample Input String

- $a b a b a a$

The diagram illustrates a finite automaton with states $q_0, q_1, q_2,$ and q_3, where q_0 is the start state, and q_3 is the only accepting state. The input symbols a and b transition between states according to the labeled arrows.
Massive Parallelism

\[
\begin{align*}
\Sigma \\
q_0 &\xrightarrow{a} q_1 \\
q_1 &\xrightarrow{b} q_2 \\
q_2 &\xrightarrow{a} q_3
\end{align*}
\]

Input:
\[
a b a b a b a
\]
Massive Parallelism

\[\sum \]

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\text{start} \]

\[a \ b \ a \ b \ a \ a \]
Massive Parallelism

\[\sum \]

\[q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \]

\[a b a b a b a a \]
Massive Parallelism

The diagram shows a transition diagram with states $q_0, q_1, q_2,$ and q_3, and transitions labeled with symbols a and b. The input alphabet is denoted as \sum. The transitions are as follows:

- From q_0 to q_1 with input a.
- From q_1 to q_2 with input b.
- From q_2 to q_3 with input a.
- From q_3 back to q_0 with a loop.

The sequence of symbols on the path is $a b a b a b a$. The diagram illustrates the concept of massive parallelism, where multiple states can be active simultaneously, representing parallel execution.
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

Start

\[\Sigma \]

Input:

\[a \ b \ a \ b \ a \ b \ a \]

Next state:

\[q_3 \]
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\Sigma \]

\[a \ b \ a \ b \ a \]

\[\uparrow \]
Massive Parallelism

\[\sum \]

\[q_0 \rightarrow a \rightarrow q_1 \rightarrow b \rightarrow q_2 \rightarrow a \rightarrow q_3 \]

\[a b a b a b a \]
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

- \(\Sigma \)
- start
- \(q_0 \)
- \(q_1 \)
- \(q_2 \)
- \(q_3 \)

Input sequence: \(abaaba \)
Massive Parallelism

\[\Sigma \]

\[q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \]

Input sequence: \[a \ b \ a \ b \ a \ b \ a \ a \]
Massive Parallelism

\[q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \]

\[\Sigma \]

Start

\[a \ b \ a \ b \ a \ b \ a \]

\[\rightarrow \]
Massive Parallelism

\[\text{start} \rightarrow q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

Input sequence: \[a \ b \ a \ b \ a \ b \ a \]
Massive Parallelism

\[\sum \]

\[
\begin{array}{c}
start \\
q_0 \rightarrow a \rightarrow q_1 \rightarrow b \rightarrow q_2 \rightarrow a \rightarrow q_3
\end{array}
\]

\[
\text{a b a b a a}
\]
Massive Parallelism

\[\Sigma \]

- Start: \(q_0 \) → \(q_1 \) → \(q_2 \) → \(q_3 \)

Input: a b a b a b a a
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\Sigma \]

\begin{array}{ccccccc}
\text{a} & \text{b} & \text{a} & \text{b} & \text{a} & \text{b} & \text{a} \\
\end{array}
Massive Parallelism

Diagram Description:
- Initial state: q_0
- Transition: $a \rightarrow q_1$
- Transition: $b \rightarrow q_2$
- Transition: $a \rightarrow q_3$
- Input symbols: Σ
- String input: $abaaba$
Massive Parallelism

\[\Sigma \]

\[q_0 \overset{a}{\rightarrow} q_1 \overset{b}{\rightarrow} q_2 \overset{a}{\rightarrow} q_3 \]

\[a \quad b \quad a \quad b \quad a \quad a \]
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

Input string: \text{a b a b a b a a}
Massive Parallelism

\[\sum \]

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[a \ b \ a \ b \ a \ b \ a \]
Massive Parallelism

\[a \overset{\text{a}}{\longrightarrow} q_0 \overset{\text{a}}{\longrightarrow} q_1 \overset{\text{b}}{\longrightarrow} q_2 \overset{\text{a}}{\longrightarrow} q_3 \]

\(a \ b \ a \ b \ a \ b \ a \ a \)
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

Start state: \(q_0 \)

Input alphabet: \(\Sigma \)

Sequence of inputs: \(ababaaba \)
Massive Parallelism

\[
\begin{align*}
\sum & \quad a \\
q_0 & \quad a \\
q_1 & \quad b \\
q_2 & \quad a \\
q_3 & \quad \\
\end{align*}
\]

a b a b a b a
Massive Parallelism

\[\Sigma \]

\begin{align*}
&\text{Start} \\
&q_0 \xrightarrow{a} q_1 \\
&q_1 \xrightarrow{b} q_2 \\
&q_2 \xrightarrow{a} q_3 \\
\end{align*}

\[a \ b \ a \ b \ a \ b \ a \ b \ a \]
Massive Parallelism

\[a \quad b \quad a \quad b \quad a \quad b \quad a \]
Using the massive parallelism intuition, if we are in the states q_0 and q_2, what set of states will we be in after reading the character a?

Respond at pollev.com/zhenglian740
Massive Parallelism

\begin{align*}
\Sigma \\
\text{start} & \rightarrow q_0 \quad a \quad q_1 \quad b \quad q_2 \quad a \quad q_3 \\
\text{a b a b a b a a}
\end{align*}
Massive Parallelism

\[\sum \]

\[\begin{array}{c}
q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \\
\end{array} \]

\[\begin{array}{ccccccc}
a & b & a & b & a & b & a \\
\end{array} \]
Massive Parallelism

\[
\begin{align*}
\Sigma & \rightarrow q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \\
\end{align*}
\]

\[
\begin{array}{cccccc}
 a & b & a & b & a & a \\
\end{array}
\]
Massive Parallelism

\[q_0 \xrightarrow{\text{a}} q_1 \xrightarrow{\text{b}} q_2 \xrightarrow{\text{a}} q_3 \]

\[\sum \]

\[\text{start} \]

\[a \ b \ a \ b \ a \ b \ a \ b \ a \]
Massive Parallelism

\[\Sigma \]

