

Regular Expressions

Recap from Last Time

Regular Languages

● A language L is a regular language if
there is a DFA D such that (ℒ D) = L.

● Theorem: The following are equivalent:
● L is a regular language.
● There is a DFA for L.
● There is an NFA for L.

Language Concatenation

● If w ∈ Σ* and x ∈ Σ*, then wx is the
concatenation of w and x.

● If L₁ and L₂ are languages over Σ, the
concatenation of L₁ and L₂ is the language
L₁L₂ defined as

L₁L₂ = { wx | w ∈ L₁ and x ∈ L₂ }
● Example: if L₁ = { a, ba, bb } and L₂ = { aa, bb },

then

L₁L₂ = { aaa, abb, baaa, babb, bbaa, bbbb }

New Stuff!

Lots and Lots of Concatenation

● Consider the language L = { aa, b }
● LL is the set of strings formed by concatenating pairs of

strings in L.

{ aaaa, aab, baa, bb }
● LLL is the set of strings formed by concatenating triples

of strings in L.

{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}
● LLLL is the set of strings formed by concatenating

quadruples of strings in L.

{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa,
aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa,

baabb, bbaaaa, bbaab, bbbaa, bbbb}

Language Exponentiation

● We can define what it means to “exponentiate” a
language as follows:

● L0 = {ε}
● The set containing just the empty string.
● Idea: Any string formed by concatenating zero

strings together is the empty string.
● Ln+1 = LLn

● Idea: Concatenating (n+1) strings together works by
concatenating n strings, then concatenating one
more.

● Question: Why define L0 = {ε}?

The Kleene Closure

● An important operation on languages is
the Kleene Closure, which is defined as

L* = { w ∈ Σ* | ∃n ∈ ℕ. w ∈ Ln }
● Mathematically:

w ∈ L* iff ∃n ∈ ℕ. w ∈ Ln

● Intuitively, all possible ways of
concatenating zero or more strings in L
together, possibly with repetition.

The Kleene Closure

If L = { a, bb }, then L* = {

ε,

a, bb,

aa, abb, bba, bbbb,

aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

…

}
Think of L* as the set of strings you
can make if you have a collection of
stamps – one for each string in L –
and you form every possible string

that can be made from those stamps.

Think of L* as the set of strings you
can make if you have a collection of
stamps – one for each string in L –
and you form every possible string

that can be made from those stamps.

Reasoning about Infinity

● If L is regular, is L* necessarily regular?
● ⚠ A Bad Line of Reasoning: ⚠

● L0 = { ε } is regular.
● L1 = L is regular.
● L2 = LL is regular
● L3 = L(LL) is regular
● …
● Regular languages are closed under union.
● So the union of all these languages is

regular.

Reasoning about Infinity

x

x

Reasoning about Infinity

x

x

≠ 2x

Reasoning about Infinity

0.9 < 1

Reasoning about Infinity

0.99999 < 1

Reasoning about Infinity

0.99999 <≮ 1

Reasoning about Infinity

0 is finite

Reasoning about Infinity

∞ is finite
^ not

Reasoning About the Infinite

● If a series of finite objects all have some
property, the “limit” of that process does
not necessarily have that property.

● In general, it is not safe to conclude that
some property that always holds in the
finite case must hold in the infinite case.
● (This is why calculus is interesting).

Idea: Can we directly convert an NFA for
language L to an NFA for language L*?

The Kleene Star

start

Machine for L

The Kleene Star

εstart

ε

ε

Machine for L

Machine for L*

Question: Why add the new
state out front? Why not
just make the old start

state accepting?

Question: Why add the new
state out front? Why not
just make the old start

state accepting?

Closure Properties

● Theorem: If L₁ and L₂ are regular
languages over an alphabet Σ, then so are
the following languages:
● L₁
● L₁ ∪ L₂
● L₁ ∩ L₂
● L₁L₂
● L₁*

● These properties are called closure
properties of the regular languages.

Another View of Regular Languages

Rethinking Regular Languages

● We currently have several tools for
showing a language is regular.
● Construct a DFA for it.
● Construct an NFA for it.
● Apply closure properties to existing

languages.
● We have not spoken much of this last

idea.

Constructing Regular Languages

● Idea: Build up all regular languages as
follows:
● Start with a small set of simple languages we

already know to be regular.
● Using closure properties, combine these

simple languages together to form more
elaborate languages.

● A bottom-up approach to the regular
languages.

Constructing Regular Languages

● Idea: Build up all regular languages as
follows:
● Start with a small set of simple languages we

already know to be regular.
● Using closure properties, combine these

simple languages together to form more
elaborate languages.

● A bottom-up approach to the regular
languages.

Regular Expressions

● Regular expressions are a way of
describing a language via a string
representation.

● Used extensively in software systems for
string processing and as the basis for
tools like grep and flex.

● Conceptually, regular languages are
strings describing how to assemble a
larger language out of smaller pieces.

Atomic Regular Expressions

● The regular expressions begin with three
simple building blocks.

● The symbol Ø is a regular expression that
represents the empty language Ø.

