Recap from Last Time
These stars indicate accepting states.
Tabular DFAs

Since this is the first row, it's the start state.
If D is a DFA, the **language of D**, denoted $\mathcal{L}(D)$, is $\{ w \in \Sigma^* \mid D$ accepts $w \}$.

A language L is called a **regular language** if there exists a DFA D such that $\mathcal{L}(D) = L$.
NFAs

• An **NFA** is a
 • **N**ondeterministic
 • **F**inite
 • **A**utomaton

• Can have missing transitions or multiple transitions defined on the same input symbol.

• Accepts if *any possible series of choices* leads to an accepting state.

ε-Transitions

- NFAs have a special type of transition called the **ε-transition**.
- An NFA may follow any number of ε-transitions at any time without consuming any input.
Massive Parallelism

• An NFA can be thought of as a DFA that can be in many states at once.

• At each point in time, when the NFA needs to follow a transition, it tries all the options at the same time.

• The NFA accepts if any of the states that are active at the end are accepting states. It rejects otherwise.
Just how powerful are NFAs?
New Stuff!
NFAs and DFAs

• Any language that can be accepted by a DFA can be accepted by an NFA.

• Why?
 • Every DFA essentially already is an NFA!

• **Question**: Can any language accepted by an NFA also be accepted by a DFA?

• Surprisingly, the answer is **yes**!
Thought Experiment:
How would you simulate an NFA in software?
\[
\begin{array}{ccc}
\{q_0\} & \{q_0, q_1\} & \{q_0\} \\
\{q_0, q_1\} & \{q_0, q_1\} & \{q_0, q_2\} \\
\end{array}
\]
\begin{center}
\begin{tikzpicture}
\node[state, initial, accepting] (q0) {q_0};
\node[state, right of=q0] (q1) {q_1};
\node[state, right of=q1] (q2) {q_2};
\node[state, accepting, right of=q2] (q3) {q_3};
\draw[->] (q0) edge node {a} (q1);
\draw[->] (q1) edge node {b} (q2);
\draw[->] (q2) edge node {a} (q3);
\draw[->] (q3) edge[loop above] node {Σ} (q3);
\end{tikzpicture}
\end{center}

\begin{center}
\begin{tabular}{|c|c|c|}
\hline
 & a & b \\
\hline
$\{q_0\}$ & $\{q_0, q_1\}$ & $\{q_0\}$ \\
\hline
$\{q_0, q_1\}$ & $\{q_0, q_1\}$ & $\{q_0, q_2\}$ \\
\hline
$\{q_0, q_2\}$ & $\{q_0, q_1, q_3\}$ & $\{q_0\}$ \\
\hline
$\{q_0, q_1, q_3\}$ & $\{q_0, q_1\}$ & $\{q_0, q_2\}$ \\
\hline
\end{tabular}
\end{center}
\[
\begin{array}{c}
\begin{array}{c}
\text{start} \\
\begin{array}{cc}
q_0 & a \\
q_1 & b \\
q_2 & a \\
q_3 & \\
\end{array}
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\Sigma \\
\end{array}
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\{q_0\} & a & \{q_0, q_1\} & b & \{q_0\} \\
\{q_0, q_1\} & a & \{q_0, q_1\} & b & \{q_0, q_2\} \\
\{q_0, q_2\} & a & \{q_0, q_1, q_3\} & b & \{q_0\} \\
*\{q_0, q_1, q_3\} & a & \{q_0, q_1\} & b & \{q_0, q_2\} \\
\end{array}
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{start} \\
\begin{array}{cc}
\{q_0\} & a \\
\{q_0, q_1\} & b \\
\{q_0, q_2\} & a \\
*\{q_0, q_1, q_3\} & b \\
\end{array}
\end{array}
\end{array}
\end{array}
\]
The Subset Construction

• This procedure for turning an NFA for a language L into a DFA for a language L is called the *subset construction*.
 • It’s sometimes called the *powerset construction*; it’s different names for the same thing!

• Intuitively:
 • Each state in the DFA corresponds to a set of states from the NFA.
 • Each transition in the DFA corresponds to what transitions would be taken in the NFA when using the massive parallel intuition.
 • The accepting states in the DFA correspond to which sets of states would be considered accepting in the NFA when using the massive parallel intuition.

• There’s an online *Guide to the Subset Construction* with a more elaborate example involving ε-transitions and cases where the NFA dies; check that for more details.
The Subset Construction

- In converting an NFA to a DFA, the DFA's states correspond to sets of NFA states.

- **Useful fact:** $|\mathcal{P}(S)| = 2^{|S|}$ for any finite set S.

- In the worst-case, the construction can result in a DFA that is *exponentially larger* than the original NFA.

- **Question to ponder:** Can you find a family of languages that have NFAs of size n, but no DFAs of size less than 2^n?
A language L is called a **regular language** if there exists a DFA D such that $\mathcal{L}(D) = L$.
An Important Result

Theorem: A language L is regular if and only if there is some NFA N such that $\mathcal{L}(N) = L$.

