Recap from Last Time
Strings

- An **alphabet** is a finite, nonempty set of symbols called **characters**.
 - Typically, we use the symbol Σ to refer to an alphabet.
- A **string over an alphabet** Σ is a finite sequence of characters drawn from Σ.
- Example: If $\Sigma = \{a, b\}$, here are some valid strings over Σ:

 a aabaaabbabbabaaababaabaaabbabb

- The **empty string** has no characters and is denoted ε.
- Calling attention to an earlier point: since all strings are finite sequences of characters from Σ, you cannot have a string of infinite length.
Languages

• A **formal language** is a set of strings.

• We say that L is a **language over Σ** if it is a set of strings over Σ.

• Example: The language of palindromes over $\Sigma = \{a, b, c\}$ is the set

 • $\{\varepsilon, a, b, c, aa, bb, cc, aaa, aba, aca, bab, \ldots \}$

• The set of all strings composed from letters in Σ is denoted Σ^*.

• Formally, we say that L is a language over Σ if $L \subseteq \Sigma^*$.
A Simple Finite Automaton
A Simple Finite Automaton

q_0 [start] -> q_1 [0]
q_0 [1] -> q_3 [1]
q_3 [1] -> q_2 [1]
q_2 [0] -> q_1 [0]
q_1 [0] -> q_0 [0]
q_0 [1] -> q_3 [1]
The **language of an automaton** is the set of strings that it accepts.

If D is an automaton, we denote the language of D as $\mathcal{L}(D)$.

$$\mathcal{L}(D) = \{ w \in \Sigma^* \mid D \text{ accepts } w \}$$
DFAs

• A **DFA** is a
 • *D*eterministic
 • *F*inite
 • *A*utomaton

• DFAs are the simplest type of automaton that we will see in this course.
DFAs, Informally

- A DFA is defined relative to some alphabet Σ.
- For each state in the DFA, there must be exactly one transition defined for each symbol in Σ.
 - This is the “deterministic” part of DFA.
- There is a unique start state.
- There are zero or more accepting states.
Designing DFAs

- At each point in its execution, the DFA can only remember what state it is in.

- **DFA Design Tip:** Build each state to correspond to some piece of information you need to remember.
 - Each state acts as a “memento” of what you're supposed to do next.
 - Only finitely many different states ≈ only finitely many different things the machine can remember.
Recognizing Languages with DFAs

\[L = \{ w \in \{a, b\}^* | \text{the number of } b's \text{ in } w \text{ is congruent to two modulo three} \} \]
Recognizing Languages with DFAs

\[L = \{ w \in \{a, b\}^* \mid w \text{ contains } aa \text{ as a substring} \} \]
Recognizing Languages with DFAs

\[L = \{ w \in \{a, *, /\}^* \mid w \text{ represents a C-style comment} \} \]
New Stuff!
Tabular DFAs
Tabular DFAs
Tabular DFAs

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td>(q_1)</td>
<td>(q_0)</td>
</tr>
<tr>
<td>(q_1)</td>
<td>(q_3)</td>
<td>(q_2)</td>
</tr>
<tr>
<td>(q_2)</td>
<td>(q_3)</td>
<td>(q_0)</td>
</tr>
<tr>
<td>(q_3)</td>
<td>(q_3)</td>
<td>(q_3)</td>
</tr>
</tbody>
</table>
Tabular DFAs

- **Start state:** q_0
- **States:** q_0, q_1, q_2, q_3
- **Transitions:**
 - From q_0:
 - 0: q_1
 - 1: q_0
 - From q_1:
 - 0: q_3
 - 1: q_2
 - From q_2:
 - 0: q_3
 - 1: q_0
 - From q_3:
 - 0: q_3
 - 1: q_3

