Finite Automata
Part Three
Recap from Last Time
Tabular DFAs

These stars indicate accepting states.
Table DFAs

Since this is the first row, it's the start state.
If D is a DFA, the language of D, denoted $\mathcal{L}(D)$, is \{ $w \in \Sigma^* \mid D$ accepts w \}.

A language L is called a regular language if there exists a DFA D such that $\mathcal{L}(D) = L$.

NFAs

• An **NFA** is a
 • **N**ondeterministic
 • **F**inite
 • **A**utomaton

• Can have missing transitions or multiple transitions defined on the same input symbol.

• Accepts if *any possible series of choices* leads to an accepting state.
ε-Transitions

- NFAs have a special type of transition called the \textbf{ε-transition}.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

![Diagram of ε-Transitions]

Start

$q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_2$

$q_3 \xrightarrow{b, \varepsilon} q_4 \xrightarrow{b} q_5$

q_4 is a loop on \varepsilon.
Massive Parallelism

• An NFA can be thought of as a DFA that can be in many states at once.

• At each point in time, when the NFA needs to follow a transition, it tries all the options at the same time.

• The NFA accepts if any of the states that are active at the end are accepting states. It rejects otherwise.
Just how powerful are NFAs?
New Stuff!
NFAs and DFAs

• Any language that can be accepted by a DFA can be accepted by an NFA.

• Why?
 • Every DFA essentially already is an NFA!

• Question: Can any language accepted by an NFA also be accepted by a DFA?

• Surprisingly, the answer is yes!
Thought Experiment:
How would you simulate an NFA in software?
\[\sum \]

```
a b a b a b a
```

Diagram:
- Start state: \(q_0 \)
- Transition: \(q_0 \) on 'a' to \(q_1 \)
- Transition: \(q_1 \) on 'b' to \(q_2 \)
- Transition: \(q_2 \) on 'a' back to \(q_2 \)
- Transition: \(q_2 \) on 'a' to \(q_3 \)
- Transition: \(q_3 \) on 'a' to itself (loop)

The diagram illustrates a finite automaton with transitions on 'a' and 'b'.
\[
\begin{align*}
\Sigma & \quad a \quad b \\
q_0 & \xrightarrow{a} q_1 \quad \xrightarrow{b} q_2 \quad \xrightarrow{a} q_3
\end{align*}
\]
A finite automaton with states $q_0, q_1, q_2,$ and q_3. The transitions are labeled as follows:

- From q_0 on input a, go to q_1.
- From q_1 on input b, go to q_2.
- From q_2 on input a, go to q_3.
- q_3 is a final state.

The input string is $\cdots \ ? \ ? \ ? \ ? \ a \ ? \ ? \ ? \ ? \ ? \ ? \ ? \ \cdots$.
\[\Sigma \]

Diagram:
- **Start:** \(q_0 \)
- Transitions:
 - \(q_0 \) to \(q_1 \) on \(a \)
 - \(q_1 \) to \(q_2 \) on \(b \)
 - \(q_2 \) to \(q_3 \) on \(a \)

Table:

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>({q_0})</td>
<td>({ q_0, q_1 })</td>
<td></td>
</tr>
</tbody>
</table>
$$q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3$$

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The diagram shows a transition graph with states and transitions labeled with symbols a and b.
The given figure represents a finite state machine (FSM) with the following states and transitions:

- **Start State**: q_0
- **States**: q_0, q_1, q_2, q_3
- **Transitions**:
 - $q_0 \xrightarrow{a} q_1$
 - $q_1 \xrightarrow{b} q_2$
 - $q_2 \xrightarrow{a} q_3$
 - $q_0 \xrightarrow{\Sigma} q_0$

The table below details the transitions for inputs 'a' and 'b' from different state sets:

<table>
<thead>
<tr>
<th>State Set</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>(q_0)</td>
<td>{q_0}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram:
- Start state: q_0
- Transitions:
 - $q_0 \xrightarrow{a} q_1$
 - $q_1 \xrightarrow{b} q_2$
 - $q_2 \xrightarrow{a} q_3$

