
  

Regular Expressions



  

Recap from Last Time



  

Regular Languages

● A language L is a regular language if 
there is a DFA D such that (ℒ D) = L.

● Theorem: The following are equivalent:
● L is a regular language.
● There is a DFA for L.
● There is an NFA for L.



  

Language Concatenation

● If w ∈ Σ* and x ∈ Σ*, then wx is the 
concatenation of w and x.

● If L₁ and L₂ are languages over Σ, the 
concatenation of L₁ and L₂ is the language 
L₁L₂ defined as

L₁L₂ = { wx | w ∈ L₁ and x ∈ L₂ }
● Example: if L₁ = { a, ba, bb } and L₂ = { aa, bb }, 

then

L₁L₂ = { aaa, abb, baaa, babb, bbaa, bbbb }



  

New Stuff!



  

Lots and Lots of Concatenation

● Consider the language L = { aa, b }
● LL is the set of strings formed by concatenating pairs of 

strings in L.

{ aaaa, aab, baa, bb }
● LLL is the set of strings formed by concatenating triples 

of strings in L.

{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}
● LLLL is the set of strings formed by concatenating 

quadruples of strings in L.

{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa,
aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa,

baabb, bbaaaa, bbaab, bbbaa, bbbb}



  

Language Exponentiation

● We can define what it means to “exponentiate” a 
language as follows:

● L0 = {ε}
● The set containing just the empty string.
● Idea: Any string formed by concatenating zero 

strings together is the empty string.
● Ln+1 = LLn

● Idea: Concatenating (n+1) strings together works by 
concatenating n strings, then concatenating one 
more.

● Question: Why define L0 = {ε}?



  

The Kleene Closure

● An important operation on languages is 
the Kleene Closure, which is defined as

L* = { w ∈ Σ*  |  ∃n ∈ ℕ. w ∈ Ln }
● Mathematically:

w ∈ L*     iff     ∃n ∈ ℕ. w ∈ Ln

● Intuitively, all possible ways of 
concatenating zero or more strings in L 
together, possibly with repetition.



  

The Kleene Closure

If L = { a, bb }, then L* = {

ε,

a, bb,

aa, abb, bba, bbbb,

aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

…

}
Think of L* as the set of strings you 
can make if you have a collection of 
stamps – one for each string in L – 
and you form every possible string 

that can be made from those stamps.

Think of L* as the set of strings you 
can make if you have a collection of 
stamps – one for each string in L – 
and you form every possible string 

that can be made from those stamps.



  

Reasoning about Infinity

● If L is regular, is L* necessarily regular?
● ⚠ A Bad Line of Reasoning: ⚠

● L0 = { ε } is regular.
● L1 = L is regular.
● L2 = LL is regular
● L3 = L(LL) is regular
● …
● Regular languages are closed under union.
● So the union of all these languages is 

regular.



  

Reasoning about Infinity

x              

x



  

Reasoning about Infinity

x              

x

≠ 2x



  

Reasoning about Infinity

0.9 < 1



  

Reasoning about Infinity

0.99999 < 1



  

Reasoning about Infinity

0.99999 <≮ 1



  

Reasoning about Infinity

0 is finite



  

Reasoning about Infinity

∞ is finite
^ not



  

Reasoning About the Infinite

● If a series of finite objects all have some 
property, the “limit” of that process does 
not necessarily have that property.

● In general, it is not safe to conclude that 
some property that always holds in the 
finite case must hold in the infinite case.
● (This is why calculus is interesting).



  

Idea: Can we directly convert an NFA for 
language L to an NFA for language L*?



  

The Kleene Star

start    

Machine for L



  

The Kleene Star

εstart    

ε

ε

Machine for L

Machine for L*

Question: Why add the new 
state out front? Why not 
just make the old start 

state accepting?

Question: Why add the new 
state out front? Why not 
just make the old start 

state accepting?



  

Closure Properties

● Theorem: If L₁ and L₂ are regular 
languages over an alphabet Σ, then so are 
the following languages:
● L₁ 
● L₁ ∪ L₂ 
● L₁ ∩ L₂ 
● L₁L₂
● L₁*

● These properties are called closure 
properties of the regular languages.