- **Input alphabet:** $\Sigma = \{0, 1\}$
Tabular DFAs

These stars indicate accepting states.
Tabular DFAs

Since this is the first row, it's the start state.
My Turn to Code Things Up!

```cpp
int kTransitionTable[kNumStates][kNumSymbols] = {
    {0, 0, 1, 3, 7, 1, ...},
    ...,
};
bool kAcceptTable[kNumStates] = {
    false,
    true,
    true,
    ...
};
bool SimulateDFA(string input) {
    int state = 0;
    for (char ch: input) {
        state = kTransitionTable[state][ch];
    }
    return kAcceptTable[state];
}
```
The Regular Languages
A language L is called a \textit{regular language} if there exists a DFA D such that $\mathcal{L}(D) = L$.
The Complement of a Language

- Given a language $L \subseteq \Sigma^*$, the complement of that language (denoted \overline{L}) is the language of all strings in Σ^* that aren't in L.
- Formally:

$$\overline{L} = \Sigma^* - L$$
The Complement of a Language

- Given a language \(L \subseteq \Sigma^* \), the *complement* of that language (denoted \(\overline{L} \)) is the language of all strings in \(\Sigma^* \) that aren't in \(L \).
- Formally:

\[
\overline{L} = \Sigma^* - L
\]
The Complement of a Language

• Given a language $L \subseteq \Sigma^*$, the complement of that language (denoted \bar{L}) is the language of all strings in Σ^* that aren't in L.

• Formally:

$$\bar{L} = \Sigma^* - L$$
The Complement of a Language

- Given a language $L \subseteq \Sigma^*$, the *complement* of that language (denoted \overline{L}) is the language of all strings in Σ^* that aren't in L.

- Formally:
 $$\overline{L} = \Sigma^* - L$$
Complements of Regular Languages

- As we saw a few minutes ago, a *regular language* is a language accepted by some DFA.
- **Question:** If L is a regular language, is \overline{L} necessarily a regular language?
- If the answer is “yes,” then if there is a way to construct a DFA for L, there must be some way to construct a DFA for \overline{L}.
- If the answer is “no,” then some language L can be accepted by some DFA, but \overline{L} cannot be accepted by any DFA.
input

Computational Device for L

Yep!

Nope!
Computational Device for L
Computational Device for L

input

Computational Device for \bar{L}

input
Computational Device for L

input

Computational Device for \overline{L}

input

Yep!

Nope!

Yep!

Nope!
Complementing Regular Languages

\[L = \{ w \in \{a, b\}^* \mid w \text{ contains } aa \text{ as a substring } \} \]

\[\overline{L} = \{ w \in \{a, b\}^* \mid w \text{ does not contain } aa \text{ as a substring } \} \]
More Elaborate DFAs

\[L = \{ w \in \{a, *, /\}^* \mid w \text{ represents a C-style comment} \} \]
More Elaborate DFAs

\[\overline{L} = \{ w \in \{a, *, /\}^* | w \text{ doesn't represent a C-style comment} \} \]
More Elaborate DFAs

\[\mathcal{L} = \{ w \in \{a, *, /\}^* | w \text{ doesn't represent a C-style comment} \} \]
Closure Properties

- **Theorem:** If L is a regular language, then \overline{L} is also a regular language.
- As a result, we say that the regular languages are **closed under complementation**.
Time-Out For Announcements!
CODE2040 INFO SESSION

FRIDAY, NOV 3 | 7PM - 8PM

OLD UNION, ROOM 200
Talk to Your Provost

- Provost Persis Drell will be holding office hours in Lathrop 143 next Monday, November 6, from 4PM – 6PM.

- Have any suggestions for the university? Want to change anything? Stop on by to chat!
CS Career Panel

- Greg Ramel, our wonderful CS course advisor, is organizing a CS career panel.
- It’s tomorrow (Thursday, November 2nd) in Gates 219 and runs from 5:45PM – 7:00PM.
- Please RSVP using this link.
- There’s a great mix of panelists. Highly recommended!
Problem Set Four Graded

75th Percentile: **68 / 72 (94%)**
50th Percentile: **61 / 72 (85%)**
25th Percentile: **53 / 72 (74%)**
Extra Practice Problems 2

• We’ve just released another set of extra practice problems to the course website.

• Need to review some concepts? Want more practice? Try these questions out! There’s a ton of variety.