Proof Sketch: Pick a language L. First, assume L is regular. That means there’s a DFA D where $\mathcal{L}(D) = L$. Every DFA is “basically” an NFA, so there’s an NFA (D) whose language is L.

Next, assume there’s an NFA N such that $\mathcal{L}(N) = L$. Using the subset construction, we can build a DFA D where $\mathcal{L}(N) = \mathcal{L}(D)$. Then we have that $\mathcal{L}(D) = L$, so L is regular. ■-ish
Why This Matters

- We now have two perspectives on regular languages:
 - Regular languages are languages accepted by DFAs.
 - Regular languages are languages accepted by NFAs.
- We can now reason about the regular languages in two different ways.
Time-Out for Announcements!
Many of these grades are because folks forgot to list partners – please check to make sure you’re getting credit for the work you’re doing, and let us know if your partner forgot to add you.
Problem Set Six

• Problem Set Five was due at 2:30PM today.
 • Want to use late days? One late day will extend this deadline to 2:30PM Saturday, and a second will extend it to 2:30PM Sunday.

• Problem Set Six goes out today. It’s due next Friday at 2:30PM.
 • Play around with DFAs, NFAs, language transformations, and their properties!
 • Explore how all the discrete math topics we’ve talked about so far come into play!
DFA/NFA Editor

- We have an online DFA/NFA editor you’ll use to answer and submit some of the questions for PS6.
- This tool will let you design and test your automata on a number of different inputs.
- You can also use it to explore on your own!
- One quick note: unlike the previous coding questions, we will only run the autograder once the problem set comes due. As a result, make sure to test your solutions thoroughly before submitting!

 - Think about edge cases. What are some small strings that might break things? Some longer strings?
 - Pretend you haven’t looked at your automata and just saw the language itself. What would be cases you’d expect would be really tricky?
Looking for a Partner?

• I’ve heard from many of you that you’re now looking for a problem set partner.

• Don’t forget that Piazza has a lovely “Search for Teammates” feature that you can use to do this.

• It’s like speed dating for theory!
Midterm Practice Problems

- If you’d like to get a jump on studying for the second midterm, feel free to work through the four practice exams we’ve posted to the course website.
- There’s also Extra Practice Problems 2 to work through.
- We’ll be holding a practice midterm exam next **Wednesday** evening from **7PM - 10PM**, location TBA. It’ll use an exam that’s not yet posted to the course website.
Your Questions
“How can you "differentiate" yourself as a programmer? Especially, at Stanford since you are one out of so many.”

My first question is why you’d want to differentiate yourself as a programmer – that’s not something you necessarily need to do at this point. I’d focus a lot more on skill acquisition and on finding what makes you happy before worrying about this. There aren’t many times where you need to “stand out” of the crowd as a programmer, and most of them will arise because you’re competent, talented, and easy to work with.

Your personal identity doesn’t have to be tied to your coding skills. You’re a whole person and these skills are just a part of that.
“Why do you like the number 137 so much?”

It’s the reciprocal of the fine structure constant, rounded to the nearest integer. It’s also a great “nothing-up-my-sleeve” number.
Back to CS103!
Properties of Regular Languages
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ, the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ, the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ, the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.

- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?

Question to ponder: where have you seen this idea before?
The Intersection of Two Languages

- If \(L_1\) and \(L_2\) are languages over \(\Sigma\), then \(L_1 \cap L_2\) is the language of strings in both \(L_1\) and \(L_2\).

- Question: If \(L_1\) and \(L_2\) are regular, is \(L_1 \cap L_2\) regular as well?

Hey, it's De Morgan's laws!
Concatenation
String Concatenation

• If \(w \in \Sigma^* \) and \(x \in \Sigma^* \), the *concatenation* of \(w \) and \(x \), denoted \(wx \), is the string formed by tacking all the characters of \(x \) onto the end of \(w \).

• Example: if \(w = \text{quo} \) and \(x = \text{kka} \), the concatenation \(wx = \text{quokka} \).

• This is analogous to the + operator for strings in many programming languages.

• Some facts about concatenation:
 • The empty string \(\epsilon \) is the *identity element* for concatenation:
 \[
 w\epsilon = \epsilon w = w
 \]
 • Concatenation is *associative*:
 \[
 wxy = w(xy) = (wx)y
 \]
Concatenation

- The *concatenation* of two languages L_1 and L_2 over the alphabet Σ is the language

$$L_1L_2 = \{ wx \in \Sigma^* \mid w \in L_1 \land x \in L_2 \}$$
Concatenation Example

Let \(\Sigma = \{ \text{a, b, ..., z, A, B, ..., Z} \} \) and consider these languages over \(\Sigma \):

- **Noun** = \{ Puppy, Rainbow, Whale, ... \}
- **Verb** = \{ Hugs, Juggles, Loves, ... \}
- **The** = \{ The \}
- **The language** **TheNounVerbTheNoun** is
 - \{ ThePuppyHugsTheWhale, TheWhaleLovesTheRainbow, TheRainbowJugglesTheRainbow, ... \}
Concatenation

- The **concatenation** of two languages L_1 and L_2 over the alphabet Σ is the language

 $L_1L_2 = \{ wx \in \Sigma^* \mid w \in L_1 \land x \in L_2 \}$

- Two views of L_1L_2:

 - The set of all strings that can be made by concatenating a string in L_1 with a string in L_2.
 - The set of strings that can be split into two pieces: a piece from L_1 and a piece from L_2.