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[a \ b \ a \ b \ a \ a \]

\[\text{start} \]
Massive Parallelism

We're in at least one accepting state, so there's some path that gets us to an accepting state.
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

Input symbols: \(\Sigma \)

Input sequence: a b a b b
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\Sigma \]

\[
\begin{align*}
q_0 & \quad q_1 & \quad q_2 & \quad q_3 \\
a & \quad b & \quad a & \\
\end{align*}
\]
Massive Parallelism

\[\sum \]

- start \rightarrow q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3
 - a \rightarrow q_1
 - b \rightarrow q_2
 - a \rightarrow q_3

Input sequence: a b a b b
Massive Parallelism

\[q_3 \rightarrow q_2 \rightarrow q_1 \rightarrow q_0 \rightarrow \Sigma \]

Start

\[a \rightarrow b \rightarrow a \rightarrow b \]

\[q_3 \]
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\sum \]

\[
\begin{array}{cccc}
a & b & a & b \\
\end{array}
\]
Massive Parallelism

\[
\begin{align*}
q_0 &\xrightarrow{a} q_1 & q_1 &\xrightarrow{b} q_2 & q_2 &\xrightarrow{a} q_3 \\
\text{start} &\xrightarrow{\Sigma} q_0 & q_1 & q_2 & q_3
\end{align*}
\]
Massive Parallelism

\[\sum \]

\[q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \]

\[\text{start} \]

\[a \rightarrow b \rightarrow a \rightarrow b \]

\[a \quad b \quad a \quad b \]
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\Sigma \]

Start

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>a</th>
<th>b</th>
<th>b</th>
</tr>
</thead>
</table>
Massive Parallelism

\[\Sigma \]

\begin{align*}
\text{start} & \quad \xrightarrow{a} \quad q_0 \\
q_0 & \quad \xrightarrow{a} \quad q_1 \\
q_1 & \quad \xrightarrow{b} \quad q_2 \\
q_2 & \quad \xrightarrow{a} \quad q_3
\end{align*}

\[a \ b \ a \ b \ b \ a \ b \]
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

Input: \[\sum \]

Input strings:

\[a \ b \ a \ b \ a \ b \]
Massive Parallelism
Massive Parallelism

\[\Sigma \]

start \[q_0 \] a \[q_1 \] b \[q_2 \] a \[q_3 \]

\[a \ b \ a \ b \]

\[\text{a} \ b \ a \ b \]
Massive Parallelism

The diagram shows a transition from state q_0 to q_3 with labels a, b, and a on the transitions. The start state is q_0. The input alphabet is denoted by Σ. The sequence of labels read from left to right is $a b a b$.
Massive Parallelism
Massive Parallelism

\[\Sigma \]

\[
\begin{array}{c}
\text{start} \\
q_0 \\
q_1 \\
q_2 \\
q_3
\end{array}
\]

\[
\begin{array}{c}
a \\
b \\
a \\
\text{b} \text{b} \text{b} \text{b} \text{a}
\end{array}
\]
Massive Parallelism

```
a b a b
```

Diagram:

- Start at q_0
- Transition on a to q_1
- Transition on b to q_2
- Transition on a to q_3
- Transition on Σ to q_0
Massive Parallelism

\[q_3 \]

\[q_2 \]

\[q_1 \]

\[q_0 \]

start

\(\Sigma \)

- a
- b
- a
- b
- a
- b
- b
Massive Parallelism
Massive Parallelism

\[\Sigma \]

- Start: \(q_0 \) to \(q_1 \) on 'a'
- \(q_1 \) to \(q_2 \) on 'b'
- \(q_2 \) to \(q_3 \) on 'a'

Input sequence: \(a \ b \ a \ b \ a \ b \)
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

Transition:
- \(q_0 \) to \(q_1 \) on input 'a'
- \(q_1 \) to \(q_2 \) on input 'b'
- \(q_2 \) to \(q_3 \) on input 'a'

Symbols:
- \(\Sigma \) for input alphabet
- 'a', 'b' for input symbols
Massive Parallelism

\[\Sigma \]

Start \rightarrow q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3

\(a b a b a b \)
Massive Parallelism

\[\Sigma \]

\[
\begin{array}{c}
\text{start} \\
q_0 \rightarrow \text{a} \rightarrow q_1 \rightarrow \text{b} \rightarrow q_2 \rightarrow \text{a} \rightarrow q_3
\end{array}
\]

\[
\begin{array}{ccccccc}
a & b & a & b & a & b
\end{array}
\]
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\Sigma \]

Start

a	b	a	b

|

\[q_0 \]

\[q_1 \]

\[q_2 \]

\[q_3 \]
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

Input alphabet: \(\Sigma \)

States: \(q_0, q_1, q_2, q_3 \)

Transitions:
- \(q_0 \xrightarrow{a} q_1 \)
- \(q_1 \xrightarrow{b} q_2 \)
- \(q_2 \xrightarrow{a} q_3 \)

Final state: \(q_3 \)

Input sequence: \(a b a b b \)
Massive Parallelism

We're not in any accepting state, so no possible path accepts.

\[\Sigma \]

\begin{align*}
 q_0 & \xrightarrow{a} q_1 & q_1 & \xrightarrow{b} q_2 & q_2 & \xrightarrow{a} q_3 \\
 \text{start} & & & & & \text{We're not in any accepting state, so no possible path accepts.}
\end{align*}
Massive Parallelism

- An NFA can be thought of as a DFA that can be in many states at once.
- At each point in time, when the NFA needs to follow a transition, it tries all the options at the same time.
- (Here's a rigorous explanation about how this works; read this on your own time).
 - Start off in the set of all states formed by taking the start state and including each state that can be reached by zero or more ε-transitions.
 - When you read a symbol a in a set of states S:
 - Form the set S' of states that can be reached by following a single a transition from some state in S.
 - Your new set of states is the set of states in S', plus the states reachable from S' by following zero or more ε-transitions.
Designing NFAs

• *Embrace the nondeterminism!*

• Good model: *Guess-and-check*:

 • Is there some information that you'd really like to have? Have the machine *nondeterministically guess* that information.