• Solutions will go out on Friday.
Your Questions
“I've struggled as a public speaker for as long as I can remember and watching your lectures, I'm amazed by how good you are. How do you do it?”

When I first started teaching I was so terrified of speaking to crowds that I literally memorized everything I was going to say and rehearsed for like ten hours each time. After I realized that most people are nice and won't eat you if you make a mistake, I started backing down from that and just worked out a general game plan for each lecture. Essentially, I just slowly stepped up the amount of improvisation I had in each lecture until I got the hang of it. Right now there's a balance between making things up as I go and falling back on things I know work well.
“Any movie / TV recommendations?”

Unsorted top TV shows: “The Wire.”
Back to CS103!
NFAs
NFAs

• An **NFA** is a
 • **N**ondeterministic
 • **F**inite
 • **A**utomaton

• Structurally similar to a DFA, but represents a fundamental shift in how we'll think about computation.
(Non)determinism

- A model of computation is **deterministic** if at every point in the computation, there is exactly one choice that can make.
- The machine accepts if that series of choices leads to an accepting state.
- A model of computation is **nondeterministic** if the computing machine may have multiple decisions that it can make at one point.
- The machine accepts if **any** series of choices leads to an accepting state.
A Simple NFA

start

q_0 1 q_1

q_1 1 q_2

q_2

q_3

$q_0, 1$

q_1

$q_2, 0$

$q_3, 0, 1$

q_2

q_3

$q_2, 0, 1$

$q_3, 0, 1$
A Simple NFA

q_0 has two transitions defined on 1!

q_0 has two transitions defined on 1!
A Simple NFA

0 1 0 1 1
A Simple NFA
A Simple NFA
A Simple NFA

start

q_0 1 q_1

q_1 1 q_2

q_2

q_3 0 0, 1

q_3 0, 1

0 1 0 1 1
A Simple NFA

Start: q_0

Transitions:
- From q_0 on 1 to q_1
- From q_1 on 1 to q_2
- From q_2 on 0 to q_3
- From q_3 on 0 to q_3

Input sequence: 0 1 0 1 1
A Simple NFA

- Start state: q_0
- States: q_0, q_1, q_2, q_3
- Transitions:
 - q_0 to q_1: 1
 - q_1 to q_2: 1
 - q_3: 0, 1 (loop)

Input sequence: 0 1 0 1 1 1
A Simple NFA
A Simple NFA

start

q_0 1 1
 0, 1

q_1 1 1

q_2

q_3

q_0, q_1, q_2, q_3

0 1 0 1 1
A Simple NFA

- Start state: q_0
- Transitions:
 - $q_0 \to q_1$: on input 1
 - $q_0 \to q_3$: on input 0, 1
 - $q_1 \to q_2$: on input 1
 - $q_3 \to q_3$: on input 0, 1

Input sequence: 0 1 0 1 1 1
A Simple NFA

![Diagram of a simple NFA with states q0, q1, q2, q3 and transitions on 0, 1]

Transitions:
- Start at q0, move to q1 on 1,
- Move from q1 to q2 on 1,
- Return to q0 from q2 on 0,
- Move from q3 on 0 to q3,
- Move from q3 on 1 to q3.

Input string: 0 1 0 1 1
A Simple NFA

- Start state: q_0
- Transitions:
 - From q_0 to q_1: 1
 - From q_1 to q_2: 1
 - From q_1 to q_3: 0
 - From q_3 to q_2: 0, 1

Input sequence: 0 1 0 1 1
A Simple NFA

0 1 0 1 1
A Simple NFA

\[q_0 \xrightarrow{1} q_1 \xrightarrow{1} q_2 \]

\[q_3 \]

Input: 0 1 0 1 1 1
A Simple NFA

0 1 0 1 1 1
A Simple NFA
A Simple NFA

\[q_0 \rightarrow 1 \rightarrow q_1 \rightarrow 1 \rightarrow q_2 \]

\[q_2 \rightarrow 0 \rightarrow q_3 \rightarrow 0, 1 \]

\[q_3 \rightarrow 0, 1 \]

\[0, 1 \]

0, 1, 0, 1, 0, 1, 1
A Simple NFA
A Simple NFA

![NFA Diagram]

Start state: q_0

Transitions:
- From q_0: 1 to q_1, 0, 1 to q_3
- From q_1: 1 to q_2,
- From q_2: 0 to q_3,
- From q_3: 0, 1 to q_2,
- From q_3: 0, 1 to itself.