● For any a ∈ Σ, the symbol a is a regular
expression for the language {a}.

● The symbol ε is a regular expression that
represents the language {ε}.
● Remember: {ε} ≠ Ø!
● Remember: {ε} ≠ ε!

Compound Regular Expressions

● If R1 and R2 are regular expressions, R1R2 is a
regular expression for the concatenation of the
languages of R1 and R2.

● If R1 and R2 are regular expressions, R1 ∪ R2 is
a regular expression for the union of the
languages of R1 and R2.

● If R is a regular expression, R* is a regular
expression for the Kleene closure of the
language of R.

● If R is a regular expression, (R) is a regular
expression with the same meaning as R.

Operator Precedence

● Regular expression operator precedence:

(R)

R*

R1R2

R1 ∪ R2

● So ab*c∪d is parsed as ((a(b*))c)∪d

Regular Expression Examples

● The regular expression trick∪treat
represents the regular language { trick,
treat }.

● The regular expression booo* represents the
regular language { boo, booo, boooo, … }.

● The regular expression candy!(candy!)*
represents the regular language { candy!,
candy!candy!, candy!candy!candy!, … }.

Regular Expressions, Formally

● The language of a regular expression is the
language described by that regular expression.

● Formally:
● ℒ(ε) = {ε}
● ℒ(Ø) = Ø
● ℒ(a) = {a}

● ℒ(R1R2) = (ℒ R1) (ℒ R2)

● ℒ(R1 ∪ R2) = (ℒ R1) ∪ (ℒ R2)
● ℒ(R*) = (ℒ R)*
● ℒ((R)) = (ℒ R)

Worthwhile activity: Apply
this recursive definition to

a(b∪c)((d))

and see what you get.

Worthwhile activity: Apply
this recursive definition to

a(b∪c)((d))

and see what you get.

Designing Regular Expressions

● Let Σ = {0, 1}
● Let L = { w ∈ Σ* | w contains 00 as a

substring }

(0 ∪ 1)*00(0 ∪ 1)*

11011100101
0000

11111011110011111

Designing Regular Expressions

● Let Σ = {0, 1}
● Let L = { w ∈ Σ* | w contains 00 as a

substring }

Σ*00Σ*

11011100101
0000

11111011110011111

Designing Regular Expressions

Let Σ = {0, 1}

Let L = { w ∈ Σ* | |w| = 4 }

The length of
a string w is
denoted |w|

The length of
a string w is
denoted |w|

Designing Regular Expressions

● Let Σ = {0, 1}
● Let L = { w ∈ Σ* | |w| = 4 }

0000
1010
1111
1000

ΣΣΣΣ

Designing Regular Expressions

● Let Σ = {0, 1}
● Let L = { w ∈ Σ* | |w| = 4 }

0000
1010
1111
1000

Σ4

Designing Regular Expressions

● Let Σ = {0, 1}
● Let L = { w ∈ Σ* | w contains at most one 0 }

1*(0 ∪ ε)1*

11110111
111111

0111
0

Designing Regular Expressions

● Let Σ = {0, 1}
● Let L = { w ∈ Σ* | w contains at most one 0 }

1*0?1*

11110111
111111

0111
0

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa*(.aa*)*@aa*.aa*(.aa*)*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.a+)* @ a+.a+ (.a+)*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+(.a+)*@a+ (.a+)+

Regular Expressions are Awesome

a+(.a+)*@a+(.a+)+

q1

start
q3

@

q2

. a

q4
a

 a a

q5
. q6

q7

. a

 a

a

q8

@, .

., @ @ @, .
 @

@, .

q0
a

@, .

a, @, .

Shorthand Summary

● Rn is shorthand for RR … R (n times).
● Edge case: define R0 = ε.

● Σ is shorthand for “any character in Σ.”
● R? is shorthand for (R ∪ ε), meaning

“zero or one copies of R.”
● R⁺ is shorthand for RR*, meaning “one or

more copies of R.”

Time-Out for Announcements!

Problem Sets

● Problem Set Five was due at the start of
today’s lecture.
● Need more time? Use your 24-hour late days!

● Problem Set Six goes out today. It’s due
next Friday at the start of class.
● Design DFAs and NFAs for various languages!
● Explore properties of formal language theory!
● See applications of the concepts!

Problem Set Four

● Problem Set Four is now graded. Here’s the
score distribution:

● As always, feel free to stop by office hours to
discuss your problem sets or the feedback. We’re
happy to help out!

Your Questions

“what do the numberings of the handouts
mean”

They’re numbered sequentially.
Anything ending in an S is a

solutions set, anything in C is a
checkpoint solutions set, and
anything in an R is a regrade

form.

They’re numbered sequentially.
Anything ending in an S is a

solutions set, anything in C is a
checkpoint solutions set, and
anything in an R is a regrade

form.

“Why did you delete a top-ranking question
about handout numbers?”

Oops. I didn’t mean to do that.
Sorry!

Oops. I didn’t mean to do that.
Sorry!

“What is Stanford CS doing increase
faculty diversity? (in terms of gender, race,

class, etc.)”

