Unsolvable Problems
Part One
Outline for Today

- **Self-Reference Revisited**
 - Programs that compute on themselves.
- **Self-Defeating Objects**
 - Objects “too powerful” to exist.
- **The Fortune Teller**
 - Can you escape the future?
- **Why Do Programs Loop?**
 - ... and can we eliminate loops?
- **Undecidable Problems**
 - Something beyond the reach of algorithms.
Recap from Last Time
R and RE

- A language L is **recognizable** if there is a TM M with the following property:
 \[\forall w \in \Sigma^*. (M \text{ accepts } w \iff w \in L). \]

- That is, for any string w:
 - If $w \in L$, then M accepts w.
 - If $w \notin L$, then M does not accept w.
 - It might reject w, or it might loop on w.
 - This is a “weak” notion of solving a problem.
- The class **RE** consists of all the recognizable languages.
A language L is **decidable** if there is a TM M with the following properties:

$$\forall w \in \Sigma^*. (M \text{ accepts } w \leftrightarrow w \in L).$$

M halts on all inputs.

- That is, for any string w:
 - If $w \in L$, then M accepts w.
 - If $w \notin L$, then M rejects w.

- This is a “strong” notion of solving a problem.
- The class \mathbf{R} consists of all the decidable languages.
The Universal TM

• The universal Turing machine, denoted U_{TM}, is a TM with the following behavior: when run on a string $\langle M, w \rangle$, where M is a TM and w is a string, U_{TM} will

 ... accept $\langle M, w \rangle$ if M accepts w,
 ... reject $\langle M, w \rangle$ if M rejects w, and
 ... loop on $\langle M, w \rangle$ if M loops on w.

• A_{TM} is the language recognized by the universal TM. This is the language

$$A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$$
New Stuff!
Part One: Self-Defeating Objects
A **self-defeating object** is an object whose essential properties ensure it doesn’t exist.
Question: Why is there no largest integer?

Answer: Because if n is the largest integer, what happens when we look at $n+1$?
Self-Defeating Objects

Theorem: There is no largest integer.

Proof sketch: Suppose for the sake of contradiction that there is a largest integer. Call that integer n. Consider the integer $n+1$. Notice that $n < n+1$. But then n isn’t the largest integer. Contradiction! ■-ish
Self-Defeating Objects

Theorem: There is no largest integer.

Proof sketch: Suppose for the sake of contradiction that there is a largest integer. Call that integer n. Consider the integer $n+1$. Notice that $n < n+1$. But then n isn’t the largest integer. Contradiction! ■-ish

We’re using n to construct something that undermines n, hence the term “self-defeating.”
An Important Detail
Claim: There is a largest integer.

Proof: Assume x is the largest integer. Notice that $x > x - 1$. So there’s no contradiction. ■-ish

Careful – we’re assuming what we’re trying to prove!

How do we know there’s no contradiction? We just checked one case.
Self-Defeating Objects

• If you can show

$$x \text{ exists } \rightarrow \bot$$

then you know that x doesn’t exist. (This is a proof by contradiction.)

• If you can show

$$x \text{ exists } \rightarrow \top$$

you cannot conclude that x exists. (This is not a valid proof technique.)
Part Two: The Fortune Teller
The Fortune Teller

- A fortune teller appears who claims they can see into anyone’s future.
- For a nominal fee, the fortune teller will tell you anything you want to know about the future.
The Fortune Teller

• One day, a trickster arrives. The trickster thinks the fortune teller is lying and can’t really see the future.

• The trickster says the following:

 “I have a yes/no question about the future. But before I ask my question, let’s talk payment.

 If you answer yes, then I’ll pay you $137.
 If you answer no, then I’ll pay you $42.

• The fortune teller thinks for a moment, then agrees.
The Fortune Teller

- The trickster then asks this question:
 "Am I going to pay you $42?"
- The fortune teller is trapped!
- Talk to your neighbor – why?

Trickster pays $137 if the fortune teller answers "yes."