States:
- q_0
- q_1
- q_2
- q_3
\[
\begin{array}{c}
\text{start} \rightarrow q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3
\\
\Sigma
\end{array}
\]

\[
\begin{array}{|c|c|c|}
\hline
q_0 & a \rightarrow \{q_0, q_1\} & b \rightarrow \{q_0\} \\
\hline
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \text{-} \\
\{q_0, q_1\} & \text{-} & \text{-} \\
\hline
\end{array}
\]
\[
\begin{array}{ccc}
\text{a} & \text{b} \\
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \\
\{q_0, q_1\} & & \\
\end{array}
\]
\[\text{start} \quad a \quad \Sigma \quad b \quad a \]

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td></td>
</tr>
</tbody>
</table>
Σ

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
</tbody>
</table>
\[
\begin{array}{ccc}
\{ q_0 \} & \{ q_0, q_1 \} & \{ q_0 \} \\
\{ q_0, q_1 \} & \{ q_0, q_1 \} & \{ q_0, q_2 \} \\
\{ q_0, q_2 \} & & \\
\end{array}
\]
\[
\begin{array}{ccc}
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & & \\
\end{array}
\]
\(\Sigma \)

<table>
<thead>
<tr>
<th>Start</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td>{q_0, q_2}</td>
</tr>
<tr>
<td>{q_0, q_2}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

States:
- \(q_0\)
- \(q_1\)
- \(q_2\)
- \(q_3\)
\[(\Sigma, \{q_0\}) \rightarrow (q_0, \{q_0, q_1\}) \rightarrow (q_1, \{q_0, q_1\}) \rightarrow (q_2, \{q_0, q_2\}) \rightarrow (q_3, \emptyset)\]
\[
\begin{array}{c}
\Sigma \\
\text{start} \\
q_0 \\
q_1 \\
q_2 \\
q_3 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
\text{a} & \text{b} \\
\hline
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \{q_0, q_1, q_3\} & \\
\end{array}
\]
\begin{align*}
\Sigma & \\
\text{start} & \rightarrow q_0 \\
q_0 & \xrightarrow{a} q_1 \\
q_1 & \xrightarrow{b} q_2 \\
q_2 & \xrightarrow{a} q_3
\end{align*}

\begin{tabular}{|c|c|c|}
\hline
 & \text{a} & \text{b} \\
\hline
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \{q_0, q_1, q_3\} & \\
\hline
\end{tabular}
\[\begin{array}{c|c|c}
&a&b \\
\hline
\{q_0\}&\{q_0, q_1\}&\{q_0\} \\
\{q_0, q_1\}&\{q_0, q_1\}&\{q_0, q_2\} \\
\{q_0, q_2\}&\{q_0, q_1, q_3\} & \\
\end{array} \]
\[
\begin{array}{c}
\text{start} \quad a \quad b \quad a
\end{array}
\]

\[
\begin{array}{c}
\Sigma \quad a \quad b
\end{array}
\]

\[
\begin{array}{|c|c|c|}
\hline
\text{a} & \text{b} \\
\hline
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \{q_0, q_1, q_3\} & \quad \\
\hline
\end{array}
\]
<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td>{q_0, q_2}</td>
</tr>
<tr>
<td>{q_0, q_2}</td>
<td>{q_0, q_1, q_3}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[
\begin{array}{ccc}
\text{start} & \rightarrow & q_0 \\
\downarrow \Sigma & \quad & \downarrow \text{a} \\
q_0 & \rightarrow & q_1 \\
\downarrow \text{b} & \quad & \downarrow \text{a} \\
q_1 & \rightarrow & q_2 \\
\text{a} & \rightarrow & q_3 \\
\end{array}
\]