Input sequence: 0 1 0 1 1 1
A Simple NFA

start

q_0 1 q_1

$0, 1$

q_1 1 q_2

q_2

q_3

0

$0, 1$

q_3

$0, 1$

0 1 0 1 1
A Simple NFA

$q_0 \xrightarrow{1} q_1 \xrightarrow{1} q_2$

$\quad 0, 1$

$\quad 0$

$q_3 \xrightarrow{0} q_2$

$\quad 0, 1$

$\quad 0, 1$

Input: 0 1 0 1 1 1
A Simple NFA

0 1 0 1 1 1
A Simple NFA

The given NFA starts at state q_0. It transitions to state q_1 on input 1 and to state q_3 on input 0. From state q_3, it can transition to q_2 on input 0. From state q_2, it can loop back to itself on input 0 or 1.

Input sequence: 0 1 0 1 1
A Simple NFA

start → q_0 → q_1 → q_2 → q_3

$0, 1$ → 1 → 1

0 → $0, 1$

$0, 1$ → $0, 1$

$0, 1$ → 1

$0, 1$ → 1

0 1 0 1 1
A Simple NFA
A Simple NFA

start → q_0 (0, 1) → q_1 (1) → q_2 (1, 0, 1) → q_3 (0, 1) → q_2 (0, 1)

Input: 0 1 0 1 1
A Simple NFA

Start

$q_0 \xrightarrow{1} q_1 \xrightarrow{1} q_2$

$q_3 \xrightarrow{0} q_2 \xrightarrow{0,1} q_2$

SEAL
OF APPROVAL

0 1 0 1 1
A More Complex NFA
A More Complex NFA

If a NFA needs to make a transition when no transition exists, the automaton dies and that particular path rejects.
A More Complex NFA
A More Complex NFA

\begin{itemize}
\item Start \(q_0 \)
\item Transition 0, 1 from \(q_0 \)
\item Transition 1 from \(q_0 \) to \(q_1 \)
\item Transition 1 from \(q_1 \) to \(q_2 \)
\end{itemize}

Input sequence: 0 1 0 1 1 1
A More Complex NFA

Start

\(q_0 \) 1 \(q_1 \) 1 \(q_2 \)

0, 1

0 1 0 1 1
A More Complex NFA

\[
\begin{array}{c}
\text{start} \\
q_0 \xrightarrow{1} q_1 \xrightarrow{1} q_2
\end{array}
\]
A More Complex NFA

\[
\begin{array}{c}
\text{start} \\
q_0 \quad 1 \quad 0, 1 \quad q_1 \quad 1 \quad q_2
\end{array}
\]

Input sequence: 010111
A More Complex NFA

\begin{center}
\begin{tikzpicture}[node distance=2cm,auto,>=latex]
 \node[state,initial] (q0) {q_0};
 \node[state,accepting,gray] (q1) [right of=q0] {q_1};
 \node[state,accepting,gray] (q2) [right of=q1] {q_2};
 \path[->]
 (q0) edge node {1} (q1)
 (q1) edge node {1} (q2)
 (q0) edge [loop below] node {0, 1} (q0)
 (q1) edge [loop below] node {0, 1} (q1);
\end{tikzpicture}
\end{center}

0 1 0 1 1 1
A More Complex NFA

Oh no! There's no transition defined!

0 1 0 1 1 1
A More Complex NFA

\[
\begin{array}{c}
\text{start} \\
\rightarrow \quad q_0 \quad \rightarrow \quad q_1 \quad \rightarrow \quad q_2
\end{array}
\]

\[
\begin{array}{ccc}
1 & \quad 1 \\
0, 1 & \quad 0, 1
\end{array}
\]

0 1 0 1 1 1
A More Complex NFA
A More Complex NFA

0 1 0 1 1
A More Complex NFA

The diagram shows a non-deterministic finite automaton (NFA) with the following transitions:

- From start state q_0, a 1 transition leads to state q_1.
- From state q_1, a 1 transition leads to state q_2.
- State q_1 has a 0, 1 transition back to itself.