 • Then, have the machine *deterministically check* that the choice was correct.

• The *guess* phase corresponds to trying lots of different options.

• The *check* phase corresponds to filtering out bad guesses or wrong options.
Guess-and-Check

$L = \{ \; w \in \{0, 1\}^* \mid w \text{ ends in } 010 \text{ or } 101 \; \}$
Guess-and-Check

\[L = \{ w \in \{0, 1\}^* \mid w \text{ ends in } 010 \text{ or } 101 \} \]
$$L = \{ \ w \in \{0, 1\}^* \mid w \text{ ends in 010 or 101 } \}$$
Guess-and-Check

\[L = \{ w \in \{0, 1\}^* \mid w \text{ ends in } 010 \text{ or } 101 \} \]

Which of these states should we mark as accepting states?

Respond at pollev.com/zhenglian740
Guess-and-Check

$L = \{ w \in \{0, 1\}^* | w \text{ ends in } 010 \text{ or } 101 \}$

Nondeterministically **guess** when the end of the string is coming up.

Deterministically **check** whether you were correct.
Guess-and-Check

\[\mathcal{L} = \left\{ w \in \{0, 1\}^* \mid w \text{ ends in } 010 \text{ or } 101 \right\} \]
Guess-and-Check

$L = \{ w \in \{0, 1\}^* \mid w \text{ ends in } 010 \text{ or } 101 \}$
Guess-and-Check

\[L = \{ \ w \in \{0, 1\}^* \mid \ w \text{ ends in } 010 \text{ or } 101 \ \} \]
Guess-and-Check

$L = \{ w \in \{0, 1\}^* \mid w \text{ ends in } 010 \text{ or } 101 \}$
Guess-and-Check

\[L = \{ \ w \in \{0,1\}^* \mid w \text{ ends in } 010 \text{ or } 101 \} \]
Guess-and-Check

$L = \{ w \in \{0, 1\}^* | w \text{ ends in } 010 \text{ or } 101 \}$
Guess-and-Check

\[L = \{ w \in \{0, 1\}^* \mid w \text{ ends in } 010 \text{ or } 101 \} \]
Guess-and-Check

$L = \{ w \in \{0, 1\}^* \mid w \text{ ends in } 010 \text{ or } 101 \}$
Guess-and-Check

\[L = \{ w \in \{0, 1\}^* \mid w \text{ ends in } 010 \text{ or } 101 \} \]
$L = \{ \ w \in \{0, 1\}^* \mid w \text{ ends in } 010 \text{ or } 101 \ \}$
Guess-and-Check

\[L = \{ \, w \in \{0, 1\}^* \mid w \text{ ends in } 010 \text{ or } 101 \, \} \]
Guess-and-Check

$L = \{ w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \}$
$L = \{ w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \}$
\[L = \{ w \in \{a, b, c\}* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \} \]
Guess-and-Check

\[L = \{ w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \} \]
Guess-and-Check

$L = \{ w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \}$
Guess-and-Check

\[L = \{ w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \} \]
Guess-and-Check

\[L = \{ w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \} \]
$L = \{ w \in \{a, b, c\}^* | \text{at least one of } a, b, \text{ or } c \text{ is not in } w \}$
Guess-and-Check

\[L = \{ w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \} \]
Guess-and-Check

\[L = \{ w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \} \]
Guess-and-Check

$L = \{ \ w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \ \}$
Time-Out For Announcements!
Midterm Exam on Friday!

- Our midterm exam will be on Friday, July 26th from 5:00 – 8:00 PM in Hewlett 201 (our normal lecture room).
- You’re responsible for lectures up to the end of week 3 and topics from PS1 – PS3. Later lectures and problem sets won’t be tested here. Exam problems may build on the written or coding components from the problem sets.
- The exam is open-book, open-note, and closed-other-humans/AI.
Back to CS103!
Just how powerful are NFAs?
NFAs and DFAs

- Any language that can be accepted by a DFA can be accepted by an NFA.
- Why?
 - Every DFA essentially already is an NFA!
- Question: Can any language accepted by an NFA also be accepted by a DFA?
- Surprisingly, the answer is yes!
Thought Experiment:
How would you simulate a finite automata in software?
Tabular DFAs

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q_3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabular DFAs

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>q_1</td>
<td>q_0</td>
</tr>
<tr>
<td>q_1</td>
<td>q_3</td>
<td>q_2</td>
</tr>
<tr>
<td>q_2</td>
<td>q_3</td>
<td>q_0</td>
</tr>
<tr>
<td>q_3</td>
<td>q_3</td>
<td>q_3</td>
</tr>
</tbody>
</table>
Tabular DFAs
Tabular DFAs

These stars indicate accepting states.
Tabular DFAs

Since this is the first row, it's the start state.

