Finite Automata

Part Two
Recap from Last Time
Old MacDonald Had a Symbol, ♩ Σ-eye-ε-ey€, Oh! ♩

- You may have noticed that we have several letter-E-ish symbols in CS103, which can get confusing!
- Here’s a quick guide to remembering which is which:
 - In automata theory, Σ refers to an alphabet.
 - In automata theory, ε is the empty string, which is length 0.
 - In set theory, use € to say “is an element of.”
 - In set theory, use ⊆ to say “is a subset of.”
DFAs

• A *DFA* is a
 - *Deterministic*
 - *Finite*
 - *Automaton*

• DFAs are the simplest type of automaton that we will see in this course.
Recognizing Languages with DFAs

\[L = \{ w \in \{a, b\}^* \mid w \text{ contains } aa \text{ as a substring} \} \]
DFAs

- A DFA is defined relative to some alphabet Σ.
- For each state in the DFA, there must be exactly one transition defined for each symbol in Σ.
 - This is the “deterministic” part of DFA.
- There is a unique start state.
- There are zero or more accepting states.
New Stuff!
Which table best represents the transitions for the DFA shown below?

(A)	0	1
q_0 | q_1 | q_0
q_1 | q_3 | q_2
q_2 | q_3 | q_0
q_3 | q_3 | q_3

(B)	0	1
q_0 | q_0 | q_1
q_1 | q_2 | q_3
q_2 | q_0 | q_3
q_3 | / | /

(C)	0	1	Σ
q_0 | q_1 | q_0 | /
q_1 | q_3 | q_2 | /
q_2 | q_3 | q_0 | /
q_3 | / | / | q_3

Answer at PollEv.com/cs103 or text CS103 to 22333 once to join, then A, B, C, or D (none of the above).
Tabular DFAs

The diagram shows a deterministic finite automaton (DFA) with states labeled q_0, q_1, q_2, q_3. The transitions are as follows:

- From q_0: 0 to q_1, 1 to q_0.
- From q_1: 0 to q_2, 1 to q_1.
- From q_2: 0 to q_3, 1 to q_2.
- From q_3: 0 to q_3, 1 to q_3.

The start state is q_0, and the accepting state is q_3. The alphabet Σ consists of 0 and 1.
Tabular DFAs

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>q_1</td>
<td>q_0</td>
</tr>
<tr>
<td>q_1</td>
<td>q_3</td>
<td>q_2</td>
</tr>
<tr>
<td>q_2</td>
<td>q_3</td>
<td>q_0</td>
</tr>
<tr>
<td>q_3</td>
<td>q_3</td>
<td>q_3</td>
</tr>
</tbody>
</table>
Tabular DFAs

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>*q₀</td>
<td>q₁</td>
<td>q₀</td>
</tr>
<tr>
<td>q₁</td>
<td>q₃</td>
<td>q₂</td>
</tr>
<tr>
<td>q₂</td>
<td>q₃</td>
<td>q₀</td>
</tr>
<tr>
<td>*q₃</td>
<td>q₃</td>
<td>q₃</td>
</tr>
</tbody>
</table>
Tabular DFAs

These stars indicate accepting states.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>*q₀</td>
<td>q₁</td>
<td>q₀</td>
</tr>
<tr>
<td>q₁</td>
<td>q₃</td>
<td>q₂</td>
</tr>
<tr>
<td>q₂</td>
<td>q₃</td>
<td>q₀</td>
</tr>
<tr>
<td>*q₃</td>
<td>q₃</td>
<td>q₃</td>
</tr>
</tbody>
</table>
Since this is the first row, it's the start state.
My Turn to Code Things Up!

```cpp
int kTransitionTable[kNumStates][kNumSymbols] = {
    {0, 0, 1, 3, 7, 1, ...},
    ...
};

bool kAcceptTable[kNumStates] = {
    false,
    true,
    true,
    ...
};

bool SimulateDFA(string input) {
    int state = 0;
    for (char ch: input) {
        state = kTransitionTable[state][ch];
    }
    return kAcceptTable[state];
}
```
The Regular Languages
A language \(L \) is called a \textit{regular language} if there exists a DFA \(D \) such that \(\mathcal{L}(D) = L \).

If \(L \) is a language and \(\mathcal{L}(D) = L \), we say that \(D \) \textit{recognizes} the language \(L \).
The Complement of a Language

- Given a language $L \subseteq \Sigma^*$, the complement of that language (denoted \overline{L}) is the language of all strings in Σ^* that aren't in L.
- Formally:
 $$\overline{L} = \Sigma^* - L$$
The Complement of a Language

• Given a language $L \subseteq \Sigma^*$, the complement of that language (denoted \overline{L}) is the language of all strings in Σ^* that aren't in L.

• Formally:

$$\overline{L} = \Sigma^* - L$$
The Complement of a Language

• Given a language $L \subseteq \Sigma^*$, the complement of that language (denoted \overline{L}) is the language of all strings in Σ^* that aren't in L.

• Formally:

$$\overline{L} = \Sigma^* - L$$
The Complement of a Language

- Given a language $L \subseteq \Sigma^*$, the \textit{complement} of that language (denoted \overline{L}) is the language of all strings in Σ^* that aren't in L.
- Formally:

$$\overline{L} = \Sigma^* - L$$
Complements of Regular Languages

- As we saw a few minutes ago, a *regular language* is a language accepted by some DFA.
- **Question:** If L is a regular language, is \overline{L} necessarily a regular language?
- If the answer is “yes,” then if there is a way to construct a DFA for L, there must be some way to construct a DFA for \overline{L}.
- If the answer is “no,” then some language L can be accepted by some DFA, but \overline{L} cannot be accepted by any DFA.
Computational Device for L
Computational Device for L

input

Yep!

Nope!
Computational Device for L

Computational Device for \overline{L}

input

Yep!

Nope!
Computational Device for L:

- Input
- Computational Device for L
- Output: Yep!

Computational Device for \overline{L}:

- Input
- Computational Device for \overline{L}
- Output: Nope!
Complementing Regular Languages

$L = \{ w \in \{a, b\}^* \mid w \text{ contains } aa \text{ as a substring } \}$

$\overline{L} = \{ w \in \{a, b\}^* \mid w \text{ does not contain } aa \text{ as a substring } \}$
More Elaborate DFAs

$L = \{ \ w \in \{a, *, /\}^* \ | \ w \text{ represents a C-style comment} \ \}$
More Elaborate DFAs

$$\bar{L} = \{ w \in \{a, *, /\}^* \mid w \text{ doesn't represent a C-style comment} \}$$
More Elaborate DFAs

\[\mathcal{L} = \{ w \in \{ a, *, / \}^* \mid w \text{ doesn't represent a C-style comment} \} \]
Closure Properties

- **Theorem:** If L is a regular language, then \overline{L} is also a regular language.
- As a result, we say that the regular languages are closed under complementation.