Trickster pays $42 if the fortune teller answers "no."
The Fortune Teller

• The payment scheme the fortune teller agreed to means
 \(\text{Fortune Teller Says Yes} \iff \text{Trickster Pays $137} \).

• The trickster’s question to the fortune teller means
 \(\text{Fortune Teller Says Yes} \iff \text{Trickster Pays $42} \).

• Putting this together, we get
 \(\text{Trickster Pays $42} \iff \text{Trickster Pays $137} \).

• This is impossible!

Trickster pays $137 if the fortune teller answers “yes.”

Trickster pays $42 if the fortune teller answers “no.”
The Fortune Teller

• The fortune teller is a self-defeating object.
• The trickster’s strategy is to couple the fortune teller’s behavior to what the future holds.
 • The trickster’s behavior is chosen in advance to make the fortune teller’s answer wrong.
• Therefore, the fortune teller can’t answer all questions about all people in the future.

Trickster pays $137 if the fortune teller answers “yes.”

Trickster pays $42 if the fortune teller answers “no.”
Part Three: Why Do Programs Loop?
Thoughts on Loops

• In practice, the programs we write sometimes go into infinite loops.

• In Theoryland, Turing machines are allowed to loop. This happens if they don’t accept and don’t reject.

• **Question:** Why are infinite loops possible?

• Or rather: are infinite loops an inherent part of computation, or are they some weird sort of “accident” in how we program computers?
Thoughts on Loops

• **Theorem:** The language A_{TM} is recognizable, but undecidable.

 • There’s a *recognizer* for A_{TM} (specifically, the universal Turing machine U_{TM}).

 • It is impossible to build a *decider* for this language.

• Stated differently, there’s a program we can write (a universal TM) that *has* to loop infinitely on some inputs.

• **Goal:** Prove this theorem, and explore its theoretical and philosophical implications.
A_{TM} Revisited

• As a refresher, the language A_{TM} is

\[A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}. \]

• The universal TM U_{TM} has the following behavior when given as input a TM M and a string w:
 • If M accepts w, then U_{TM} accepts \langle M, w \rangle.
 • If M rejects w, then U_{TM} rejects \langle M, w \rangle.
 • If M loops on w, then U_{TM} loops on \langle M, w \rangle.

• U_{TM} is a recognizer for A_{TM}, but because of that last case it’s not a decider for A_{TM}.
As a refresher, the language $\mathsf{A_{TM}}$ is

$$\mathsf{A_{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}.$$

Given a TM M and a string w, a decider D for $\mathsf{A_{TM}}$ would need to have this behavior:

- If M accepts w, then D accepts $\langle M, w \rangle$.
- If M rejects w, then D rejects $\langle M, w \rangle$.
- If M loops on w, then D rejects $\langle M, w \rangle$.

This is basically the same set of requirements as $\mathsf{U_{TM}}$, except for what happens if M loops on w.

Our goal is to prove that there is no way to build a program that meets these requirements.
A\text{TM} \text{ Revisited}

- We can envision a decider for A\text{TM} as a function
 \begin{verbatim}
 bool willAccept(string fn, string input)
 \end{verbatim}
 that takes as input the source code of a function (fn) and a string representing an input to that function (input).

- It then does the following:
 - If \(fn(input) \) returns true, \(\text{willAccept}(fn, input) \) returns true.
 - If \(fn(input) \) returns false, \(\text{willAccept}(fn, input) \) returns false.
 - If \(fn(input) \) loops, then \(\text{willAccept}(fn, input) \) returns false.

- We’re going to show it’s impossible to write a function that actually does this. But for now, let’s just explore what such a decider would do.
For each of these instances, what does willAccept(function, input) return?
Earlier this quarter you explored sums of four squares. Now, let’s talk about sums of three cubes.

Are there integers x, y, and z where...

- $x^3 + y^3 + z^3 = 10$?
- $x^3 + y^3 + z^3 = 11$?
- $x^3 + y^3 + z^3 = 12$?
- $x^3 + y^3 + z^3 = 13$?