The input sequence 0 1 0 1 1 1 is shown to pass through the NFA, starting at state q_0 and ending at state q_2.
A More Complex NFA

0 1 0 1 1 1
A More Complex NFA

\[q_0 \xrightarrow{1} q_1 \xrightarrow{1} q_2 \]

Input sequence: \[010111 \]
A More Complex NFA

\[
\begin{align*}
\text{start} & \rightarrow q_0 \xrightarrow{1} q_1 \xrightarrow{1} q_2 \\
q_0 & \xrightarrow{0, 1} q_0
\end{align*}
\]
A More Complex NFA

Start

$q_0 \xrightarrow{1} q_1 \xrightarrow{1} q_2$

0, 1

0 1 0 1 1

0 1 0 1 1
A More Complex NFA

\begin{center}
\begin{tikzpicture}

\node[state,initial] (q0) at (0,0) {q_0};
\node[state] (q1) at (2,0) {q_1};
\node[state,accepting] (q2) at (4,0) {q_2};

\draw[->] (q0) edge node[above] {1} (q1);
\draw[->] (q1) edge node[above] {1} (q2);
\draw[->,loop below] (q0) edge node[below] {0, 1} (q0);
\end{tikzpicture}
\end{center}

0 1 0 1 1
A More Complex NFA

start

q_0 \[\rightarrow\] 1 \[\rightarrow\] q_1 \[\rightarrow\] 1 \[\rightarrow\] q_2

0, 1

0 1 0 1 1
A More Complex NFA

Start

q_0 1 q_1 1 q_2

SEAL

OF APPROVAL
A More Complex NFA

start \rightarrow q_0 \quad \xrightarrow{1} \quad q_1 \quad \xrightarrow{1} \quad q_2

0, 1

Question to ponder: What does this NFA accept?
NFA Acceptance

- An NFA N accepts a string w if there is some series of choices that lead to an accepting state.
- Consequently, an NFA N rejects a string w if no possible series of choices lead it into an accepting state.
- It's easier to show that an NFA does accept something than to show that it doesn't
ε-Transitions

- NFAs have a special type of transition called the **ε-transition**.
- An NFA may follow any number of ε-transitions at any time without consuming any input.
ε-Transitions

- NFAs have a special type of transition called the **ε-transition**.
- An NFA may follow any number of ε-transitions at any time without consuming any input.
ε-Transitions

- NFAs have a special type of transition called the **ε-transition**.
- An NFA may follow any number of ε-transitions at any time without consuming any input.
ε-Transitions

• NFAs have a special type of transition called the \textbf{ε-transition}.

• An NFA may follow any number of ε-transitions at any time without consuming any input.
ε-Transitions

- NFAs have a special type of transition called the **ε-transition**.
- An NFA may follow any number of ε-transitions at any time without consuming any input.
\(\varepsilon \)-Transitions

- NFAs have a special type of transition called the \(\varepsilon \)-transition.
- An NFA may follow any number of \(\varepsilon \)-transitions at any time without consuming any input.
ε-Transitions

• NFAs have a special type of transition called the **ε-transition**.

• An NFA may follow any number of ε-transitions at any time without consuming any input.
ε-Transitions

- NFAs have a special type of transition called the \textbf{ε-transition}.
- An NFA may follow any number of ε-transitions at any time without consuming any input.
\(\varepsilon\)-Transitions

- NFAs have a special type of transition called the \textbf{\(\varepsilon\)-transition}.
- An NFA may follow any number of \(\varepsilon\)-transitions at any time without consuming any input.
ε-Transitions

- NFAs have a special type of transition called the **ε-transition**.
- An NFA may follow any number of ε-transitions at any time without consuming any input.
ε-Transitions

- NFAs have a special type of transition called the **ε-transition**.
- An NFA may follow any number of ε-transitions at any time without consuming any input.
ε-Transitions

- NFAs have a special type of transition called the **ε-transition**.
- An NFA may follow any number of ε-transitions at any time without consuming any input.
ε-Transitions

- NFAs have a special type of transition called the **ε-transition**.
- An NFA may follow any number of ε-transitions at any time without consuming any input.
ε-Transitions

• NFAs have a special type of transition called the **ε-transition**.