The diagram shows a finite automaton with states q_0, q_1, q_2, and q_3. The transitions are labeled with symbols 0 and 1, indicating the input alphabet. The start state is q_0. The table below represents the transitions:

<table>
<thead>
<tr>
<th>State</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>q_1</td>
<td>q_0</td>
</tr>
<tr>
<td>q_1</td>
<td>q_3</td>
<td>q_2</td>
</tr>
<tr>
<td>q_2</td>
<td>q_3</td>
<td>q_0</td>
</tr>
<tr>
<td>q_3</td>
<td>q_3</td>
<td>q_3</td>
</tr>
</tbody>
</table>
Tabular DFAs

Question to ponder:
Why isn’t there a column here for Σ?
Code? In a Theory Class?

```cpp
int kTransitionTable[kNumStates][kNumSymbols] = {
    {0, 0, 1, 3, 7, 1, …},
    ...
};
bool kAcceptTable[kNumStates] = {
    false,
    true,
    true,
    ...
};
bool SimulateDFA(string input) {
    int state = 0;
    for (char ch: input) {
        state = kTransitionTable[state][ch];
    }
    return kAcceptTable[state];
}
```
Can we do something similar for NFAs?
The diagram represents a finite automaton with transitions:

- Start state: q_0
- Transitions:
 - $q_0 \xrightarrow{a} q_1$
 - $q_1 \xrightarrow{b} q_2$
 - $q_2 \xrightarrow{a} q_3$
- Input alphabet: $\Sigma = \{a, b\}$

The automaton accepts the string $abaabaa$.
The diagram shows a finite state automaton (FSA) with states q_0, q_1, q_2, and q_3. The transitions are labeled with input symbols a and b. The automaton starts at state q_0 and can move to q_1 on input a, then to q_2 on input b, and finally to q_3 on input a. The input alphabet is denoted by Σ. The sequence $abaaba$ is shown at the bottom, indicating a possible input to the automaton.
\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

Input alphabet: \(\Sigma \)

A finite automaton with states q_0, q_1, q_2, q_3. The transitions are labeled with symbols a and b. The input alphabet is Σ. The automaton starts at state q_0. The diagram shows transitions from q_0 to q_1 on input a, from q_1 to q_2 on input b, and a loop from q_2 back to q_1 on input a. The state q_3 is a dead state.
\[
\begin{array}{c|c|c}
 & a & b \\
\hline
\{q_0\} & \{q_0, q_1\} & \\
\{q_0, q_1\} & & \\
\{q_1, q_2\} & & \\
\{q_2, q_3\} & & \\
\{q_3\} & & \\
\end{array}
\]
\begin{align*}
\Sigma & \rightarrow q_0 \\
& \rightarrow q_1 \quad a \rightarrow b \\
& \rightarrow q_2 \quad b \rightarrow a \\
& \rightarrow q_3
\end{align*}

\begin{tabular}{|c|c|c|}
\hline
& a & b \\
\hline
$\{q_0\}$ & $\{q_0, q_1\}$ & \\
\hline
$\{q_0, q_1\}$ & & \\
\hline
$\{q_0, q_1, q_2\}$ & & \\
\hline
$\{q_0, q_1, q_2, q_3\}$ & & \\
\hline
\end{tabular}
\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

Transition table:

<table>
<thead>
<tr>
<th>State Set</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
</tbody>
</table>
\[
\begin{array}{c|c|c}
 & a & b \\
\hline
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\end{array}
\]
\[\begin{array}{c|cc}
\text{ } & \text{a} & \text{b} \\
\hline
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & & \\
\end{array} \]
\[
\begin{array}{c}
\Sigma \\
\end{array}
\]

Diagram:
- Start state: \(q_0 \)
- Transitions:
 - \(q_0 \) on \(a \) to \(q_1 \)
 - \(q_1 \) on \(b \) to \(q_2 \)
 - \(q_2 \) on \(a \) to \(q_3 \)

Transition Table:

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>({ q_0 })</td>
<td>({ q_0, q_1 })</td>
<td>({ q_0 })</td>
</tr>
<tr>
<td>({ q_0, q_1 })</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

Transition Table:

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[
\begin{array}{c}
\Sigma \\
\end{array}
\]

- **Diagram:**
 - Start state: \(q_0\)
 - Transitions:
 - \(q_0 \xrightarrow{a} q_1\)
 - \(q_1 \xrightarrow{b} q_2\)
 - \(q_2 \xrightarrow{a} q_3\)
 - Loop: \(q_0 \xrightarrow{\Sigma} q_0\)

- **Table:**
<table>
<thead>
<tr>
<th>State</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>({q_0})</td>
<td>({q_0, q_1})</td>
<td>({q_0})</td>
</tr>
<tr>
<td>({q_0, q_1})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>({q_0, q_1})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[\Sigma \]

Diagram:
- **Start State:** \(q_0 \)
- **States:** \(q_0, q_1, q_2, q_3 \)
- **Transitions:**
 - \(a \) from \(q_0 \) to \(q_1 \)
 - \(b \) from \(q_0 \) to \(q_2 \)
 - \(a \) from \(q_1 \) to \(q_2 \)
 - \(a \) from \(q_2 \) to \(q_3 \)

Table:

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>({q_0})</td>
<td>({q_0, q_1})</td>
<td>({q_0})</td>
</tr>
<tr>
<td>({q_0, q_1})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[
\begin{array}{c}
\text{start} \\
q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3
\end{array}
\]

\[
\begin{array}{|c|c|c|}
\hline
 & a & b \\
\hline \{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & & \\
\hline
\end{array}
\]
The given image is a finite automaton (FA) with states labeled as q_0, q_1, q_2, and q_3. The start state is q_0. The FA transitions are as follows:

- From q_0, on input a, it transitions to q_1.
- From q_1, on input b, it transitions to q_2.
- From q_2, on input a, it loops back to q_2.
- From q_2, on input a, it transitions to q_3.

The accepting states are q_2 and q_3.

The input alphabet is denoted by Σ, and the transitions are determined by the following table:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td></td>
</tr>
</tbody>
</table>
\[\begin{array}{c|cc}
\{ q_0 \} & \{ q_0, q_1 \} & \{ q_0 \} \\
\{ q_0, q_1 \} & \{ q_0, q_1 \} & \\
\{ q_0 \} & & \\
\end{array} \]
The given diagram represents a finite automaton with states q_0, q_1, q_2, and q_3. The transitions are as follows:

- From q_0 to q_1 on input a.
- From q_1 to q_2 on input b.
- From q_2 to q_3 on input a.
- There is an implicit transition from q_3 back to q_0 on any input Σ.