Deciding A_{TM}
Deciding A_{TM}

- Surprising fact: until 2019, no one knew whether there were integers x, y, and z where
 \[x^3 + y^3 + z^3 = 33. \]

- A heavily optimized computer search found this answer:
 \[
 x = 8,866,128,975,287,528 \\
 y = -8,778,405,442,862,239 \\
 z = -2,736,111,468,807,040
 \]

- As of August 2022, no one knows whether there are integers x, y, and z where
 \[x^3 + y^3 + z^3 = 114. \]
Deciding A_{TM}

• Consider the language

$$L = \{ a^n | \exists x \in \mathbb{Z}. \exists y \in \mathbb{Z}. \exists z \in \mathbb{Z}. x^3 + y^3 + z^3 = n \}$$

• Here’s code for a recognizer to see whether such a triple exists:

```c
bool hasTriple(int n) {
    for (int max = 0; ; max++)
        for (int x = -max; x <= max; x++)
            for (int y = -max; y <= max; y++)
                for (int z = -max; z <= max; z++)
                    if (x*x*x + y*y*y + z*z*z == n)
                        return true;
}
```

• Imagine calling willAccept(/* hasTriple code */, 114).
 • If such a triple exists, willAccept returns true.
 • If no such triple exists, willAccept returns false.

• **Key Intuition:** However willAccept is implemented, it has to be clever enough to resolve open problems in mathematics!
Why is A_{TM} Hard?

- **Intuition:** A decider for A_{TM} would be able to...
 - ... determine whether the hailstone sequence terminates for any input. (Write a recognizer that runs the hailstone sequence, then feed it into the decider for A_{TM}.)
 - ... see if any number is the sum of three cubes. (Write a recognizer that tries all infinitely many triples of integers, then feed it into the decider for A_{TM}.)
 - ... and much, much more.

- In other words, this seemingly simple problem of “is this program going to terminate?” accidentally scoops up a bunch of other seemingly harder problems.
Time-Out for Announcements!
Problem Sets

- PS6 was due earlier today. Your diligent CAs are working on grading them! Solution will be released Monday morning.

- PS7 has been released and will be due next **Wednesday** at 5:30 PM. Only the coding portion will be mandatory.
Please evaluate this course in Axess.
Your comments really make a difference.
Back to CS103!
Part Four: Self-Referential Software
Self-Referential Programs

- If TMs can take other TMs as input, could they take themselves as input? **YES.**

- TMs can take their own code as input, and ask questions about (or even execute!) their own code.

- In fact, any computing system that’s equal in power to a Turing machine possesses some mechanism for self-reference.

- Want to see how deep the rabbit hole goes? Take CS154!
Quines

• A **Quine** is a special kind of self-referential program that, when run, prints its own source code.

• Believe it or not, it is possible to write such a program!

• *See zip file with lecture slides for code.*
Self-Referential Programs

- **Claim:** Going forward, assume that any function has the ability to get access to its own source code.
- This means we can write programs like the one shown here:

```cpp
bool narcissist(string input) {
    string me = /* source code of narcissist */;

    return input == me;
}
```
Part Five: Putting It All Together
To Recap

- We’re assuming that, somehow, someone wrote a function

  ```c++
  bool willAccept(string function, string input);
  ```
 that takes the code of a function and an input to that function, then

 - returns true if function(input) returns true, and
 - returns false if function(input) doesn’t return true.

- **Goal:** Show that this decider is “self-defeating;” its power is so great that it undermines itself.

- **Idea:** Convert the fortune teller story into a program.
Trickster pays $137 if the fortune teller answers “yes.”

Trickster pays $42 if the fortune teller answers “no.”
bool willAccept(string function, string input) {
 // Returns true if function(input) returns true. Returns false otherwise.
}

bool trickster(string input) {
 string me = /* source code of trickster */;
 return !willAccept(me, input);
}

If willAccept says trickster will return true, then trickster returns false.

