Regular Expressions
Recap from Last Time
Regular Languages

- A language L is a regular language if there is a DFA D such that $\mathcal{L}(D) = L$.

- **Theorem:** The following are equivalent:
 - L is a regular language.
 - There is a DFA for L.
 - There is an NFA for L.
Language Concatenation

- If $w \in \Sigma^*$ and $x \in \Sigma^*$, then wx is the \textit{concatenation} of w and x.
- If L_1 and L_2 are languages over Σ, the \textit{concatenation} of L_1 and L_2 is the language L_1L_2 defined as

$$L_1L_2 = \{ wx \mid w \in L_1 \text{ and } x \in L_2 \}$$

- Example: if $L_1 = \{ a, ba, bb \}$ and $L_2 = \{ aa, bb \}$, then

$$L_1L_2 = \{ aaa, abb, baaa, babb, bbaa, bbbb \}$$
Lots and Lots of Concatenation

- Consider the language $L = \{ \text{aa, b} \}$
- LL is the set of strings formed by concatenating pairs of strings in L.

 $\{ \text{aaaa, aab, baa, bb} \}$
- LLL is the set of strings formed by concatenating triples of strings in L.

 $\{ \text{aaaaaa, aaaaab, aabaa, aabb, baaaa, baab, bbba, bbb} \}$
- $LLLL$ is the set of strings formed by concatenating quadruples of strings in L.

 $\{ \text{aaaaaaaa, aaaaaab, aabaa, aabb, baaaa, baab, bbba, bbb} \}$
Language Exponentiation

- We can define what it means to “exponentiate” a language as follows:

 - \(L^0 = \{ \varepsilon \} \)
 - The set containing just the empty string.
 - Idea: Any string formed by concatenating zero strings together is the empty string.
 - \(L^{n+1} = LL^n \)
 - Idea: Concatenating \((n+1)\) strings together works by concatenating \(n\) strings, then concatenating one more.

- **Question:** Why define \(L^0 = \{ \varepsilon \} \)?
The Kleene Closure

- An important operation on languages is the **Kleene Closure**, which is defined as

 \[L^* = \{ w \in \Sigma^* \mid \exists n \in \mathbb{N}. w \in L^n \} \]

- Mathematically:

 \[w \in L^* \iff \exists n \in \mathbb{N}. w \in L^n \]

- Intuitively, all possible ways of concatenating zero or more strings in \(L \) together, possibly with repetition.
The Kleene Closure

If \(L = \{ \text{a, bb} \} \), then \(L^* = \{ \)

\[\varepsilon, \]

\[\text{a, bb,} \]

\[\text{aa, abb, bba, bbbb,} \]

\[\text{aaa, aabb, abba, abbbbb, bbbaa, bbabb, bbbbb,} \]

\[\text{...} \]

\}
Closure Properties

• **Theorem:** If L_1 and L_2 are regular languages over an alphabet Σ, then so are the following languages:
 • \overline{L}_1
 • $L_1 \cup L_2$
 • $L_1 \cap L_2$
 • L_1L_2
 • L_1^*

• These properties are called **closure properties of the regular languages**.
New Stuff!
Another View of Regular Languages
Rethinking Regular Languages

• We currently have several tools for showing a language L is regular:
 • Construct a DFA for L.
 • Construct an NFA for L.
 • Combine several simpler regular languages together via closure properties to form L.

• We have not spoken much of this last idea.
Constructing Regular Languages

Idea: Build up all regular languages as follows:

- Start with a small set of simple languages we already know to be regular.
- Using closure properties, combine these simple languages together to form more elaborate languages.