<table>
<thead>
<tr>
<th>State 1</th>
<th>a ({ q_0, q_1 })</th>
<th>b ({ q_0 })</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ q_0 }</td>
<td>{ q_0, q_1 }</td>
<td>{ q_0 }</td>
</tr>
<tr>
<td>{ q_0, q_1 }</td>
<td>{ q_0, q_1 }</td>
<td>{ q_0, q_2 }</td>
</tr>
<tr>
<td>{ q_0, q_2 }</td>
<td>{ q_0, q_1, q_3 }</td>
<td>\text{---}</td>
</tr>
<tr>
<td>{ q_0, q_2 }</td>
<td>\text{---}</td>
<td>\text{---}</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td>{q_0, q_2}</td>
</tr>
<tr>
<td>{q_0, q_2}</td>
<td>{q_0, q_1, q_3}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_2}</td>
<td>{q_0, q_1, q_3}</td>
<td>{q_0}</td>
</tr>
</tbody>
</table>
\[
\begin{align*}
\begin{array}{c|c|c}
& a & b \\
\hline
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \{q_0, q_1, q_3\} & \{q_0\} \\
\{q_0, q_1, q_3\} & & \\
\end{array}
\end{align*}
\]

The diagram shows a finite automaton with states \(q_0, q_1, q_2, q_3 \) and transitions labeled with symbols \(a \) and \(b \). The start state is \(q_0 \), and there are transitions from \(q_0 \) to \(q_1 \) on \(a \), from \(q_1 \) to \(q_2 \) on \(b \), and from \(q_2 \) to \(q_3 \) on \(a \).
\[\begin{array}{|c|c|c|}
\hline
& a & b \\
\hline
\{ q_0 \} & \{ q_0, q_1 \} & \{ q_0 \} \\
\{ q_0, q_1 \} & \{ q_0, q_1 \} & \{ q_0, q_2 \} \\
\{ q_0, q_2 \} & \{ q_0, q_1, q_3 \} & \{ q_0 \} \\
\{ q_0, q_1, q_3 \} & & \\
\hline
\end{array} \]
\[
\begin{array}{ccc}
\text{a} & \text{b} \\
\{ q_0 \} & \{ q_0, q_1 \} & \{ q_0 \} \\
\{ q_0, q_1 \} & \{ q_0, q_1 \} & \{ q_0, q_2 \} \\
\{ q_0, q_2 \} & \{ q_0, q_1, q_3 \} & \{ q_0 \} \\
\{ q_0, q_1, q_3 \} \\
\end{array}
\]
A finite automaton with the following transitions:

- From state q_0, on input a, go to state q_1.
- From state q_1, on input b, go to state q_2.
- From state q_2, on input a, go to state q_3.
- From state q_3, on any input, go to state q_3.

Transition table:

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
<tr>
<td>${q_0, q_2}$</td>
<td>${q_0, q_1, q_3}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1, q_3}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[
\begin{array}{c|c|c}
& a & b \\
\hline
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \{q_0, q_1, q_3\} & \{q_0\} \\
\{q_0, q_1, q_3\} & & \\
\end{array}
\]
\begin{align*}
\begin{array}{c|c|c}
 & a & b \\
\hline
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \{q_0, q_1, q_3\} & \{q_0\} \\
\{q_0, q_1, q_3\} & & \\
\end{array}
\end{align*}
\[
\begin{array}{c|cc}
\text{state} & \text{on } a & \text{on } b \\
\hline
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\{q_0, q_2\} & \{q_0, q_1, q_3\} & \{q_0\} \\
\{q_0, q_1, q_3\} & \{q_0, q_1\} & \\
\end{array}
\]

The diagram shows a transition graph with states \(q_0\), \(q_1\), \(q_2\), and \(q_3\). The start state is \(q_0\). The transitions are as follows:

- From \(q_0\) to \(q_1\) on input \(a\)
- From \(q_1\) to \(q_2\) on input \(b\)
- From \(q_2\) to \(q_3\) on input \(a\)
- From \(q_3\) back to \(q_0\) on input \(\Sigma\) (loop back to the start state)
\[
q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3
\]
\[
\begin{array}{c}
\text{start} \\
q_0 \\
q_1 \\
q_2 \\
q_3
\end{array}
\]

\[
\Sigma
\]