If willAccept says trickster will not return true, then trickster returns true.
```cpp
bool willAccept(string function, string input) {
    // Returns true if function(input) returns true. Returns false otherwise.
}

bool trickster(string input) {
    string me = /* source code of trickster */,
    return !willAccept(me, input);
}
```

A self-defeating object.

Using that object against itself.
bool willAccept(string function, string input) {
 // Returns true if function(input) returns true. Returns false otherwise.
}

bool trickster(string input) {
 string me = /* source code of trickster */;
 return !willAccept(me, input);
}

Theorem: There is no largest integer.

Proof sketch: Suppose for the sake of contradiction that there is a largest integer. Call that integer n.

Consider the integer $n + 1$.

Notice that $n < n + 1$.

But then n isn’t the largest integer.

Contradiction! ■-ish
Theorem: \(A_{\text{TM}} \notin R. \)
Theorem: $A_{TM} \notin R$.

Proof:

By contradiction; assume that $A_{TM} \in R$. Then there is a decider D for A_{TM}. We can represent D as a function $\text{bool}\ willAccept(\text{string } function, \text{string } w)$; that takes in the source code of a function $function$ and a string w, then returns true if $function(w)$ returns true and returns false otherwise.

Given this, consider this function trickster:

$$\text{bool } \text{trickster}(\text{string } input) \{ \text{string } me = /* source code of trickster */; \text{return } !\text{willAccept}(me, input); \}$$

Choose a string w. We consider two cases:

Case 1: $\text{willAccept}(me, input)$ returns true. Since willAccept decides A_{TM}, this means $\text{trickster}(w)$ returns true. However, given how trickster is written, in this case $\text{trickster}(w)$ returns false.

Case 2: $\text{willAccept}(me, input)$ returns false. Since willAccept decides A_{TM}, this means $\text{trickster}(w)$ returns false. However, given how trickster is written, in this case $\text{trickster}(w)$ returns true.

In both cases we reach a contradiction, so our assumption must have been wrong. Therefore, $A_{TM} \notin R$. ■
Theorem: $A_{TM} \notin \mathbb{R}$.

Proof: By contradiction; assume that $A_{TM} \in \mathbb{R}$.
Theorem: \(A_{TM} \not\in R \).

Proof: By contradiction; assume that \(A_{TM} \in R \). Then there is a decider \(D \) for \(A_{TM} \).

Choose a string \(w \). We consider two cases:

Case 1: \(\text{willAccept}(me, input) \) returns true. Since \(\text{willAccept} \) decides \(A_{TM} \), this means \(\text{trickster}(w) \) returns true. However, given how \(\text{trickster} \) is written, in this case \(\text{trickster}(w) \) returns false.

Case 2: \(\text{willAccept}(me, input) \) returns false. Since \(\text{willAccept} \) decides \(A_{TM} \), this means \(\text{trickster}(w) \) returns false. However, given how \(\text{trickster} \) is written, in this case \(\text{trickster}(w) \) returns true.

In both cases we reach a contradiction, so our assumption must have been wrong. Therefore, \(A_{TM} \not\in R \). ■
Theorem: $A_{TM} \notin R$

Proof: By contradiction; assume that $A_{TM} \in R$. Then there is a decider D for A_{TM}. We can represent D as a function

$$\text{bool willAccept(string function, string w);}$$

that takes in the source code of a function function and a string w, then returns true if $\text{function(}w\text{)}$ returns true and returns false otherwise.

Choose a string w. We consider two cases:

Case 1: $\text{willAccept(}me,\text{input)}$ returns true. Since willAccept decides A_{TM}, this means $\text{trickster(}w\text{)}$ returns true. However, given how trickster is written, in this case $\text{trickster(}w\text{)}$ returns false.

Case 2: $\text{willAccept(}me,\text{input)}$ returns false. Since willAccept decides A_{TM}, this means $\text{trickster(}w\text{)}$ returns false. However, given how trickster is written, in this case $\text{trickster(}w\text{)}$ returns true.

In both cases we reach a contradiction, so our assumption must have been wrong. Therefore, $A_{TM} \notin R$. ■
Theorem: \(A_{TM} \notin \mathbf{R} \).