- A bottom-up approach to the regular languages.
Regular Expressions

- **Regular expressions** are a way of describing a language via a string representation.
- They’re used extensively in software systems for string processing and as the basis for tools like `grep` and `flex`.
- Conceptually, regular languages are strings describing how to assemble a larger language out of smaller pieces.
Atomic Regular Expressions

- The regular expressions begin with three simple building blocks.
- The symbol \emptyset is a regular expression that represents the empty language \emptyset.
- For any $a \in \Sigma$, the symbol a is a regular expression for the language $\{a\}$.
- The symbol ε is a regular expression that represents the language $\{\varepsilon\}$.
 - *Remember:* $\{\varepsilon\} \neq \emptyset$!
 - *Remember:* $\{\varepsilon\} \neq \varepsilon$!
Compound Regular Expressions

• If R_1 and R_2 are regular expressions, R_1R_2 is a regular expression for the *concatenation* of the languages of R_1 and R_2.

• If R_1 and R_2 are regular expressions, $R_1 \cup R_2$ is a regular expression for the *union* of the languages of R_1 and R_2.

• If R is a regular expression, R^* is a regular expression for the *Kleene closure* of the language of R.

• If R is a regular expression, (R) is a regular expression with the same meaning as R.
Operator Precedence

- Regular expression operator precedence:
 - (R)
 - R^*
 - R_1R_2
 - $R_1 \cup R_2$

- So $ab^*c \cup d$ is parsed as $((a(b^*))c) \cup d$
Regular Expression Examples

• The regular expression `trickUtreat` represents the regular language `{ trick, treat }`.

• The regular expression `booo*` represents the regular language `{ boo, booo, boooo, ... }`.

• The regular expression `candy!(candy!)*` represents the regular language `{ candy!, candy!candy!, candy!candy!candy!, ... }`.
Regular Expressions, Formally

- The **language of a regular expression** is the language described by that regular expression.

- Formally:
 - \(\mathcal{L}(\varepsilon) = \{ \varepsilon \} \)
 - \(\mathcal{L}(\emptyset) = \emptyset \)
 - \(\mathcal{L}(a) = \{ a \} \)
 - \(\mathcal{L}(R_1 R_2) = \mathcal{L}(R_1) \mathcal{L}(R_2) \)
 - \(\mathcal{L}(R_1 \cup R_2) = \mathcal{L}(R_1) \cup \mathcal{L}(R_2) \)
 - \(\mathcal{L}(R^*) = \mathcal{L}(R)^* \)
 - \(\mathcal{L}(R) = \mathcal{L}(R) \)

 Worthwhile activity: Apply this recursive definition to \(a(b \cup c)((d)) \) and see what you get.
Designing Regular Expressions

Let $\Sigma = \{0, 1\}$

Let $L = \{ w \in \Sigma^* \mid w$ contains 00 as a substring $\}$

$$(0 \cup 1)^*00(0 \cup 1)^*$$

11011100101
0000
0000
11111011110011111
Designing Regular Expressions

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid w$ contains 00 as a substring $\}$

$\Sigma^*00\Sigma^*$

11011100101
0000
11111011110011111
Designing Regular Expressions

Let $\Sigma = \{0, 1\}$
Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$

The length of a string w is denoted $|w|$
Designing Regular Expressions

• Let $\Sigma = \{0, 1\}$
• Let $L = \{w \in \Sigma^* \mid |w| = 4\}$
Designing Regular Expressions

• Let $\Sigma = \{0, 1\}$

• Let $L = \{ w \in \Sigma^* | |w| = 4 \}$

Σ^4

0000
1010
1111
1000
Designing Regular Expressions

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains at most one } 0 \}$

$$1^*(0 \cup \varepsilon)1^*$$

11110111
111111
0111
0
Designing Regular Expressions

• Let $\Sigma = \{0, 1\}$
• Let $L = \{ w \in \Sigma^* \mid w \text{ contains at most one } 0 \}$
A More Elaborate Design

• Let $\Sigma = \{ a, ., @ \}$, where a represents “some letter.”

• Let's make a regex for email addresses.

 $aa*(.aa*)*@aa*.aa*(.aa*)*$

 cs103@cs.stanford.edu
 first.middle.last@mail.site.org
 dot.at@dot.com
Let $\Sigma = \{ a, ., @ \}$, where a represents “some letter.”