The automaton starts in state q_0. The table below shows the transitions:

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td>{q_0, q_2}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td>{q_0, q_2}</td>
</tr>
<tr>
<td>q_3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram:

- **States:** q_0, q_1, q_2, q_3
- **Start state:** q_0
- **Final state:** q_3
- **Transitions:**
 - a: q_0 \rightarrow q_1
 - b: q_1 \rightarrow q_2
 - a: q_2 \rightarrow q_3 (loop)

Input alphabet: \(\Sigma\)
\[\sum \]

Transition Table:

<table>
<thead>
<tr>
<th>State</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>({ q_0 })</td>
<td>({ q_0, q_1 })</td>
<td>({ q_0 })</td>
</tr>
<tr>
<td>({ q_0, q_1 })</td>
<td>({ q_0, q_1 })</td>
<td>({ q_0, q_2 })</td>
</tr>
<tr>
<td>({ q_0, q_2 })</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For the given automaton, the transition table is as follows:

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td>{q_0, q_2}</td>
</tr>
<tr>
<td>{q_0, q_2}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[
\begin{array}{ccc}
\Sigma & a & b \\
{\{q_0\}} & {\{q_0, q_1\}} & {\{q_0\}} \\
{\{q_0, q_1\}} & {\{q_0, q_1\}} & {\{q_0, q_2\}} \\
{\{q_0, q_2\}} & & \\
\end{array}
\]
\[
\begin{array}{c}
\Sigma \\
q_0 \quad a \quad q_1 \quad b \quad q_2 \quad a \quad q_3
\end{array}
\]

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td>{q_0, q_2}</td>
</tr>
<tr>
<td>{q_0, q_2}</td>
<td>{q_0, q_1, q_3}</td>
<td></td>
</tr>
</tbody>
</table>
\[\begin{array}{c|c|c}
& a & b \\
\hline
\{ q_0 \} & \{ q_0, q_1 \} & \{ q_0 \} \\
\{ q_0, q_1 \} & \{ q_0, q_1 \} & \{ q_0, q_2 \} \\
\{ q_0, q_2 \} & \{ q_0, q_1, q_3 \} & \\
\end{array} \]
\[\sum \]

Diagram:

- Start state: \(q_0 \)
- Transition on \(a \) from \(q_0 \) to \(q_1 \)
- Transition on \(b \) from \(q_1 \) to \(q_2 \)
- Transition on \(a \) from \(q_2 \) to \(q_3 \)
- \(q_3 \) is a final state

Transition table:

<table>
<thead>
<tr>
<th>State</th>
<th>Input</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>({ q_0 })</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>({ q_0, q_1 })</td>
<td>({ q_0, q_1 })</td>
<td>({ q_0 })</td>
</tr>
<tr>
<td>({ q_0, q_1 })</td>
<td>({ q_0, q_1 })</td>
<td>({ q_0, q_2 })</td>
</tr>
<tr>
<td>({ q_0, q_2 })</td>
<td>({ q_0, q_1, q_3 })</td>
<td>-</td>
</tr>
</tbody>
</table>
The diagram shows a finite automaton with states q_0, q_1, q_2, and q_3. The automaton transitions as follows:

- The start state is q_0.
- On input a, the automaton transitions from q_0 to q_1.
- On input b, the automaton transitions from q_1 to q_2.
- On input a, the automaton transitions from q_2 to q_3.
- On input a, the automaton transitions from q_3 back to q_0.

The table below describes the transition function of the automaton:

<table>
<thead>
<tr>
<th>Current State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
<tr>
<td>${q_0, q_2}$</td>
<td>${q_0, q_1, q_3}$</td>
<td></td>
</tr>
<tr>
<td>${q_0, q_3}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The alphabet of the automaton is Σ. The automaton accepts strings over the alphabet $\{a, b\}$. The state q_3 is a final state, indicating acceptance of strings.
\[
\begin{align*}
\Sigma & \quad q_0 \quad a \quad q_1 \quad b \quad q_2 \quad a \quad q_3 \\
\{q_0\} & \quad \{q_0, q_1\} \quad \{q_0\} \\
\{q_0, q_1\} & \quad \{q_0, q_1\} \quad \{q_0, q_2\} \\
\{q_0, q_2\} & \quad \{q_0, q_1, q_3\} \\
\end{align*}
\]
\[
\begin{array}{c}
\Sigma \\
\downarrow \\
\text{start} \\
\longrightarrow \\
q_0 \\
\longrightarrow \ a \longrightarrow \ q_1 \\
\longrightarrow \ b \longrightarrow \ q_2 \\
\longrightarrow \ a \longrightarrow \ q_3 \\
\end{array}
\]

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>({q_0})</td>
<td>({q_0, q_1})</td>
<td>({q_0})</td>
</tr>
<tr>
<td>({q_0, q_1})</td>
<td>({q_0, q_1})</td>
<td>({q_0, q_2})</td>
</tr>
<tr>
<td>({q_0, q_2})</td>
<td>({q_0, q_1, q_3})</td>
<td>({q_0})</td>
</tr>
<tr>
<td>({q_0, q_1, q_3})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[q_0 \xrightarrow{a} q_1 \quad q_1 \xrightarrow{b} q_2 \quad q_2 \xrightarrow{a} q_3 \]

\[\Sigma \]