Proof: By contradiction; assume that \(A_{TM} \in \mathbf{R} \). Then there is a decider \(D \) for \(A_{TM} \). We can represent \(D \) as a function

\[
\text{bool willAccept(string function, string w);}\
\]

that takes in the source code of a function \(\text{function} \) and a string \(w \), then returns true if \(\text{function}(w) \) returns true and returns false otherwise.

Given this, consider this function \(\text{trickster} \):

\[
\text{bool trickster(string input) } \\
\text{ string me = /* source code of trickster */; \\
\text{ return !willAccept(me, input);} \\
\]

In both cases we reach a contradiction, so our assumption must have been wrong. Therefore, \(A_{TM} \notin \mathbf{R} \). ■
Theorem: \(A_{TM} \notin R \).

Proof: By contradiction; assume that \(A_{TM} \in R \). Then there is a decider \(D \) for \(A_{TM} \). We can represent \(D \) as a function

\[
\text{bool willAccept(string function, string w)};
\]

that takes in the source code of a function \(\text{function} \) and a string \(w \), then returns true if \(\text{function}(w) \) returns true and returns false otherwise.

Given this, consider this function \(\text{trickster} \):

\[
\text{bool trickster(string input) } \{
 \text{string me } = /* \text{source code of trickster} */;
 \text{return !willAccept(me, input);}
\}
\]

Choose a string \(w \).
Theorem: \(A_{TM} \notin R \).

Proof: By contradiction; assume that \(A_{TM} \in R \). Then there is a decider \(D \) for \(A_{TM} \). We can represent \(D \) as a function

\[
\text{bool willAccept(string function, string w);}\]

that takes in the source code of a function \(\text{function} \) and a string \(\text{w} \), then returns true if \(\text{function}(w) \) returns true and returns false otherwise.

Given this, consider this function \(\text{trickster} \):

\[
\text{bool trickster(string input) {}
 string me = /* source code of trickster */;
 return !willAccept(me, input);
}
\]

Choose a string \(w \). We consider two cases:
Theorem: $A_{TM} \notin R$.

Proof: By contradiction; assume that $A_{TM} \in R$. Then there is a decider D for A_{TM}. We can represent D as a function

$$\text{bool } \text{willAccept(string function, string w);}$$

that takes in the source code of a function $function$ and a string w, then returns true if $function(w)$ returns true and returns false otherwise.

Given this, consider this function trickster:

$$\text{bool } \text{trickster(string input) { \ }}$$

$$\text{string me = /* source code of trickster */; \ }$$

$$\text{return !willAccept(me, input); \ }$$

$$\}$$

Choose a string w. We consider two cases:

Case 1: $\text{willAccept(me, input)}$ returns true.

Case 2: $\text{willAccept(me, input)}$ returns false.
Theorem: $A_{TM} \not\in R$.

Proof: By contradiction; assume that $A_{TM} \in R$. Then there is a decider D for A_{TM}. We can represent D as a function

```plaintext
bool willAccept(string function, string w);
```

that takes in the source code of a function `function` and a string `w`, then returns true if `function(w)` returns true and returns false otherwise.

Given this, consider this function `trickster`:

```plaintext
bool trickster(string input) {
    string me = /* source code of trickster */;
    return !willAccept(me, input);
}
```

Choose a string w. We consider two cases:

Case 1: `willAccept(me, input)` returns true. Since `willAccept` decides A_{TM}, this means `trickster(w)` returns true.

Case 2: `willAccept(me, input)` returns false. Since `willAccept` decides A_{TM}, this means `trickster(w)` returns false.

In both cases we reach a contradiction, so our assumption must have been wrong. Therefore, $A_{TM} \not\in R$. ■
Theorem: $A_{TM} \not\in R$.

Proof: By contradiction; assume that $A_{TM} \in R$. Then there is a decider D for A_{TM}. We can represent D as a function

```cpp
bool willAccept(string function, string w);
```

that takes in the source code of a function $function$ and a string w, then returns true if $function(w)$ returns true and returns false otherwise.