• An NFA may follow any number of ε-transitions at any time without consuming any input.
ε-Transitions

- NFAs have a special type of transition called the \textbf{ε-transition}.
- An NFA may follow any number of ε-transitions at any time without consuming any input.
ε-Transitions

- NFAs have a special type of transition called the \textbf{ε-transition}.
- An NFA may follow any number of ε-transitions at any time without consuming any input.
ε-Transitions

- NFAs have a special type of transition called the **ε-transition**.
- An NFA may follow any number of ε-transitions at any time without consuming any input.
ε-Transitions

- NFAs have a special type of transition called the **ε-transition**.
- An NFA may follow any number of ε-transitions at any time without consuming any input.
ε-Transitions

- NFAs have a special type of transition called the \textbf{ε-transition}.
- An NFA may follow any number of ε-transitions at any time without consuming any input.
ε-Transitions

- NFAs have a special type of transition called the \textbf{ε-transition}.
- An NFA may follow any number of ε-transitions at any time without consuming any input.
ε-Transitions

- NFAs have a special type of transition called the \textit{ε-transition}.
- An NFA may follow any number of ε-transitions at any time without consuming any input.
- NFAs are not \textit{required} to follow ε-transitions. It's simply another option at the machine's disposal.
Intuiting Nondeterminism

- Nondeterministic machines are a serious departure from physical computers. How can we build up an intuition for them?
- There are two particularly useful frameworks for interpreting nondeterminism:
 - Perfect guessing
 - Massive parallelism
Perfect Guessing

\[\Sigma \]

\[q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \]

start
Perfect Guessing

\[
\begin{align*}
q_0 &\xrightarrow{a} q_1 \\
q_1 &\xrightarrow{b} q_2 \\
q_2 &\xrightarrow{a} q_3 \\
s\xrightarrow{\Sigma} q_0
\end{align*}
\]

\[a\ b\ a\ b\ a\ b\ a\ a\]
Perfect Guessing

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\Sigma \]

\[\text{start} \]

\[a \ b \ a \ b \ a \ a \]

Perfect Guessing

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\Sigma \]

\[a \ b \ b \ a \ b \ a \ a \]
Perfect Guessing

\begin{align*}
q_0 & \xrightarrow{a} q_1 \\
q_1 & \xrightarrow{b} q_2 \\
q_2 & \xrightarrow{a} q_3
\end{align*}

\[\Sigma \]

$a b a b a b a$
Perfect Guessing

-q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3

\text{start}

\Sigma

\text{a b a b a a}
Perfect Guessing

$q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3$

Σ

Start

| a | b | a | b | a | b | a |

Labeled arrow pointing up from the last element in the sequence.
Perfect Guessing

Σ

start

$q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3$

$a b a b a b a a$
Perfect Guessing

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\Sigma \]

\[a \ b \ a \ b \ a \ b \ a \]
Perfect Guessing

start \[q_0 \] \(\xrightarrow{a} \) \(q_1 \) \(\xrightarrow{b} \) \(q_2 \) \(\xrightarrow{a} \) \(q_3 \)

\[\Sigma \]

\[a \quad b \quad b \quad a \quad a \quad b \quad a \]
Perfect Guessing

\[
\begin{align*}
q_0 & \xrightarrow{a} q_1 \\
q_1 & \xrightarrow{b} q_2 \\
q_2 & \xrightarrow{a} q_3
\end{align*}
\]

\[\Sigma\]

\begin{tabular}{cccccccc}
a & b & a & b & a & b & a & a
\end{tabular}
Perfect Guessing

• We can view nondeterministic machines as having *Magic Superpowers* that enable them to guess choices that lead to an accepting state.