<table>
<thead>
<tr>
<th>State</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>({q_0})</td>
<td>({q_0, q_1})</td>
<td>({q_0})</td>
</tr>
<tr>
<td>({q_0, q_1})</td>
<td>({q_0, q_1})</td>
<td>({q_0, q_2})</td>
</tr>
<tr>
<td>({q_0, q_2})</td>
<td>({q_0, q_1, q_3})</td>
<td>({q_0})</td>
</tr>
<tr>
<td>({q_0, q_1, q_3})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[
\begin{align*}
\Sigma & \quad a \quad b \\
\{ q_0 \} & \{ q_0, q_1 \} & \{ q_0 \} \\
\{ q_0, q_1 \} & \{ q_0, q_1 \} & \{ q_0, q_2 \} \\
\{ q_0, q_2 \} & \{ q_0, q_1, q_3 \} & \{ q_0 \} \\
\{ q_0, q_1, q_3 \} & & \text{---}
\end{align*}
\]
\[
\begin{array}{ccc}
\Sigma & a & b \\
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \{q_0, q_1, q_3\} & \{q_0\} \\
\{q_0, q_1, q_3\} & & \\
\end{array}
\]
\[a \rightarrow \{q_0, q_1\}\]
\[b \rightarrow \{q_0, q_2\}\]

The transitions and states are as follows:

- \(q_0\) starts and transitions on \(a\) to \(q_1\).
- \(q_1\) transitions on both \(a\) and \(b\) to \(q_2\) and \(q_3\) respectively.
- \(q_3\) is an accepting state.

The table details the transitions:

<table>
<thead>
<tr>
<th>State</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>({q_0})</td>
<td>({q_0, q_1})</td>
<td>({q_0})</td>
</tr>
<tr>
<td>({q_0, q_1})</td>
<td>({q_0, q_1})</td>
<td>({q_0, q_2})</td>
</tr>
<tr>
<td>({q_0, q_2})</td>
<td>({q_0, q_1, q_3})</td>
<td>({q_0})</td>
</tr>
<tr>
<td>({q_0, q_1, q_3})</td>
<td>({q_0, q_1})</td>
<td></td>
</tr>
</tbody>
</table>
\[
\begin{align*}
\Sigma &
\begin{array}{ccc}
\text{start} & a & b \\
q_0 & a & b \\
q_1 & b & \\
q_2 & a & b \\
q_3 & \\
\end{array}
\end{align*}
\]

<table>
<thead>
<tr>
<th>State</th>
<th>States for a</th>
<th>States for b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td>{q_0, q_2}</td>
</tr>
<tr>
<td>{q_0, q_2}</td>
<td>{q_0, q_1, q_3}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1, q_3}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
</tbody>
</table>
\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td>{q_0, q_2}</td>
</tr>
<tr>
<td>{q_0, q_2}</td>
<td>{q_0, q_1, q_3}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1, q_3}</td>
<td>{q_0, q_1}</td>
<td>{q_0, q_2}</td>
</tr>
</tbody>
</table>
\[
\text{start} \quad \xrightarrow{a} \quad q_0 \xrightarrow{b} q_1 \xrightarrow{a} q_2 \xrightarrow{a} q_3
\]

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td>{q_0, q_2}</td>
</tr>
<tr>
<td>{q_0, q_2}</td>
<td>{q_0, q_1, q_3}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1, q_3}</td>
<td>{q_0, q_1}</td>
<td>{q_0, q_2}</td>
</tr>
</tbody>
</table>

\[
\text{start} \quad \xrightarrow{b} \quad \{q_0\} \xrightarrow{a} \{q_0, q_1\} \xrightarrow{a} \{q_0, q_2\} \xrightarrow{b} \{q_0, q_1, q_3\}
\]
\[\sum \]

\[\begin{array}{c|cc}
\text{a} & \text{b} \\
\hline
\{ q_0 \} & \{ q_0, q_1 \} & \{ q_0 \} \\
\{ q_0, q_1 \} & \{ q_0, q_1 \} & \{ q_0, q_2 \} \\
\{ q_0, q_2 \} & \{ q_0, q_1, q_3 \} & \{ q_0 \} \\
\ast\{ q_0, q_1, q_3 \} & \{ q_0, q_1 \} & \{ q_0, q_2 \} \\
\end{array} \]
\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

Transition Table:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td>{q_0, q_2}</td>
</tr>
<tr>
<td>{q_0, q_2}</td>
<td>{q_0, q_1, q_3}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1, q_3}</td>
<td>{q_0, q_1}</td>
<td>{q_0, q_2}</td>
</tr>
</tbody>
</table>

The transitions are:

- Start state: \{q_0\}
- From \{q_0\} on a: \{q_0, q_1\}
- From \{q_0, q_1\} on b: \{q_0, q_2\}
- From \{q_0, q_2\} on a: \{q_0, q_1, q_3\}
- From \{*q_0, q_1, q_3*\} on b: \{q_0, q_1, q_3\}
- From \{*q_0, q_1, q_3*\} on a: \{q_0, q_1, q_3\}

The diagram above illustrates the states and transitions.
The diagram represents a deterministic finite automaton (DFA) with the following transitions:

- Start state: q_0
- Transitions:
 - From q_0 on 'a' to q_1
 - From q_0 on 'b' to q_0
 - From q_1 on 'b' to q_2
 - From q_2 on 'a' to q_3

The input string is 'a b a a b a b a', and the corresponding path in the automaton is:

1. Start at q_0
2. Move to q_1 on 'a'
3. Move back to q_0 on 'b'
4. Move to q_2 on 'b'
5. Move to q_3 on 'a'

The automaton concludes in state q_3.
Start:

\[\Sigma \]

Transition:
- \(q_0 \rightarrow q_1 \) on \(a \)
- \(q_1 \rightarrow q_2 \) on \(b \)
- \(q_2 \rightarrow q_3 \) on \(a \)

Input String:
- \(a b a a b b a \)

States:
- \{q_0\}
- \{q_0, q_1\}
- \{q_0, q_2\}
- \{q_0, q_1, q_3\}
\[
q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3
\]

\[
\Sigma = \{a, b\}
\]

\[
\{q_0, q_1, q_3\}
\]

\[
\{q_0, q_2\}
\]

\[
\{q_0\}
\]
The image shows a finite automaton with transitions labeled as follows:

- Start state: q_0
- Transitions:
 - From q_0 to q_1 on input a
 - From q_1 to q_2 on input b
 - From q_2 to q_3 on input a

- Input alphabet: $\Sigma = \{a, b\}$

The states are also labeled with sets of states:

- q_0
- q_1
- q_2
- q_3

The transitions are represented as follows:

- From q_0 to q_1 on a
- From q_1 to q_2 on b
- From q_2 to q_3 on a

The automaton is deterministic as there is a single transition for each letter in the input alphabet from each state.