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td>{q_0, q_2}</td>
</tr>
<tr>
<td>{q_0, q_2}</td>
<td>{q_0, q_1, q_3}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1, q_3}</td>
<td>{q_0, q_1}</td>
<td></td>
</tr>
</tbody>
</table>
\[q_0 \rightarrow_{a} q_1 \rightarrow_{b} q_2 \rightarrow_{a} q_3 \]

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q_0}</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1}</td>
<td>{q_0, q_1}</td>
<td>{q_0, q_2}</td>
</tr>
<tr>
<td>{q_0, q_2}</td>
<td>{q_0, q_1, q_3}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>{q_0, q_1, q_3}</td>
<td>{q_0, q_1}</td>
<td></td>
</tr>
</tbody>
</table>
The diagram represents a finite automaton with states q_0, q_1, q_2, and q_3. The transitions are labeled with symbols a and b.

<table>
<thead>
<tr>
<th>State Set</th>
<th>Transition to a</th>
<th>Transition to b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
<tr>
<td>${q_0, q_2}$</td>
<td>${q_0, q_1, q_3}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1, q_3}$</td>
<td>${q_0, q_1}$</td>
<td></td>
</tr>
</tbody>
</table>
The given diagram represents a non-deterministic finite automaton (NDFA) with the following transitions:

- Start state: q_0
- Transitions:
 - $q_0 \xrightarrow{a} q_1$
 - $q_1 \xrightarrow{b} q_2$
 - $q_2 \xrightarrow{a} q_3$
 - $q_0 \xrightarrow{\Sigma} q_0$

Transition table:

<table>
<thead>
<tr>
<th>Current State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
<tr>
<td>${q_0, q_2}$</td>
<td>${q_0, q_1, q_3}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_0, q_1, q_3}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
</tbody>
</table>
The Subset Construction

- This procedure for turning an NFA for a language L into a DFA for a language L is called the **subset construction**.
 - It’s sometimes called the **powerset construction**; it’s different names for the same thing!

- Intuitively:
 - Each state in the DFA corresponds to a set of states from the NFA.
 - Each transition in the DFA corresponds to what transitions would be taken in the NFA when using the massive parallel intuition.
 - The accepting states in the DFA correspond to which sets of states would be considered accepting in the NFA when using the massive parallel intuition.

- There’s an online *Guide to the Subset Construction* with a more elaborate example involving ε-transitions and cases where the NFA dies; check that for more details.
The Subset Construction

• In converting an NFA to a DFA, the DFA's states correspond to sets of NFA states.

• **Useful fact:** $|\mathcal{P}(S)| = 2^{|S|}$ for any finite set S.

• In the worst-case, the construction can result in a DFA that is exponentially larger than the original NFA.

• **Question to ponder:** Can you find a family of languages that have NFAs of size n, but no DFAs of size less than 2^n?
A language L is called a regular language if there exists a DFA D such that $L(D) = L$.
An Important Result

Theorem: A language L is regular if and only if there is some NFA N such that $\mathcal{L}(N) = L$.

Proof Sketch: Pick a language L. First, assume L is regular. That means there’s a DFA D where $\mathcal{L}(D) = L$. Every DFA is “basically” an NFA, so there’s an NFA (D) whose language is L.

Next, assume there’s an NFA N such that $\mathcal{L}(N) = L$. Using the subset construction, we can build a DFA D where $\mathcal{L}(N) = \mathcal{L}(D)$. Then we have that $\mathcal{L}(D) = L$, so L is regular. ■-ish
Why This Matters

• We now have two perspectives on regular languages:
 • Regular languages are languages accepted by DFAs.
 • Regular languages are languages accepted by NFAs.
• We can now reason about the regular languages in two different ways.
Time-Out for Announcements!
Many of these grades are because folks forgot to list partners – please check to make sure you’re getting credit for the work you’re doing, and let us know if your partner forgot to add you.
Problem Set Six

• Problem Set Five was due at 2:30PM today.
 • Want to use late days? One late day will extend this deadline to 2:30PM Saturday, and a second will extend it to 2:30PM Sunday.