 • If there is at least one choice that leads to an accepting state, the machine will guess it.

 • If there are no choices, the machine guesses any one of the wrong guesses.

• No known physical analog for this style of computation – this is totally new!
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\Sigma \]

Input: \[a \ b \ b \ a \ a \ b \ b \ a \]
Massive Parallelism

\[\Sigma \]

\[q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \]

\[a \quad b \quad a \quad b \quad a \]

\[\text{start} \]
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\Sigma \]

\[\begin{array}{ccccccc} a & b & a & b & a & b & a \end{array} \]
Massive Parallelism

Start: $q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3$

Input: $\Sigma = \{a, b\}$

Sequence: $a b a b a b a a$
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\sum \]

\[a \ b \ a \ b \ a \ b \ a \ a \]
Massive Parallelism

\[
\begin{align*}
& \quad q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \\
& \text{start} \quad a \quad a \quad b \\
& \Sigma \\
& a \ b \ a \ b \ a \ b \ a
\end{align*}
\]
Massive Parallelism

\[\Sigma \]

start \[q_0 \] \[a \] \[b \] \[q_1 \] \[b \] \[a \] \[q_2 \] \[a \] \[q_3 \]

\[
\begin{array}{cccccccc}
 a & b & a & b & a & b & a \\
\end{array}
\]
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

Input sequence: a b a b a a
Massive Parallelism
Massive Parallelism

\[\Sigma \]

\[q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \]

Input sequence: \[ababaaba \]
Massive Parallelism

\[\Sigma \]

\[
\begin{array}{cccc}
 a & b & a & b & a & b & a \\
\end{array}
\]
Massive Parallelism

\[\Sigma \]

\[q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \]

Input:

\[a \ b \ a \ b \ b \ a \ a \]
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

Input string: \[a b a b a b a \]
Massive Parallelism

\[\sum \]

\[
\begin{align*}
q_0 & \xrightarrow{a} q_1 & q_2 & \xrightarrow{a} q_3 \\
\end{align*}
\]

Input: \([a\ b\ a\ b\ a\ a]\)
Massive Parallelism

\[\sum \]

\[
\begin{array}{c}
\text{start} \\
q_0 \quad \text{a} \quad q_1 \quad \text{b} \quad q_2 \quad \text{a} \\
\quad \quad \quad \quad q_3
\end{array}
\]

\[
\begin{array}{ccccccc}
a & b & a & b & a & b & a
\end{array}
\]
Massive Parallelism

start

$q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3$

a b a b a b a
Massive Parallelism

Diagram:

- Start state: q_0
- States: q_0, q_1, q_2, q_3
- Transitions:
 - $q_0 \xrightarrow{a} q_1$
 - $q_1 \xrightarrow{b} q_2$
 - $q_2 \xrightarrow{a} q_3$
- Input alphabet: $\sum

Input sequence:

- $abaaba$
Massive Parallelism

\[
\Sigma \rightarrow a \rightarrow q_1 \rightarrow b \rightarrow q_2 \rightarrow a \rightarrow q_3
\]

\[
\begin{array}{cccccc}
a & b & a & b & a & a
\end{array}
\]
Massive Parallelism

\[
q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3
\]

Start state: \(q_0\)

Input symbols: \(\Sigma\)

Input sequence: \(a\ b\ a\ b\ a\ a\)

Final state: \(q_3\)
Massive Parallelism

\[\Sigma \]

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

Input sequence: a b a b a b a
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\Sigma \]

Input sequence: \(abaaba\)
Massive Parallelism

\[
\Sigma
\]

\[
\begin{align*}
\text{start} & \quad q_0 \\
& \quad a \quad q_1 \\
& \quad b \quad q_2 \\
& \quad a \quad q_3 \\
\end{align*}
\]

\[
\begin{align*}
\text{a} & \quad \text{b} & \quad \text{a} & \quad \text{b} & \quad \text{a} & \quad \text{b} & \quad \text{a}
\end{align*}
\]
Massive Parallelism

\[
\sum \quad a \quad a \quad b \\
\quad a \quad b \quad a \\
\quad a \quad a \quad a
\]
Massive Parallelism

The diagram shows a transition diagram with states q_0, q_1, q_2, and q_3. The transitions are labeled with symbols a and b.