This is closely related to, but different than, the Cartesian product.

Question to ponder: In what ways are concatenations similar to Cartesian products? In what ways are they different?
Concatenating Regular Languages

- If L_1 and L_2 are regular languages, is L_1L_2?
- Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?

Machine for L_1 Machine for L_2

bookkeeper
Concatenating Regular Languages

- If L_1 and L_2 are regular languages, is L_1L_2?
- Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?

Idea:
- Run a DFA/NFA for L_1 on w.
- Whenever it reaches an accepting state, optionally hand the rest of w to a DFA/NFA for L_2.
- If the automaton for L_2 accepts the rest, $w \in L_1L_2$.
- If the automaton for L_2 rejects the remainder, the split was incorrect.
Concatenating Regular Languages

Machine for L_1

Machine for L_2
Concatenating Regular Languages

Machine for L_1

Machine for L_2

Machine for L_1L_2
Lots and Lots of Concatenation

- Consider the language $L = \{ \text{aa, b} \}$
- LL is the set of strings formed by concatenating pairs of strings in L.
 $$\{ \text{aaaa, aab, baa, bb} \}$$
- LLL is the set of strings formed by concatenating triples of strings in L.
 $$\{ \text{aaaaaa, aaaaab, aabaa, aabb, baaaa, baab, bbaa, bbb} \}$$
- $LLLL$ is the set of strings formed by concatenating quadruples of strings in L.
 $$\{ \text{aaaaaaaa, aaaaaaab, aaaaabaa, aaaaabb, aabaaaa, aabaab, aabbaa, aabbb, baaaaaa, baaaaab, baabaa, baabb, bbaaaa, bbaab, bbbaa, bbbb} \}$$
Language Exponentiation

- We can define what it means to “exponentiate” a language as follows:
- \(L^0 = \{ \varepsilon \} \)
 - Intuition: The only string you can form by gluing no strings together is the empty string.
 - Notice that \(\{ \varepsilon \} \neq \emptyset \). Can you explain why?
- \(L^{n+1} = LL^n \)
 - Idea: Concatenating \((n+1)\) strings together works by concatenating \(n\) strings, then concatenating one more.

Question to ponder: Why define \(L^0 = \{ \varepsilon \} \)?

Question to ponder: What is \(\emptyset^0 \)?
The Kleene Star
The Kleene Closure

• An important operation on languages is the **Kleene Closure**, which is defined as

\[L^* = \{ w \in \Sigma^* \mid \exists n \in \mathbb{N}. w \in L^n \} \]

• Mathematically:

\[w \in L^* \iff \exists n \in \mathbb{N}. w \in L^n \]

• Intuitively, \(L^* \) is the language all possible ways of concatenating zero or more strings in \(L \) together, possibly with repetition.

• **Question to ponder:** What is \(\emptyset^* \)?
The Kleene Closure

If \(L = \{ a, bb \} \), then \(L^* = \{ \)

\[\varepsilon, \]

\[a, bb, \]

\[aa, abb, bba, bbbb, \]

\[aaa, aabb, abba, abbbb, bbba, bbabb, bbbba, bbbbbbb, \]

\[... \]

\}
Reasoning about Infinity

• If L is regular, is L^* necessarily regular?

• 🚨 A Bad Line of Reasoning: 🚨
 • $L^0 = \{ \varepsilon \}$ is regular.
 • $L^1 = L$ is regular.
 • $L^2 = LL$ is regular
 • $L^3 = L(LL)$ is regular
 • ...

• Regular languages are closed under union.
• So the union of all these languages is regular.
Reasoning About the Infinite

- If a series of finite objects all have some property, the “limit” of that process does not necessarily have that property.
- In general, it is not safe to conclude that some property that always holds in the finite case must hold in the infinite case.
 - (This is why calculus is interesting).
- So our earlier argument \((L^* = L^0 \cup L^1 \cup \ldots)\) isn’t going to work.
- We need a different line of reasoning.
Idea: Can we directly convert an NFA for language L to an NFA for language L^*?
The Kleene Star

Machine for L
The Kleene Star

Question: Why add the new state out front? Why not just make the old start state accepting?
Closure Properties

• **Theorem:** If L_1 and L_2 are regular languages over an alphabet Σ, then so are the following languages:

 • $\overline{L_1}$
 • $L_1 \cup L_2$
 • $L_1 \cap L_2$
 • L_1L_2
 • L_1^*

• These properties are called **closure properties of the regular languages.**
Next Time

- **Regular Expressions**
 - Building languages from the ground up!
- **Thompson’s Algorithm**
 - A UNIX Programmer in Theoryland.
- **Kleene’s Theorem**
 - From machines to programs!