The text below the automaton shows a sequence of inputs: $ababaaba$.
The Subset Construction

- This procedure for turning an NFA for a language L into a DFA for a language L is called the **subset construction**.
 - It’s sometimes called the **powerset construction**; it’s different names for the same thing!
- Intuitively:
 - Each state in the DFA corresponds to a set of states from the NFA.
 - Each transition in the DFA corresponds to what transitions would be taken in the NFA when using the massive parallel intuition.
 - The accepting states in the DFA correspond to which sets of states would be considered accepting in the NFA when using the massive parallel intuition.
The Subset Construction

• In converting an NFA to a DFA, the DFA's states correspond to sets of NFA states.

• **Useful fact:** \(|\wp(S)| = 2^{|S|}\) for any finite set \(S\).

• In the worst-case, the construction can result in a DFA that is exponentially larger than the original NFA.

• **Question to ponder:** Can you find a family of languages that have NFAs of size \(n\), but no DFAs of size less than \(2^n\)?
A language L is called a **regular language** if there exists a DFA D such that $\mathcal{L}(D) = L$.
An Important Result

Theorem: A language L is regular if and only if there is some NFA N such that $ℒ(N) = L$.

Proof Sketch: Pick a language L. First, assume L is regular. That means there’s a DFA D where $ℒ(D) = L$. Every DFA is “basically” an NFA, so there’s an NFA (D) whose language is L.

Next, assume there’s an NFA N such that $ℒ(N) = L$. Using the subset construction, we can build a DFA D where $ℒ(N) = ℒ(D)$. Then we have that $ℒ(D) = L$, so L is regular. ■-ish
Why This Matters

• We now have two perspectives on regular languages:
 • Regular languages are languages accepted by DFAs.
 • Regular languages are languages accepted by NFAs.
• We can now reason about the regular languages in two different ways.
Properties of Regular Languages
The Complement of a Language

• Given a language $L \subseteq \Sigma^*$, the complement of that language (denoted \overline{L}) is the language of all strings in Σ^* that aren't in L.

• Formally:

$$\overline{L} = \Sigma^* - L$$
The Complement of a Language

- Given a language \(L \subseteq \Sigma^* \), the complement of that language (denoted \(\overline{L} \)) is the language of all strings in \(\Sigma^* \) that aren't in \(L \).
- Formally:

\[
\overline{L} = \Sigma^* - L
\]
The Complement of a Language

- Given a language $L \subseteq \Sigma^*$, the complement of that language (denoted \overline{L}) is the language of all strings in Σ^* that aren't in L.
- Formally:
 \[
 \overline{L} = \Sigma^* - L
 \]
The Complement of a Language

• Given a language $L \subseteq \Sigma^*$, the complement of that language (denoted \overline{L}) is the language of all strings in Σ^* that aren't in L.

• Formally:

$$\overline{L} = \Sigma^* - L$$
The Complement of a Language

- Given a language $L \subseteq \Sigma^*$, the **complement** of that language (denoted \overline{L}) is the language of all strings in Σ^* that aren't in L.
- Formally:

$$\overline{L} = \Sigma^* - L$$

Good proofwriting exercise: prove $\overline{\overline{L}} = L$ for any language L.
Complementing Regular Languages

\[L = \{ w \in \{a, b\}^* \mid w \text{ contains } aa \text{ as a substring} \} \]

\[\bar{L} = \{ w \in \{a, b\}^* \mid w \text{ does not contain } aa \text{ as a substring} \} \]
Complementing Regular Languages

\[L = \{ w \in \{a, *, /\}^* \mid w \text{ represents a C-style comment} \} \]
Complementing Regular Languages

\[\overline{L} = \{ w \in \{a, *, /\}^* \mid w \text{ doesn't represent a C-style comment} \} \]
Complementing Regular Languages

\(\overline{L} = \{ w \in \{ a, *, / \}^* | w \text{ doesn't represent a C-style comment} \} \)
Closure Properties

- **Theorem:** If \(L \) is a regular language, then \(\overline{L} \) is also a regular language.
- As a result, we say that the regular languages are **closed under complementation**.

Question to ponder: are the nonregular languages closed under complementation?
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ, the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ, the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ, the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.

- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ, the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$ regular?
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ, the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?
The Intersection of Two Languages

- If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2.

- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?
The Intersection of Two Languages

- If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2.
- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?
The Intersection of Two Languages

- If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2.

- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?
The Intersection of Two Languages

- If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2.
- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?
The Intersection of Two Languages

- If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2.

- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?

Hey, it's De Morgan's laws!
Concatenation
String Concatenation

- If \(w \in \Sigma^* \) and \(x \in \Sigma^* \), the **concatenation** of \(w \) and \(x \), denoted \(wx \), is the string formed by tacking all the characters of \(x \) onto the end of \(w \).

- Example: if \(w = \text{quo} \) and \(x = \text{kka} \), the concatenation \(wx = \text{quokka} \).

- This is analogous to the + operator for strings in many programming languages.