Let's make a regex for email addresses.

\[
a^+ (.a^+)* @ a^+.a^+ (.a^+)*
\]

cs103@cs.stanford.edu
first.middle.last@mail.site.org
dot.at@dot.com
A More Elaborate Design

- Let $\Sigma = \{a, ., @\}$, where a represents “some letter.”
- Let's make a regex for email addresses.

$$a^+(.a^+)* @ a^+ (.a^+)^+$$

cs103@cs.stanford.edu
first.middle.last@mail.site.org
dot.at@dot.com
Regular Expressions are Awesome

\[a^+ (a^+) @ a^+ (a^+) \]

\[@, . \]
Shorthand Summary

- R^n is shorthand for $RR \ldots R$ (n times).
 - Edge case: define $R^0 = \varepsilon$.
- Σ is shorthand for “any character in Σ.”
- $R?$ is shorthand for $(R \cup \varepsilon)$, meaning “zero or one copies of R.”
- R^+ is shorthand for RR^*, meaning “one or more copies of R.”
Time-Out for Announcements!
Midterm Exam Logistics

• The next midterm is **Monday, November 13th** from **7:00PM – 10:00PM**. Locations are divvied up by last (family) name:
 • Abb – Hal: Go to **Hewlett 201**.
 • Han – Zwa: Go to **Hewlett 200**.

• The exam focuses on Lecture 06 – 13 (binary relations through induction) and PS3 – PS5. Finite automata onward is *not* tested.
 • Topics from earlier in the quarter (proofwriting, first-order logic, set theory, etc.) are also fair game, but that’s primarily because the later material builds on this earlier material.

• The exam is closed-book, closed-computer, and limited-note. You can bring a double-sided, 8.5” × 11” sheet of notes with you to the exam, decorated however you’d like.

• Students with OAE accommodations: please contact us *immediately* if you haven’t yet done so. We’ll ping you about setting up alternate exams.
Practice Midterm Exam

• To help you prepare for the midterm, we'll be holding a practice midterm exam on **Wednesday, November 8** from **7PM - 10PM** in **Bishop Auditorium**.

• The practice midterm exam is composed of what we think is a good representative sample of older midterm questions from across the years. It’s probably the best indicator of what you should expect to see.

• Course staff will be on hand to answer your questions.

• Can't make it? We'll release the practice exam and solutions online. Set up your own practice exam time with a small group and work through it under realistic conditions!
Other Practice Materials

• We’ve posted three practice midterms to the course website independently of the one we’ll be giving out on Wednesday.
 • We’ll release solutions on Wednesday.
• There’s also Extra Practice Problems 2, plus all the CS103A materials.
• Need more practice? Let us know and we’ll see what we can do!
Problem Sets

• Problem Set Five solutions are now out.
 • Please read over them – there’s a lot of good stuff in there!
 • We’ll get PS5 graded and returned as soon as we can.

• Problem Set Six is out and is due this Friday at 2:30PM.
 • Be careful about using late days here, since the exam is on Monday.
Your Questions
“Would you recite to us your favorite Poem?”

Most of my favorites either don’t work well when recited or are way too long to fit here.

I highly recommend “Could Have” or “The End and the Beginning” by Wislawa Szymborska, which are probably my all-time top favorites.
“Mac or PC? (And no choosing Linux)"
“Do you plan on staying in higher education for your entire career? If no then give an example of a possible exit path. If yes then justify your answer.”

I’m taking things as they come. I really like my job, so I don’t see any reason to leave academia any time soon. If I do want to leave, I’d probably transition into industry.
Back to CS103!
The Power of Regular Expressions

Theorem: If \(R \) is a regular expression, then \(\mathcal{L}(R) \) is regular.

Proof idea: Use induction!

- The atomic regular expressions all represent regular languages.
- The combination steps represent closure properties.
- So anything you can make from them must be regular!
Thompson’s Algorithm

• In practice, many regex matchers use an algorithm called *Thompson's algorithm* to convert regular expressions into NFAs (and, from there, to DFAs).
 • Read Sipser if you’re curious!
 • **Fun fact:** the “Thompson” here is Ken Thompson, one of the co-inventors of Unix!
The Power of Regular Expressions

Theorem: If L is a regular language, then there is a regular expression for L.