Given this, consider this function `trickster`:

```cpp
bool trickster(string input) {
    string me = /* source code of trickster */;
    return !willAccept(me, input);
}
```

Choose a string w. We consider two cases:

- **Case 1:** $willAccept(me, input)$ returns true. Since $willAccept$ decides A_{TM}, this means $trickster(w)$ returns true. However, given how `trickster` is written, in this case $trickster(w)$ returns false.

- **Case 2:** $willAccept(me, input)$ returns false. Since $willAccept$ decides A_{TM}, this means $trickster(w)$ returns false. However, given how `trickster` is written, in this case $trickster(w)$ returns true.

In both cases we reach a contradiction, so our assumption must have been wrong. Therefore, $A_{TM} \not\in R$. ■
Theorem: $A_{TM} \notin \mathbb{R}$.

Proof: By contradiction; assume that $A_{TM} \in \mathbb{R}$. Then there is a decider D for A_{TM}. We can represent D as a function

$$
\text{bool willAccept(string function, string w);}$$

that takes in the source code of a function $function$ and a string w, then returns true if $function(w)$ returns true and returns false otherwise.

Given this, consider this function trickster:

$$
\text{bool trickster(string input) \{ \\
\text{\hspace{1em} string me = /* source code of trickster */;} \\
\text{\hspace{1em} return !willAccept(me, input);} \\
\text{\}}}
$$

Choose a string w. We consider two cases:

Case 1: $\text{willAccept(me, input)}$ returns true. Since willAccept decides A_{TM}, this means trickster(w) returns true. However, given how trickster is written, in this case trickster(w) returns false.

Case 2: $\text{willAccept(me, input)}$ returns false. Since willAccept decides A_{TM}, this means trickster(w) doesn’t return true.
Theorem: \(A_{TM} \notin R \).

Proof: By contradiction; assume that \(A_{TM} \in R \). Then there is a decider \(D \) for \(A_{TM} \). We can represent \(D \) as a function

\[
\text{bool willAccept(string function, string w);}
\]

that takes in the source code of a function \(function \) and a string \(w \), then returns true if \(function(w) \) returns true and returns false otherwise.

Given this, consider this function \(\text{trickster} \):

\[
\text{bool trickster(string input) }
\{
\quad \text{string me = /* source code of trickster */};
\quad \text{return !willAccept(me, input);}
\}
\]

Choose a string \(w \). We consider two cases:

Case 1: \(\text{willAccept(me, input)} \) returns true. Since \(\text{willAccept} \) decides \(A_{TM} \), this means \(\text{trickster}(w) \) returns true. However, given how \(\text{trickster} \) is written, in this case \(\text{trickster}(w) \) returns false.

Case 2: \(\text{willAccept(me, input)} \) returns false. Since \(\text{willAccept} \) decides \(A_{TM} \), this means \(\text{trickster}(w) \) doesn’t return true. However, given how \(\text{trickster} \) is written, in this case \(\text{trickster}(w) \) returns true.
Theorem: $A_{TM} \notin R$.

Proof: By contradiction; assume that $A_{TM} \in R$. Then there is a decider D for A_{TM}. We can represent D as a function

$$\text{bool willAccept(string function, string w);}$$

that takes in the source code of a function $function$ and a string w, then returns true if $function(w)$ returns true and returns false otherwise.

Given this, consider this function trickster:

$$\text{bool trickster(string input) { $\text{string me = /* source code of trickster */;}$ $\text{return !willAccept(me, input);}$ }}$$

Choose a string w. We consider two cases:

Case 1: $\text{willAccept(me, input)}$ returns true. Since willAccept decides A_{TM}, this means trickster(w) returns true. However, given how trickster is written, in this case trickster(w) returns false.

Case 2: $\text{willAccept(me, input)}$ returns false. Since willAccept decides A_{TM}, this means trickster(w) doesn’t return true. However, given how trickster is written, in this case trickster(w) returns true.