We’ve significantly stepped up
efforts to address this recently.

I’ll take this one in class.

We’ve significantly stepped up
efforts to address this recently.

I’ll take this one in class.

Back to CS103!

The Power of Regular Expressions

Theorem: If R is a regular expression,
then (ℒ R) is regular.

Proof idea: Use induction!
● The atomic regular expressions all represent

regular languages.
● The combination steps represent closure

properties.
● So anything you can make from them must

be regular!

Thompson’s Algorithm

● In practice, many regex matchers use an
algorithm called Thompson's algorithm
to convert regular expressions into NFAs
(and, from there, to DFAs).
● Read Sipser if you’re curious!

● Fun fact: the “Thompson” here is Ken
Thompson, one of the co-inventors of
Unix!

The Power of Regular Expressions

Theorem: If L is a regular language,
then there is a regular expression for L.

This is not obvious!

Proof idea: Show how to convert an
arbitrary NFA into a regular expression.

Generalizing NFAs

q₄

q₀

q₂

start

ε

 b

a

Σ

b

q₁

q₃

Σ

These are all regular
expressions!

These are all regular
expressions!

Generalizing NFAs

q₀
start ab b∪ q₁

q₂ q₃a*b?a*

a ab*

Note: Actual NFAs aren't
allowed to have transitions
like these. This is just a

thought experiment.

Note: Actual NFAs aren't
allowed to have transitions
like these. This is just a

thought experiment.

Key Idea 1: Imagine that we can label
transitions in an NFA with arbitrary regular

expressions.

Generalizing NFAs

q₀
start ab b∪ q₁

Is there a simple
regular expression for
the language of this
generalized NFA?

Is there a simple
regular expression for
the language of this
generalized NFA?

Generalizing NFAs

q₀
start a+(.a+)*@a+(.a+)+

q₁

Is there a simple
regular expression for
the language of this
generalized NFA?

Is there a simple
regular expression for
the language of this
generalized NFA?

Key Idea 2: If we can convert an NFA into
a generalized NFA that looks like this...

...then we can easily read off a regular
expression for that NFA.

q₀
start some-regex q₁

From NFAs to Regular Expressions

q1
start q2

R12

R21

R11 R22

q2

Key Idea 3: Somehow transform
this NFA so that it looks like this:
Key Idea 3: Somehow transform
this NFA so that it looks like this:

q₀
start some-regex q₁

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

ε R11* R12

Note: We're using
concatenation and

Kleene closure in order
to skip this state.

Note: We're using
concatenation and

Kleene closure in order
to skip this state.

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

ε R11* R12

R21 R11* R12

From NFAs to Regular Expressions

qs qfqfq2
start ε

R11* R12

R22 ∪ R21 R11* R12

Note: We're using union
to combine these

transitions together.

Note: We're using union
to combine these

transitions together.

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12

R11* R12 (R22 ∪ R21R11*R12)* ε

From NFAs to Regular Expressions

qs qfqf
start R11* R12 (R22 ∪ R21R11*R12)*

q1
start q2

R12

R21

R11 R22

q2

The Construction at a Glance

● Start with an NFA N for the language L.
● Add a new start state qs and accept state qf to the

NFA.
● Add an ε-transition from qs to the old start state of N.

● Add ε-transitions from each accepting state of N to qf,
then mark them as not accepting.

● Repeatedly remove states other than qs and qf
from the NFA by “shortcutting” them until only
two states remain: qs and qf.

● The transition from qs to qf is then a regular
expression for the NFA.

Eliminating a State

● To eliminate a state q from the automaton, do the following
for each pair of states q₀ and q₁, where there's a transition
from q₀ into q and a transition from q into q₁:

● Let Rin be the regex on the transition from q₀ to q.

● Let Rout be the regex on the transition from q to q₁.

● If there is a regular expression Rstay on a transition from q
to itself, add a new transition from q₀ to q₁ labeled
(Rin(Rstay)*Rout).

● If there isn't, add a new transition from q₀ to q₁ labeled
(RinRout)

● If a pair of states has multiple transitions between them
labeled R₁, R₂, …, Rₖ, replace them with a single transition
labeled R₁ ∪ R₂ ∪ … ∪ Rₖ.

Our Transformations

DFA NFA Regexp

direct conversion

subset construction

state elimination

Thompson's algorithm

Theorem: The following are all equivalent:

 · L is a regular language.
 · There is a DFA D such that (ℒ D) = L.
 · There is an NFA N such that (ℒ N) = L.
 · There is a regular expression R such that (ℒ R) = L.

Why This Matters

● The equivalence of regular expressions and
finite automata has practical relevance.
● Tools like grep and flex that use regular

expressions capture all the power available via
DFAs and NFAs.

● This also is hugely theoretically significant:
the regular languages can be assembled
“from scratch” using a small number of
operations!

Next Time

● Applications of Regular Languages
● Answering “so what?”

● Intuiting Regular Languages
● What makes a language regular?

● The Myhill-Nerode Theorem
● The limits of regular languages.