The sequence $aba aba a$ is shown at the bottom of the diagram, indicating the input sequence to the automaton.

The automaton starts at state q_0 and transitions to q_1 on input 'a'. From q_1, it transitions to q_2 on input 'b'. From q_2, it transitions back to q_1 on input 'a'. From q_1, it transitions to q_3 on input 'a'. The sequence 'aba' transitions the automaton from q_2 to q_3.
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\Sigma \]

a b a b a a
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\Sigma \]

\[a \ b \ a \ b \ a \ b \ a \]
Massive Parallelism
Massive Parallelism

\[
\begin{align*}
\sum & \quad a \quad q_0 \\
a & \quad q_1 \\
b & \quad q_2 \\
a & \quad q_3
\end{align*}
\]
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\Sigma \]

\[a \quad b \quad a \quad b \quad a \quad b \quad a \]
Massive Parallelism

\[q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \]

\[\Sigma \]

\[a \ b \ a \ b \ a \ a \]
We’re in at least one accepting state, so there’s some path that gets us to an accepting state.

Therefore, we accept!
Massive Parallelism

• An NFA can be thought of as a DFA that can be in many states at once.
• At each point in time, when the NFA needs to follow a transition, it tries all the options at the same time.
• (Here's a rigorous explanation about how this works; read this on your own time).
 • Start off in the set of all states formed by taking the start state and including each state that can be reached by zero or more ε-transitions.
 • When you read a symbol a in a set of states S:
 - Form the set S' of states that can be reached by following a single a transition from some state in S.
 - Your new set of states is the set of states in S', plus the states reachable from S' by following zero or more ε-transitions.
So What?

- Each intuition of nondeterminism is useful in a different setting:
 - Perfect guessing is a great way to think about how to design a machine.
 - Massive parallelism is a great way to test machines – and has nice theoretical implications.
- Nondeterministic machines may not be feasible, but they give a great basis for interesting questions:
 - Can any problem that can be solved by a nondeterministic machine be solved by a deterministic machine?
 - Can any problem that can be solved by a nondeterministic machine be solved efficiently by a deterministic machine?
- The answers vary from automaton to automaton.
Designing NFAs
Designing NFAs

• When designing NFAs, *embrace the nondeterminism!*

• Good model: *Guess-and-check:*
 • Is there some information that you'd really like to have? Have the machine *nondeterministically guess* that information.
 • Then, have the machine *deterministically check* that the choice was correct.

• The *guess* phase corresponds to trying lots of different options.

• The *check* phase corresponds to filtering out bad guesses or wrong options.
Guess-and-Check

\[L = \{ \ w \in \{0, 1\}^* \mid w \text{ ends in } 010 \text{ or } 101 \ \} \]
Guess-and-Check

$L = \{ w \in \{0, 1\}^* \mid w \text{ ends in } 010 \text{ or } 101 \}$
Guess-and-Check

\[L = \{ w \in \{0, 1\}^* \mid w \text{ ends in } 010 \text{ or } 101 \} \]
Guess-and-Check

\[L = \{ w \in \{0, 1\}^* \mid \text{w ends in 010 or 101} \} \]

Nondeterministically guess when to leave the start state.

Deterministically check whether that was the right time to do so.
Guess-and-Check

\[L = \{ w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \} \]
Guess-and-Check

\[L = \{ \ w \in \{ a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \} \]
Guess-and-Check

\[L = \{ w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \} \]
Guess-and-Check

$L = \{ \ w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \ \}$

\[a, b \]
Guess-and-Check

$L = \{ w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \}$
Guess-and-Check

\[L = \{ w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \} \]
Guess-and-Check

$L = \{ w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \}$
Guess-and-Check

$L = \{ w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \}$
Guess-and-Check

\[L = \{ w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \} \]

Nondeterministically guess which character is missing.

Deterministically check whether that character is indeed missing.
Just how powerful are NFAs?