- Some facts about concatenation:
 - The empty string \(\varepsilon \) is the **identity element** for concatenation:
 \[
 w\varepsilon = \varepsilon w = w
 \]
 - Concatenation is **associative**:
 \[
 wxy = w(xy) = (wx)y
 \]
The **concatenation** of two languages L_1 and L_2 over the alphabet Σ is the language

$$L_1L_2 = \{ wx \in \Sigma^* \mid w \in L_1 \land x \in L_2 \}$$
Concatenation Example

Let $\Sigma = \{ \text{a, b, ..., z, A, B, ..., Z} \}$ and consider these languages over Σ:

- **Noun** = \{ Puppy, Rainbow, Whale, ... \}
- **Verb** = \{ Hugs, Juggles, Loves, ... \}
- **The** = \{ The \}

The language **TheNounVerbTheNoun** is

\{ ThePuppyHugsTheWhale, TheWhaleLovesTheRainbow, TheRainbowJugglesTheRainbow, ... \}
Concatenation

- The **concatenation** of two languages L_1 and L_2 over the alphabet Σ is the language

 $$L_1L_2 = \{ wx \in \Sigma^* | w \in L_1 \land x \in L_2 \}$$

- Two views of L_1L_2:
 - The set of all strings that can be made by concatenating a string in L_1 with a string in L_2.
 - The set of strings that can be split into two pieces: a piece from L_1 and a piece from L_2.

Concatenating Regular Languages

- If L_1 and L_2 are regular languages, is L_1L_2?
- Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?
Concatenating Regular Languages

- If L_1 and L_2 are regular languages, is L_1L_2?
- Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?

Machine for L_1

Machine for L_2
Concatenating Regular Languages

- If L_1 and L_2 are regular languages, is L_1L_2?
- Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?

Machine for L_1

Machine for L_2

bookkeeper
Concatenating Regular Languages

- If L_1 and L_2 are regular languages, is L_1L_2?
- Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?

Machine for L_1
Machine for L_2
Concatenating Regular Languages

• If L_1 and L_2 are regular languages, is $L_1 L_2$?

• Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?

Machine for L_1

Machine for L_2

book

keeper
Concatenating Regular Languages

• If L_1 and L_2 are regular languages, is L_1L_2?

• Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?

• **Idea:**
 - Run a DFA/NFA for L_1 on w.
 - Whenever it reaches an accepting state, optionally hand the rest of w to a DFA/NFA for L_2.
 - If the automaton for L_2 accepts the rest, $w \in L_1L_2$.
 - If the automaton for L_2 rejects the remainder, the split was incorrect.
Concatenating Regular Languages
Concatenating Regular Languages

Machine for L_1
Concatenating Regular Languages

Machine for L_1

Machine for L_2
Concatenating Regular Languages

Machine for L_1

Machine for L_2
Concatenating Regular Languages

Machine for L_1

Machine for L_2
Concatenating Regular Languages

Machine for L_1

Machine for L_2

Machine for $L_1 L_2$
Lots and Lots of Concatenation

- Consider the language $L = \{ \text{aa, b} \}$
- LL is the set of strings formed by concatenating pairs of strings in L.
 \[
 \{ \text{aaaa, aab, baa, bb} \}
 \]
- LLL is the set of strings formed by concatenating triples of strings in L.
 \[
 \{ \text{aaaaaa, aaaaab, aabaa, aabb, baaaaa, baab, bbbaa, bbb} \}
 \]
- $LLLL$ is the set of strings formed by concatenating quadruples of strings in L.
 \[
 \{ \text{aaaaaaaaa, aaaaaab, aaaaabaa, aaaaabb, aabaaaaa, aabaab, aabbaa, aabb, baaaaaa, baaaab, baabaa, baabb, bbaaaa, bbaab, bbbaa, bbb} \}
 \]
Language Exponentiation

- We can define what it means to “exponentiate” a language as follows:
 - $L^0 = \{\varepsilon\}$
 - Intuition: The only string you can form by gluing no strings together is the empty string.
 - Notice that $\{\varepsilon\} \neq \emptyset$. Can you explain why?
 - $L^{n+1} = LL^n$
 - Idea: Concatenating $(n+1)$ strings together works by concatenating n strings, then concatenating one more.
- **Question to ponder:** Why define $L^0 = \{\varepsilon\}$?
- **Question to ponder:** What is \emptyset^0?
The Kleene Star
The Kleene Closure

• An important operation on languages is the **Kleene Closure**, which is defined as

\[L^* = \{ w \in \Sigma^* \mid \exists n \in \mathbb{N}. w \in L^n \} \]

• Mathematically:

\[w \in L^* \iff \exists n \in \mathbb{N}. w \in L^n \]

• Intuitively, \(L^* \) is the language all possible ways of concatenating zero or more strings in \(L \) together, possibly with repetition.

• **Question to ponder:** What is \(\emptyset^* \)?
The Kleene Closure

If \(L = \{ \text{a, bb} \} \), then \(L^* = \{ \)

\[\varepsilon, \]
\[\text{a, bb,} \]
\[\text{aa, abb, bba, bbbb,} \]
\[\text{aaa, aabb, abba, abbbb, bbba, bbabb, bbbba, bbbbbbb,} \]
\[\ldots \]
\}

Think of \(L^* \) as the set of strings you can make if you have a collection of stamps – one for each string in \(L \) – and you form every possible string that can be made from those stamps.
Idea: Can we convert an NFA for language \(L \) to an NFA for language \(L^* \)?
The Kleene Star

Machine for L

Machine for L^*
Question: Why add the new state out front? Why not just make the old start state accepting?
Closure Properties

- **Theorem:** If L_1 and L_2 are regular languages over an alphabet Σ, then so are the following languages:
 - $\overline{L_1}$
 - $L_1 \cup L_2$
 - $L_1 \cap L_2$
 - L_1L_2
 - L_1^*

- These properties are called **closure properties of the regular languages**.
Next Time

- **Regular Expressions**
 - Building languages from the ground up!
- **Thompson’s Algorithm**
 - A UNIX Programmer in Theoryland.
- **Kleene’s Theorem**
 - From machines to programs!