• Problem Set Six goes out today. It’s due next Friday at 2:30PM.
 • Play around with DFAs, NFAs, language transformations, and their properties!
 • Explore how all the discrete math topics we’ve talked about so far come into play!
DFA/NFA Editor

- We have an online DFA/NFA editor you’ll use to answer and submit some of the questions for PS6.
- This tool will let you design and test your automata on a number of different inputs.
- You can also use it to explore on your own!
- One quick note: unlike the previous coding questions, we will only run the autograder once the problem set comes due. As a result, make sure to test your solutions thoroughly before submitting!

 - Think about edge cases. What are some small strings that might break things? Some longer strings?
 - Pretend you haven’t looked at your automata and just saw the language itself. What would be cases you’d expect would be really tricky?
Looking for a Partner?

• I’ve heard from many of you that you’re now looking for a problem set partner.
• Don’t forget that Piazza has a lovely “Search for Teammates” feature that you can use to do this.
• It’s like speed dating for theory!
Midterm Practice Problems

- If you’d like to get a jump on studying for the second midterm, feel free to work through the four practice exams we’ve posted to the course website.

- There’s also Extra Practice Problems 2 to work through.

- We’ll be holding a practice midterm exam next **Wednesday** evening from **7PM - 10PM**, location TBA. It’ll use an exam that’s not yet posted to the course website.
Your Questions
“How can you "differentiate" yourself as a programmer? Especially, at Stanford since you are one out of so many.”

My first question is why you’d want to differentiate yourself as a programmer – that’s not something you necessarily need to do at this point. I’d focus a lot more on skill acquisition and on finding what makes you happy before worrying about this. There aren’t many times where you need to “stand out” of the crowd as a programmer, and most of them will arise because you’re competent, talented, and easy to work with.

Your personal identity doesn’t have to be tied to your coding skills. You’re a whole person and these skills are just a part of that.
“Why do you like the number 137 so much?”

It’s the reciprocal of the fine structure constant, rounded to the nearest integer. It’s also a great “nothing-up-my-sleeve” number.
Back to CS103!
Properties of Regular Languages
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ, the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?
The Union of Two Languages

• If L_1 and L_2 are languages over the alphabet Σ, the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.

• If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ, the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?
The Union of Two Languages

• If L_1 and L_2 are languages over the alphabet Σ, the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.

• If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ, the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.

- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?

Question to ponder: where have you seen this idea before?
The Intersection of Two Languages

• If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2.

• Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?
The Intersection of Two Languages

- If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2.
- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?
The Intersection of Two Languages

- If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2.

- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?
The Intersection of Two Languages

- If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2.

- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?

\[\overline{L_1} \cup \overline{L_2} \]
The Intersection of Two Languages

- If L_1 and L_2 are languages over Σ, then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2.

- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?

Hey, it's De Morgan's laws!
Concatenation
String Concatenation

- If $w \in \Sigma^*$ and $x \in \Sigma^*$, the *concatenation* of w and x, denoted wx, is the string formed by tacking all the characters of x onto the end of w.

- Example: if $w = \text{quo}$ and $x = \text{kka}$, the concatenation $wx = \text{quokka}$.

- This is analogous to the $+$ operator for strings in many programming languages.