This is not obvious!

Proof idea: Show how to convert an arbitrary NFA into a regular expression.
Generalizing NFAs

These are all regular expressions!
Generalizing NFAs

Note: Actual NFAs aren’t allowed to have transitions like these. This is just a thought experiment.
Key Idea 1: Imagine that we can label transitions in an NFA with arbitrary regular expressions.
Generalizing NFAs

Is there a simple regular expression for the language of this generalized NFA?
Generalizing NFAs

Is there a simple regular expression for the language of this generalized NFA?
Key Idea 2: If we can convert an NFA into a generalized NFA that looks like this...

...then we can easily read off a regular expression for the original NFA.
Here, R_{11}, R_{12}, R_{21}, and R_{22} are arbitrary regular expressions.
From NFAs to Regular Expressions

Question: Can we get a clean regular expression from this NFA?
Key Idea 3: Somehow transform this NFA so that it looks like this:
From NFAs to Regular Expressions
From NFAs to Regular Expressions

Note: We’re using concatenation and Kleene closure in order to skip this state.
From NFAs to Regular Expressions

\[\varepsilon R_{11} \ast R_{12} \]

\[R_{11} \]

\[R_{12} \]

\[R_{21} \]

\[R_{22} \]

\[q_s \]

\[q_1 \]

\[q_2 \]

\[q_f \]
From NFAs to Regular Expressions

Note: We're using union to combine these transitions together.
From NFAs to Regular Expressions

\[R_{11} \ast R_{12} (R_{22} \cup R_{21} R_{11} \ast R_{12})^* \varepsilon \]
From NFAs to Regular Expressions

\[
\begin{align*}
R_{11}^* R_{12} \ (R_{22} \cup R_{21} R_{11}^* R_{12})^* \\
\end{align*}
\]
The Construction at a Glance

- Start with an NFA N for the language L.
- Add a new start state q_s and accept state q_f to the NFA.
 - Add an ε-transition from q_s to the old start state of N.
 - Add ε-transitions from each accepting state of N to q_f, then mark them as not accepting.
- Repeatedly remove states other than q_s and q_f from the NFA by “shortcutting” them until only two states remain: q_s and q_f.
- The transition from q_s to q_f is then a regular expression for the NFA.
Eliminating a State

To eliminate a state q from the automaton, do the following for each pair of states q_0 and q_1, where there's a transition from q_0 into q and a transition from q into q_1:

- Let R_{in} be the regex on the transition from q_0 to q.
- Let R_{out} be the regex on the transition from q to q_1.
- If there is a regular expression R_{stay} on a transition from q to itself, add a new transition from q_0 to q_1 labeled $((R_{in})(R_{stay})^*(R_{out}))$.
- If there isn't, add a new transition from q_0 to q_1 labeled $((R_{in})(R_{out}))$.
- If a pair of states has multiple transitions between them labeled R_1, R_2, ..., R_k, replace them with a single transition labeled $R_1 \cup R_2 \cup ... \cup R_k$.
Our Transformations

DFA → NFA: Direct Conversion
NFA → Regexp: State Elimination
DFA → Regexp: Subset Construction
NFA → Regexp: Thompson's Algorithm
Theorem: The following are all equivalent:

- L is a regular language.
- There is a DFA D such that $\mathcal{L}(D) = L$.
- There is an NFA N such that $\mathcal{L}(N) = L$.
- There is a regular expression R such that $\mathcal{L}(R) = L$.
Why This Matters

• The equivalence of regular expressions and finite automata has practical relevance.
 • Tools like grep and flex that use regular expressions capture all the power available via DFAs and NFAs.

• This also is hugely theoretically significant: the regular languages can be assembled “from scratch” using a small number of operations!
Next Time

- **Applications of Regular Languages**
 - Answering “so what?”
- **Intuiting Regular Languages**
 - What makes a language regular?
- **The Myhill-Nerode Theorem**
 - The limits of regular languages.