  

Another View of Regular Languages



  

Rethinking Regular Languages

● We currently have several tools for 
showing a language is regular.
● Construct a DFA for it.
● Construct an NFA for it.
● Apply closure properties to existing 

languages.
● We have not spoken much of this last 

idea.



  

Constructing Regular Languages

● Idea: Build up all regular languages as 
follows:
● Start with a small set of simple languages we 

already know to be regular.
● Using closure properties, combine these 

simple languages together to form more 
elaborate languages.

● A bottom-up approach to the regular 
languages.



  

Constructing Regular Languages

● Idea: Build up all regular languages as 
follows:
● Start with a small set of simple languages we 

already know to be regular.
● Using closure properties, combine these 

simple languages together to form more 
elaborate languages.

● A bottom-up approach to the regular 
languages.



  

Regular Expressions

● Regular expressions are a way of 
describing a language via a string 
representation.

● Used extensively in software systems for 
string processing and as the basis for 
tools like grep and flex.

● Conceptually, regular languages are 
strings describing how to assemble a 
larger language out of smaller pieces.



  

Atomic Regular Expressions

● The regular expressions begin with three 
simple building blocks.

● The symbol Ø is a regular expression that 
represents the empty language Ø.

● For any a ∈ Σ, the symbol a is a regular 
expression for the language {a}.

● The symbol ε is a regular expression that 
represents the language {ε}.
● Remember: {ε} ≠ Ø!
● Remember: {ε} ≠ ε!



  

Compound Regular Expressions

● If R1 and R2 are regular expressions, R1R2 is a 
regular expression for the concatenation of the 
languages of R1 and R2.

● If R1 and R2 are regular expressions, R1 ∪ R2 is 
a regular expression for the union of the 
languages of R1 and R2.

● If R is a regular expression, R* is a regular 
expression for the Kleene closure of the 
language of R.

● If R is a regular expression, (R) is a regular 
expression with the same meaning as R.



  

Operator Precedence

● Regular expression operator precedence: 

(R)

R*

R1R2

R1 ∪ R2 

● So ab*c∪d is parsed as ((a(b*))c)∪d



  

Regular Expression Examples

● The regular expression trick∪treat 
represents the regular language { trick, 
treat }.

● The regular expression booo* represents the 
regular language { boo, booo, boooo, … }.

● The regular expression candy!(candy!)* 
represents the regular language { candy!, 
candy!candy!, candy!candy!candy!, … }.



  

Regular Expressions, Formally

● The language of a regular expression is the 
language described by that regular expression.

● Formally:
● ℒ(ε) = {ε}
● ℒ(Ø) = Ø
● ℒ(a) = {a}

● ℒ(R1R2) = (ℒ R1) (ℒ R2)

● ℒ(R1 ∪ R2) = (ℒ R1) ∪ (ℒ R2)
● ℒ(R*) = (ℒ R)*
● ℒ((R)) = (ℒ R)

Worthwhile activity: Apply 
this recursive definition to

a(b∪c)((d))

and see what you get.

Worthwhile activity: Apply 
this recursive definition to

a(b∪c)((d))

and see what you get.



  

Designing Regular Expressions

● Let Σ = {0, 1}
● Let L = { w ∈ Σ* | w contains 00 as a 

substring }

(0 ∪ 1)*00(0 ∪ 1)*

11011100101
0000

11111011110011111



  

Designing Regular Expressions

● Let Σ = {0, 1}
● Let L = { w ∈ Σ* | w contains 00 as a 

substring }

Σ*00Σ*

11011100101
0000

11111011110011111



  

Designing Regular Expressions

Let Σ = {0, 1}

Let L = { w ∈ Σ* | |w| = 4 }

The length of 
a string w is 
denoted |w|

The length of 
a string w is 
denoted |w|



  

Designing Regular Expressions

● Let Σ = {0, 1}
● Let L = { w ∈ Σ* | |w| = 4 }

0000
1010
1111
1000

ΣΣΣΣ



  