- Some facts about concatenation:
 - The empty string ε is the *identity element* for concatenation:
 \[
 w\varepsilon = \varepsilon w = w
 \]
 - Concatenation is *associative*:
 \[
 wxy = w(xy) = (wx)y
 \]
Concatenation

- The \textit{concatenation} of two languages L_1 and L_2 over the alphabet Σ is the language
 \[L_1L_2 = \{ wx \in \Sigma^* \mid w \in L_1 \land x \in L_2 \} \]
Concatenation Example

• Let $\Sigma = \{ a, b, ..., z, A, B, ..., Z \}$ and consider these languages over Σ:
 • $Noun = \{ \text{Puppy, Rainbow, Whale, ...} \}$
 • $Verb = \{ \text{Hugs, Juggles, Loves, ...} \}$
 • $The = \{ \text{The} \}$
 • $TheNounVerbTheNoun$ is
 • $\{ \text{ThePuppyHugsTheWhale, TheWhaleLovesTheRainbow, TheRainbowJugglesTheRainbow, ...} \}$
Concatenation

• The **concatenation** of two languages L_1 and L_2 over the alphabet Σ is the language

$$L_1L_2 = \{ wx \in \Sigma^* \mid w \in L_1 \land x \in L_2 \}$$

• Two views of L_1L_2:
 • The set of all strings that can be made by concatenating a string in L_1 with a string in L_2.
 • The set of strings that can be split into two pieces: a piece from L_1 and a piece from L_2.

This is closely related to, but different than, the Cartesian product.

Question to ponder: In what ways are concatenations similar to Cartesian products? In what ways are they different?
Concatenating Regular Languages

• If L_1 and L_2 are regular languages, is L_1L_2?

• Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?
Concatenating Regular Languages

• If \(L_1 \) and \(L_2 \) are regular languages, is \(L_1L_2 \)?

• Intuition – can we split a string \(w \) into two strings \(xy \) such that \(x \in L_1 \) and \(y \in L_2 \)?

![Machine for \(L_1 \)](image1)

![Machine for \(L_2 \)](image2)
Concatenating Regular Languages

- If L_1 and L_2 are regular languages, is L_1L_2?
- Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?

```
bookkeeper
```
Concatenating Regular Languages

- If L_1 and L_2 are regular languages, is L_1L_2?
- Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?

Machine for L_1

Machine for L_2

bookkeeper
Concatenating Regular Languages

- If L_1 and L_2 are regular languages, is L_1L_2?
- Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?

![Machine for L_1](image1)

![Machine for L_2](image2)

$book$ $keeper$
Concatenating Regular Languages

- If L_1 and L_2 are regular languages, is L_1L_2?
- Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?

Idea:

- Run a DFA/NFA for L_1 on w.
- Whenever it reaches an accepting state, optionally hand the rest of w to a DFA/NFA for L_2.
- If the automaton for L_2 accepts the rest, $w \in L_1L_2$.
- If the automaton for L_2 rejects the remainder, the split was incorrect.
Concatenating Regular Languages
Concatenating Regular Languages

Machine for L_1
Concatenating Regular Languages

Machine for L_1

Machine for L_2
Concatenating Regular Languages

Machine for L_1

Machine for L_2
Concatenating Regular Languages

Machine for L_1

Machine for L_2
Concatenating Regular Languages

Machine for L_1

Machine for L_2

Machine for $L_1 L_2$
Lots and Lots of Concatenation

• Consider the language $L = \{ \text{aa, b} \}$

• LL is the set of strings formed by concatenating pairs of strings in L.

 \[
 \{ \text{aaaa, aab, baa, bb} \}
 \]

• LLL is the set of strings formed by concatenating triples of strings in L.

 \[
 \{ \text{aaaaaa, aaaaab, aabaa, aabb, baaaa, baab, bbbaa, bbb} \}
 \]

• $LLLL$ is the set of strings formed by concatenating quadruples of strings in L.

 \[
 \{ \text{aaaaaaaa, aaaaaab, aaaaabaa, aaaaabb, aabaaaa, aabaab, aabbaa, aabbb, baaaaaa, baaaaab, baaba, baabb, bbaaaa, bbaab, bbbaa, bbbb} \}
 \]
Language Exponentiation

• We can define what it means to “exponentiate” a language as follows:

 • \(L^0 = \{\varepsilon\}\)

 • Intuition: The only string you can form by gluing no strings together is the empty string.