In both cases we reach a contradiction, so our assumption must have been wrong.
Theorem: \(A_{TM} \notin \mathbb{R} \).

Proof: By contradiction; assume that \(A_{TM} \in \mathbb{R} \). Then there is a decider \(D \) for \(A_{TM} \). We can represent \(D \) as a function

\[
\text{bool willAccept(string function, string w)};
\]

that takes in the source code of a function \(\text{function} \) and a string \(w \), then returns true if \(\text{function}(w) \) returns true and returns false otherwise.

Given this, consider this function \(\text{trickster} \):

\[
\text{bool trickster(string input)} \{
 \text{string me = /* source code of trickster */};
 \text{return !willAccept(me, input)};
\}
\]

Choose a string \(w \). We consider two cases:

Case 1: \(\text{willAccept(me, input)} \) returns true. Since \(\text{willAccept} \) decides \(A_{TM} \), this means \(\text{trickster}(w) \) returns true. However, given how \(\text{trickster} \) is written, in this case \(\text{trickster}(w) \) returns false.

Case 2: \(\text{willAccept(me, input)} \) returns false. Since \(\text{willAccept} \) decides \(A_{TM} \), this means \(\text{trickster}(w) \) doesn’t return true. However, given how \(\text{trickster} \) is written, in this case \(\text{trickster}(w) \) returns true.

In both cases we reach a contradiction, so our assumption must have been wrong. Therefore, \(A_{TM} \notin \mathbb{R} \).
Theorem: $A_{TM} \notin R$.

Proof: By contradiction; assume that $A_{TM} \in R$. Then there is a decider D for A_{TM}. We can represent D as a function

$$
\text{bool willAccept(string function, string w);}\\
$$

that takes in the source code of a function function and a string w, then returns true if $\text{function}(w)$ returns true and returns false otherwise.

Given this, consider this function trickster:

$$
\text{bool trickster(string input) {}\\
\text{string me = /* source code of trickster */;}\\
\text{return !willAccept(me, input);}\\
}\n$$

Choose a string w. We consider two cases:

Case 1: willAccept(me, input) returns true. Since willAccept decides A_{TM}, this means trickster(w) returns true. However, given how trickster is written, in this case trickster(w) returns false.

Case 2: willAccept(me, input) returns false. Since willAccept decides A_{TM}, this means trickster(w) doesn’t return true. However, given how trickster is written, in this case trickster(w) returns true.

In both cases we reach a contradiction, so our assumption must have been wrong. Therefore, $A_{TM} \notin R$. ■
What Does This Mean?

- In one fell swoop, we've proven that
 - A_{TM} is \textit{undecidable}; there is no general algorithm that can determine whether a TM will accept a string.
 - $R \neq RE$, because $A_{TM} \notin R$ but $A_{TM} \in RE$.
- What do these three statements really mean? As in, why should you care?
$A_{TM} \notin \mathbb{R}$

- What exactly does it mean for A_{TM} to be undecidable?

 Intuition: The only general way to find out what a program will do is to run it.

- As you'll see, this means that it's provably impossible for computers to be able to answer most questions about what a program will do.
At a more fundamental level, the existence of undecidable problems tells us the following:

There is a difference between what is true and what we can discover is true.

Given a TM M and a string w, one of these two statements is true:

M accepts w \hspace{1cm} M does not accept w

But since A_{TM} is undecidable, there is no algorithm that can always determine which of these statements is true!
Because $R \neq \text{RE}$, there is a difference between decidability and recognizability:

In some sense, it is fundamentally harder to solve a problem than it is to check an answer.

There are problems where, when the answer is “yes,” you can confirm it (run a recognizer), but where if you don’t have the answer, you can’t come up with it in a mechanical way (build a decider).
Next Time

- **Why All This Matters**
 - Important, practical, undecidable problems.
- **Intuiting RE**
 - What exactly is the class RE all about?
- **Verifiers**
 - A totally different perspective on problem solving.
- **Beyond RE**
 - Finding an impossible problem using very familiar techniques.