Designing Regular Expressions

● Let Σ = {0, 1}
● Let L = { w ∈ Σ* | |w| = 4 }

0000
1010
1111
1000

Σ4



  

Designing Regular Expressions

● Let Σ = {0, 1}
● Let L = { w ∈ Σ* | w contains at most one 0 }

1*(0 ∪ ε)1*

11110111
111111

0111
0



  

Designing Regular Expressions

● Let Σ = {0, 1}
● Let L = { w ∈ Σ* | w contains at most one 0 }

1*0?1*

11110111
111111

0111
0



  

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents 
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa*(.aa*)*@aa*.aa*(.aa*)*



  

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents 
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.a+)* @ a+.a+ (.a+)*



  

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents 
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+(.a+)*@a+        (.a+)+



  

Regular Expressions are Awesome

a+(.a+)*@a+(.a+)+

q1

start
q3

@

q2

.       a

q4
a

       a        a

q5
. q6

q7

.       a

       a

a

q8

@, .

., @            @            @, .
 @

@, .

q0
a

@, .

a, @, .



  

Shorthand Summary

● Rn is shorthand for RR … R (n times).
● Edge case: define R0 = ε.

● Σ is shorthand for “any character in Σ.”
● R? is shorthand for (R ∪ ε), meaning 

“zero or one copies of R.”
● R⁺ is shorthand for RR*, meaning “one or 

more copies of R.”



  

Time-Out for Announcements!



  

Problem Sets

● Problem Set Five was due at the start of 
today’s lecture.
● Need more time? Use your 24-hour late days!

● Problem Set Six goes out today. It’s due 
next Friday at the start of class.
● Design DFAs and NFAs for various languages!
● Explore properties of formal language theory!
● See applications of the concepts!



  

Problem Set Four

● Problem Set Four is now graded. Here’s the 
score distribution:

● As always, feel free to stop by office hours to 
discuss your problem sets or the feedback. We’re 
happy to help out!



  

Your Questions



  

“what do the numberings of the handouts 
mean”

They’re numbered sequentially. 
Anything ending in an S is a 

solutions set, anything in C is a 
checkpoint solutions set, and 
anything in an R is a regrade 

form.

They’re numbered sequentially. 
Anything ending in an S is a 

solutions set, anything in C is a 
checkpoint solutions set, and 
anything in an R is a regrade 

form.



  

“Why did you delete a top-ranking question 
about handout numbers?”

Oops. I didn’t mean to do that. 
Sorry!

Oops. I didn’t mean to do that. 
Sorry!



  

“What is Stanford CS doing increase 
faculty diversity? (in terms of gender, race, 

class, etc.)”

We’ve significantly stepped up 
efforts to address this recently. 

I’ll take this one in class.

We’ve significantly stepped up 
efforts to address this recently. 

I’ll take this one in class.



  

Back to CS103!



  

The Power of Regular Expressions

Theorem: If R is a regular expression, 
then (ℒ R) is regular.

Proof idea: Use induction!
● The atomic regular expressions all represent 

regular languages.
● The combination steps represent closure 

properties.
● So anything you can make from them must 

be regular!



  

Thompson’s Algorithm

● In practice, many regex matchers use an 
algorithm called Thompson's algorithm 
to convert regular expressions into NFAs 
(and, from there, to DFAs).
● Read Sipser if you’re curious!

● Fun fact: the “Thompson” here is Ken 
Thompson, one of the co-inventors of 
Unix!



  

The Power of Regular Expressions

Theorem: If L is a regular language, 
then there is a regular expression for L.

This is not obvious!

Proof idea: Show how to convert an 
arbitrary NFA into a regular expression.



  

Generalizing NFAs

q₄

q₀

q₂

start

ε   

  b

a

Σ

b

q₁

q₃

Σ  

These are all regular 
expressions!

These are all regular 
expressions!