 • Notice that \(\{\varepsilon\} \neq \emptyset\). Can you explain why?

 • \(L^{n+1} = LL^n\)

 • Idea: Concatenating \((n+1)\) strings together works by concatenating \(n\) strings, then concatenating one more.

• **Question to ponder:** Why define \(L^0 = \{\varepsilon\}\)?
• **Question to ponder:** What is \(\emptyset^0\)?
The Kleene Star
The Kleene Closure

- An important operation on languages is the **Kleene Closure**, which is defined as

 \[L^* = \{ w \in \Sigma^* \mid \exists n \in \mathbb{N}. w \in L^n \} \]

 - Mathematically:

 \[w \in L^* \iff \exists n \in \mathbb{N}. w \in L^n \]

 - Intuitively, \(L^* \) is the language all possible ways of concatenating zero or more strings in \(L \) together, possibly with repetition.

- **Question to ponder:** What is \(\emptyset^* \)?
The Kleene Closure

If \(L = \{ \text{a, bb} \} \), then \(L^* = \{ \)

\[\varepsilon, \]

\[\text{a, bb,} \]

\[\text{aa, abb, bba, bbbb,} \]

\[\text{aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbbb,} \]

\[\ldots \]

\}
Reasoning about Infinity

• If L is regular, is L^* necessarily regular?
• ⚠ A Bad Line of Reasoning: ⚠
 • $L^0 = \{ \varepsilon \}$ is regular.
 • $L^1 = L$ is regular.
 • $L^2 = LL$ is regular
 • $L^3 = L(LL)$ is regular
 • ...
• Regular languages are closed under union.
• So the union of all these languages is regular.
Reasoning about Infinity
Reasoning about Infinity
Reasoning about Infinity
Reasoning about Infinity

\[
\chi \quad \chi
\]
Reasoning about Infinity
Reasoning about Infinity
Reasoning about Infinity
Reasoning about Infinity

\[x \neq 2x \]
Reasoning about Infinity

0.9 < 1
Reasoning about Infinity

0.99 < 1
Reasoning about Infinity

$0.999 < 1$
Reasoning about Infinity

0.99999 < 1
Reasoning about Infinity

$0.99999 < 1$
Reasoning about Infinity

0.9999\ldots \neq 1
Reasoning about Infinity

0 is finite
Reasoning about Infinity

1 is finite
Reasoning about Infinity

2 is finite
Reasoning about Infinity

3 is finite
Reasoning about Infinity

4 is finite
Reasoning about Infinity

∞ is finite

^ not
Reasoning About the Infinite

• If a series of finite objects all have some property, the "limit" of that process does not necessarily have that property.

• In general, it is not safe to conclude that some property that always holds in the finite case must hold in the infinite case.
 • (This is why calculus is interesting).

• So our earlier argument \(L^* = L^0 \cup L^1 \cup \ldots \) isn’t going to work.

• We need a different line of reasoning.
Idea: Can we directly convert an NFA for language L to an NFA for language L^*?
The Kleene Star

start

Machine for L
The Kleene Star
The Kleene Star

ε

Machine for L
The Kleene Star

Machine for L
The Kleene Star

Machine for L
The Kleene Star

Machine for L

Machine for L^*
Question: Why add the new state out front? Why not just make the old start state accepting?
Closure Properties

• **Theorem:** If L_1 and L_2 are regular languages over an alphabet Σ, then so are the following languages:

 • $\overline{L_1}$
 • $L_1 \cup L_2$
 • $L_1 \cap L_2$
 • L_1L_2
 • L_1^*

• These properties are called **closure properties of the regular languages**.
Next Time

• *Regular Expressions*
 • Building languages from the ground up!

• *Thompson’s Algorithm*
 • A UNIX Programmer in Theoryland.

• *Kleene’s Theorem*
 • From machines to programs!