  

Generalizing NFAs

q₀
start ab  b∪ q₁

q₂ q₃a*b?a*

a   ab*    

Note: Actual NFAs aren't 
allowed to have transitions 
like these. This is just a 

thought experiment.

Note: Actual NFAs aren't 
allowed to have transitions 
like these. This is just a 

thought experiment.



  

Key Idea 1: Imagine that we can label 
transitions in an NFA with arbitrary regular 

expressions.



  

Generalizing NFAs

q₀
start ab  b∪ q₁

Is there a simple 
regular expression for 
the language of this 
generalized NFA?

Is there a simple 
regular expression for 
the language of this 
generalized NFA?



  

Generalizing NFAs

q₀
start a+(.a+)*@a+(.a+)+

q₁

Is there a simple 
regular expression for 
the language of this 
generalized NFA?

Is there a simple 
regular expression for 
the language of this 
generalized NFA?



  

Key Idea 2: If we can convert an NFA into 
a generalized NFA that looks like this...

...then we can easily read off a regular 
expression for that NFA.

q₀
start some-regex q₁



  

From NFAs to Regular Expressions

q1
start q2

R12

R21

R11 R22

q2

Key Idea 3: Somehow transform 
this NFA so that it looks like this:
Key Idea 3: Somehow transform 
this NFA so that it looks like this:

q₀
start some-regex q₁



  

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε



  

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

ε R11* R12

Note: We're using 
concatenation and 

Kleene closure in order 
to skip this state.

Note: We're using 
concatenation and 

Kleene closure in order 
to skip this state.



  

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

ε R11* R12

R21 R11* R12



  

From NFAs to Regular Expressions

qs qfqfq2
start ε

R11* R12

R22 ∪ R21 R11* R12

Note: We're using union 
to combine these 

transitions together.

Note: We're using union 
to combine these 

transitions together.



  

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12

R11* R12 (R22 ∪ R21R11*R12)* ε



  

From NFAs to Regular Expressions

qs qfqf
start R11* R12 (R22 ∪ R21R11*R12)*

q1
start q2

R12

R21

R11 R22

q2



  

The Construction at a Glance

● Start with an NFA N for the language L.
● Add a new start state qs and accept state qf to the 

NFA.
● Add an ε-transition from qs to the old start state of N.

● Add ε-transitions from each accepting state of N to qf, 
then mark them as not accepting.

● Repeatedly remove states other than qs and qf 
from the NFA by “shortcutting” them until only 
two states remain: qs and qf.

● The transition from qs to qf is then a regular 
expression for the NFA.



  

Eliminating a State

● To eliminate a state q from the automaton, do the following 
for each pair of states q₀ and q₁, where there's a transition 
from q₀ into q and a transition from q into q₁:

● Let Rin be the regex on the transition from q₀ to q.

● Let Rout be the regex on the transition from q to q₁.

● If there is a regular expression Rstay on a transition from q 
to itself, add a new transition from q₀ to q₁ labeled 
(Rin(Rstay)*Rout).

● If there isn't, add a new transition from q₀ to q₁ labeled 
(RinRout)

● If a pair of states has multiple transitions between them 
labeled R₁, R₂, …, Rₖ, replace them with a single transition 
labeled R₁ ∪ R₂ ∪ … ∪ Rₖ.



  

Our Transformations

DFA NFA Regexp

direct conversion

subset construction

state elimination

Thompson's algorithm



  

Theorem: The following are all equivalent:
 

  · L is a regular language.
  · There is a DFA D such that (ℒ D) = L.
  · There is an NFA N such that (ℒ N) = L.
  · There is a regular expression R such that (ℒ R) = L.



  

Why This Matters

● The equivalence of regular expressions and 
finite automata has practical relevance.
● Tools like grep and flex that use regular 

expressions capture all the power available via 
DFAs and NFAs.

● This also is hugely theoretically significant: 
the regular languages can be assembled 
“from scratch” using a small number of 
operations!



  

Next Time

● Applications of Regular Languages
● Answering “so what?”

● Intuiting Regular Languages
● What makes a language regular?

● The Myhill-Nerode Theorem
● The limits of regular languages.


